Primeira Prova Análise Real I Bacharelado em Matemática UFABC

Stefano Nardulli

20/07/2018

- 1. Provar que se \mathbb{K} é um corpo ordenado completo, então \mathbb{K} é isomorfo a \mathbb{R} .
- 2. Provar que $(\mathbb{Z}_p, +, \cdot)$, com $p \in \mathbb{N}$ número primo, é um corpo, mostra que \mathbb{Z}_p não é um corpo ordenado.
- 3. Provar que não existe uma bijeção entre um conjunto qualquer $X \in \mathcal{P}(X)$.
- 4. Mostrar que $\mathbb Q$ é enumerável e $\mathbb R$ não é enumerável.
- 5. Mostrar que $\lim_{n\to+\infty} (a^n + b^n)^{\frac{1}{n}} = \max\{a,b\}.$
- 6. Calcular $\sup(A)$ e $\inf(A)$, onde $A := \left\{\arctan\left(\frac{x^2 3x + 2}{x^7 31x^5 + 2}\right) : x \in \mathbb{R}, x^7 31x^5 + 2 \neq 0\right\}$.
- 7. Mostrar que $n^k \leq \frac{9}{8} (\min\{n, k\})^{\max\{n, k\}}$, para todo $n, k \in \mathbb{N}$, com $n, k \geq 2$.
- 8. Mostrar que um subconjunto $A \subset \mathbb{R}^n$ é compacto se, e somente se, A é fechado e limitado.
- Mostrar que toda função contínua num subconjunto compacto da reta é uniformemente continua.
- 10. Dizer quantas raízes reais tem o polinômio $P_n(x) := \frac{x^{n+1}}{n+1} 10x + 100.$
- 11. Suponhamos que f é uma função real com domínio \mathbb{R} que tem a **propriedade** dos valores intermediários, i.e., para todo a < b e f(a) < c < f(b) existe $x \in]a,b[$ tal que f(x)=t, suponhamos que para todo $r \in \mathbb{Q}$, $f^{-1}(r)$ seja fechado. Provar que f é contínua.
- 12. Seja $f:[0,+\infty[\to \mathbb{R}$ uma função limitada em cada intervalo limitado. Se $\lim_{x\to +\infty}[f(x+1)-f(x)]=L$, então $\lim_{x\to +\infty}\frac{f(x)}{x}=L$.
- 13. Suponhamos que $f:X\to Y$ é uma bijeção, que X seja um espaço métrico compacto e Y um espaço métrico qualquer. Então f^{-1} é continua. Este resultado pode ser generalizado a espaços topológicos qualquer?