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Why is 50− Coaxial Line so Special Anyway?

Field Analysis of Coax:
The coaxial line segment shown above is ¯lled with a dielectric ², and is assumed to be driven by a potential
di®erence V between the inner and outer conductors, which induces a charge §Q on the surface of each
conductor. The charge will be distributed uniformly along the length ¢z of the coax.
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The electric ¯eld will be radial by symmetry. From Gauss' lawZZ
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Which gives a voltage
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The capacitance per unit length is given by
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The inductance per unit length is de¯ned by
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The characteristic impedance is therefore
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Power Handling Capacity:
Dielectric breakdown will occur in the region between the two conductors if the electric ¯eld exceeds a certain
critical value. The ¯eld strength is a function of the applied voltage and line geometry. Using (1) and (2)
we can express the electric ¯eld as
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This shows that the ¯eld is largest near the center conductor, so
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The peak power transmitted down the line is then given by
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and thus the maximum power °ow is in°uenced by the line geometry. To ¯nd the optimum conductor sizes,
we can look for the value of a which maximizes (9)
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This equation is satis¯ed when b=a = 1:65, which gives an optimum characteristic impedance of Z0 = 30−
for maximum power transmission in a coaxial air-line.

Attenuation:
From the distributed circuit model for a transmission-line, we found that the attenuation constant (for
low-loss lines) is
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where R is the series resistance per unit length, and G is the shunt conductance per unit length. Physically,
where does this loss come from? The series resistance R comes from Ohmic losses in the metal conductors.
Using a sheet resistivity of Rs, the then total resistance per unit length is just
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The shunt conductance comes from loss in the dielectric material. If the dielectric has a small conductivity
¾, then a small current can °ow radially through the material according to Jr = ¾Er. The total conduction
current through the dielectric is then

Id = 2¼r¢zJr = 2¼r¢z¾Er (13)

Using (7), the conductance G is expressed as
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Substituting (12) and (14) into (11), we can ¯nd the optimum line dimensions for lowest attenuation,
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This equation is satis¯ed for b=a = 3:6, which gives an optimum characteristic impedance of Z0 = 77− for
lowest attenuation in a coaxial air-line.

A Compromise:
The expressions for attenuation and power handling are plotted below as a function of characteristic
impedance for a coaxial air-line. An impedance of around 50− gives the best overall performance for
an air-dielectric. Note, however, that ¯lling the coax with a dielectric material (such as PTFE, ²r ¼ 2:25)
will shift the optimum points to a lower characteristic impedance.*
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Characteristic Impedance

Attenuation 
minimum at 77Ω

Power handling
maximum at 30Ω

* Thanks to Mr. Bob McNamara of Broadcom Inc. for this caveat and for carefully proofreading the document.


