MCTA017 - Programação Matemática

EPR202 – Métodos de Otimização Aplicados à Eng. de Produção

Aula 5

Geometria e Estrutura de Conjuntos Poliédricos (Parte I)

Prof. Dr. Aritanan Gruber

Centro de Matemática, Computação e Cognição Universidade Federal do ABC

Quadrimestre Suplementar 2020

Agenda

(em três partes)

Vamos desenvolver, em paralelo, as teorias algébrica de sistemas de inequações lineares e geométrica de poliedros: uma informa, motiva e ilustra a outra, tornando a inter-relação rica e poderosa.

Especificamente, vamos:

- estudar representações interna e externa de poliedros e cones;
- estudar a estrutura de poliedros e ligá-la a conceitos vetoriais lineares e afins;
- introduzir um algoritmo iterativo de busca que soluciona problemas viáveis;
- apresentar provas construtivas de resultados clássicos fundamentais como Farkas e Carathéodory;
- provar Dualidade Forte e de Folgas Complementares;
- refinar o algoritmo acima no método Simplex.

Outline

Conjuntos e Cones Convexos Redux

Inequações, Fourier-Motzkin e Farkas

Sejam $x, x_1, x_2, \ldots, x_k \in X \subseteq \mathbb{R}^n$. Lembre-se que x é uma combinação linear dos x_i se

$$\boldsymbol{x} = \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k$$

para $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$. Caso ainda valha que $\sum_{i=1}^k \lambda_i = 1$, \boldsymbol{x} é uma combinação afim dos \boldsymbol{x}_i .

Os fechos linear $\lim \operatorname{span}(X)$ e afim $\operatorname{aff.span}(X)$ de X são os conjuntos de todas as combinações lineares e afins, respectivamente, de elementos em X. Claramente, $\lim \operatorname{span}(X)$ é um subespaço linear e $\operatorname{aff.span}(X)$ é um conjunto afim.

Equivalentemente, podemos expressar lin. span e aff. span como

$$\begin{aligned} & \text{lin.span}(X) = \bigcap \big\{ Y \supseteq X : Y \text{ \'e um subespaço linear de } \mathbb{R}^n \big\}, \\ & \text{aff.span}(X) = \bigcap \big\{ Y \supseteq X : Y \text{ \'e um conjunto afim em } \mathbb{R}^n \big\}. \end{aligned}$$

Se restringirmos o domínio dos λ_i aos reais não negativos, obtemos combinações cônicas e convexas no lugar de lineares e afins.

Dizemos que x é uma combinação cônica de x_1, x_2, \ldots, x_k se para $0 \le \lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$, temos que $x = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k$.

Se além disso valer que $\sum_{i=1}^k \lambda_i = 1$, então \boldsymbol{x} é uma combinação convexa de $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_k$. Isto é, uma combinação convexa é simultaneamente cônica e afim.

De forma semelhante, os fechos cônico cone(X) e convexo conv(X) de X são os conjuntos de todas as combinações cônicas e convexas, respectivamente, de elementos em X.

Um conjunto $\emptyset \neq C \subseteq \mathbb{R}^n$ é um *cone* (ou *cônico*) se $\lambda x + \mu y \in C$ para todos $x, y \in C$ e $\lambda, \mu \in \mathbb{R}$. Se C é um cone, então $0 \in C$.

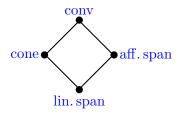
Um conjunto $C \subseteq \mathbb{R}^n$ é *convexo* se para todos $x, y \in C$ e $\lambda \in [0, 1]$, tem-se que $(1 - \lambda)x + \lambda y \in C$. O pode ou não pertencer a C.

Claramente, $\operatorname{cone}(X)$ é um cone e $\operatorname{conv}(X)$ é um conjunto convexo para todo $X \subseteq \mathbb{R}^n$. Além disso, é de prova imediata que todo cone é convexo.

cone(X) e conv(X) podem ainda ser expressos como:

$$\begin{aligned} \operatorname{cone}(X) &= \bigcap \big\{ Y \supseteq X : Y \text{ \'e um cone em } \mathbb{R}^n \big\}, \\ \operatorname{conv}(X) &= \bigcap \big\{ Y \supseteq X : Y \text{ \'e um conjunto convexo em } \mathbb{R}^n \big\}. \end{aligned}$$

