Why is $\mathbf{5 0}$ Coaxial Line so Special Anyway?

Field Analysis of Coax:

The coaxial line segment shown above is filled with a dielectric ϵ, and is assumed to be driven by a potential difference V between the inner and outer conductors, which induces a charge $\pm Q$ on the surface of each conductor. The charge will be distributed uniformly along the length Δz of the coax.

The electric field will be radial by symmetry. From Gauss' law

$$
\begin{equation*}
\oiint \epsilon \bar{E} \cdot d \bar{S}=\iiint \rho d V \quad \Rightarrow \quad E_{r}=\frac{Q}{2 \pi \epsilon r \Delta z} \tag{1}
\end{equation*}
$$

Which gives a voltage

$$
\begin{equation*}
V=-\int_{b}^{a} \bar{E} \cdot d \ell=\frac{Q}{2 \pi \epsilon \Delta z} \ln (b / a) \tag{2}
\end{equation*}
$$

The capacitance per unit length is given by

$$
\begin{equation*}
C=\frac{Q}{V \Delta z}=\frac{2 \pi \epsilon}{\ln (b / a)} \quad[\mathrm{F} / \mathrm{m}] \tag{3}
\end{equation*}
$$

From Ampère's law,

$$
\begin{equation*}
\oint \bar{H} \cdot d \ell=I_{0} \quad \Rightarrow \quad H_{\phi}=\frac{I_{0}}{2 \pi r} \tag{4}
\end{equation*}
$$

The inductance per unit length is defined by

$$
\begin{equation*}
L=\frac{1}{I \Delta z} \iint \bar{B} \cdot d \bar{S}=\frac{\mu}{2 \pi} \ln (b / a) \quad[\mathrm{H} / \mathrm{m}] \tag{5}
\end{equation*}
$$

The characteristic impedance is therefore

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{L}{C}}=\frac{\eta}{2 \pi} \ln (b / a) \tag{6}
\end{equation*}
$$

Power Handling Capacity:

Dielectric breakdown will occur in the region between the two conductors if the electric field exceeds a certain critical value. The field strength is a function of the applied voltage and line geometry. Using (1) and (2) we can express the electric field as

$$
\begin{equation*}
E_{r}=\frac{V}{r \ln (b / a)} \tag{7}
\end{equation*}
$$

This shows that the field is largest near the center conductor, so

$$
\begin{equation*}
E_{\max }=\frac{V}{a \ln (b / a)} \tag{8}
\end{equation*}
$$

The peak power transmitted down the line is then given by

$$
\begin{equation*}
P=V^{2} / Z_{0}=\frac{2 \pi}{\eta} a^{2} E_{\max }^{2} \ln (b / a) \tag{9}
\end{equation*}
$$

and thus the maximum power flow is influenced by the line geometry. To find the optimum conductor sizes, we can look for the value of a which maximizes (9)

$$
\begin{equation*}
\frac{\partial P}{\partial a} \propto \frac{\partial}{\partial a}\left(a^{2} \ln b-a^{2} \ln a\right)=a[2 \ln (b / a)-1]=0 \tag{10}
\end{equation*}
$$

This equation is satisfied when $b / a=1.65$, which gives an optimum characteristic impedance of $Z_{0}=30 \Omega$ for maximum power transmission in a coaxial air-line.

Attenuation:

From the distributed circuit model for a transmission-line, we found that the attenuation constant (for low-loss lines) is

$$
\begin{equation*}
\alpha \approx \frac{R}{2 Z_{0}}+\frac{G Z_{0}}{2} \tag{11}
\end{equation*}
$$

where R is the series resistance per unit length, and G is the shunt conductance per unit length. Physically, where does this loss come from? The series resistance R comes from Ohmic losses in the metal conductors. Using a sheet resistivity of R_{s}, the then total resistance per unit length is just

$$
\begin{equation*}
R=\frac{R_{s}}{2 \pi}\left(\frac{1}{b}+\frac{1}{a}\right) \tag{12}
\end{equation*}
$$

The shunt conductance comes from loss in the dielectric material. If the dielectric has a small conductivity σ, then a small current can flow radially through the material according to $J_{r}=\sigma E_{r}$. The total conduction current through the dielectric is then

$$
\begin{equation*}
I_{d}=2 \pi r \Delta z J_{r}=2 \pi r \Delta z \sigma E_{r} \tag{13}
\end{equation*}
$$

Using (7), the conductance G is expressed as

$$
\begin{equation*}
G=\frac{I}{V \Delta z}=\frac{2 \pi \sigma}{\ln (b / a)} \tag{14}
\end{equation*}
$$

Substituting (12) and (14) into (11), we can find the optimum line dimensions for lowest attenuation,

$$
\begin{align*}
\frac{\partial \alpha}{\partial a}=0 & \propto \frac{\partial}{\partial a} \frac{(1 / b+1 / a)}{\ln (b / a)} \tag{15}\\
0 & =1+a / b-\ln (b / a)
\end{align*}
$$

This equation is satisfied for $b / a=3.6$, which gives an optimum characteristic impedance of $Z_{0}=77 \Omega$ for lowest attenuation in a coaxial air-line.

A Compromise:

The expressions for attenuation and power handling are plotted below as a function of characteristic impedance for a coaxial air-line. An impedance of around 50Ω gives the best overall performance for an air-dielectric. Note, however, that filling the coax with a dielectric material (such as PTFE, $\epsilon_{r} \approx 2.25$) will shift the optimum points to a lower characteristic impedance.*

[^0]
[^0]: * Thanks to Mr. Bob McNamara of Broadcom Inc. for this caveat and for carefully proofreading the document.