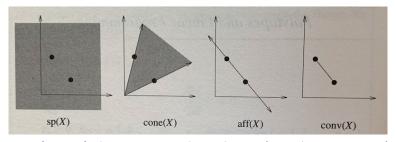
Reticulado dos 4 tipos de combinações e fechos:



Quatro Tipos de Combinações e Fechos

Para $X=\{x_1,x_2,\ldots,x_k\}\subseteq\mathbb{R}^n$ finito, quatro tipos de fechos: linear, cônico, afim e convexo. $(\lambda_i\in\mathbb{R})$

$$\begin{aligned} & \text{lin. span}(X) := \left\{ \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k \right\} \\ & \text{cone}(X) := \left\{ \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k : \lambda_1, \lambda_2, \dots, \lambda_k \geq 0 \right\} \\ & \text{aff. span}(X) := \left\{ \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k : \lambda_1 + \lambda_2 + \dots + \lambda_k = 1 \right\} \\ & \text{conv}(X) := \left\{ \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k : \lambda_1 + \lambda_2 + \dots + \lambda_k = 1, \\ & \lambda_1, \lambda_2, \dots, \lambda_k \geq 0 \right\} \end{aligned}$$



 $X = \{x_1, x_2\}$, linearmente independentes (ext. de Lee, pg. 10)

As dimensões de cones e conjuntos convexos funcionam como esperamos, isto é, para $\emptyset \neq X \subseteq \mathbb{R}^n$,

- ▶ $\dim(\operatorname{cone}(X)) = \dim(\operatorname{lin.span}(X))$, que é igual ao número máximo de vetores linearmente independentes em X, e
- ▶ $\dim(\operatorname{conv}(X)) = \dim(\operatorname{aff.span}(X))$, que é igual ao número máximo de vetores afim independentes em X menos 1.

Lembre-se que, por definição, $\dim(\operatorname{aff.span}(\emptyset)) = -1$.

Como $\operatorname{aff.span}(X) = \lim_{n \to \infty} \operatorname{span}(X - \boldsymbol{a})$ para algum traslado $\boldsymbol{a} \in X$,

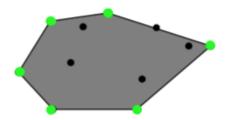
$$dim(conv(X)) = dim(aff. span(X))$$
$$= dim(lin. span(X - X)) + 1$$
$$= dim(cone(X - X)) + 1.$$

Nota: Neste curso, a menos que explicitado o contrário, todos os cones e conjuntos convexos são fechados.

Conjuntos Convexos

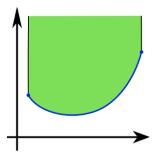
Seja $S \subseteq \mathbb{R}^n$ convexo. Um vetor $\boldsymbol{x} \in S$ é um ponto extremo de S se não existem $\boldsymbol{y}, \boldsymbol{z} \in S$ e $\lambda \in (0,1)$ tais que $\boldsymbol{x} = (1-\lambda)\boldsymbol{y} + \lambda \boldsymbol{z}$.

De outra forma, \boldsymbol{x} é um ponto extremo de S se para todos $\boldsymbol{y}, \boldsymbol{z} \in S$ tais que $\boldsymbol{x} = (1 - \lambda)\boldsymbol{y} + \lambda \boldsymbol{z}$, é o caso de que $\lambda \in \{0, 1\}$; logo, $\boldsymbol{x} = \boldsymbol{y}$ ou $\boldsymbol{x} = \boldsymbol{z}$.



Pontos extremos em verde — Finitamente gerado (Gärtner-Matoušek modificado)

Conjuntos Convexos



Pontos extremos em azul — Não finitamente gerado (Wikipedia)

Um resultado clássico que será util posteriormente.

Teorema (Carathéodory: afim — exercício)

Se $X \subseteq \mathbb{R}^n$ e $\mathbf{x} \in \text{conv}(X)$, então $\mathbf{x} \in \text{conv}(\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_d\})$ para alguns vetores afim independentes $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_d \in X$, com $d = \min\{n, |X| - 1\}$.

Hiperplanos e Meio-espaços

Um *hiperplano* $H \subset \mathbb{R}^n$ é um conjunto da forma

$$H = H(\boldsymbol{a}, \delta) := \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}^{\mathsf{T}} \boldsymbol{x} = \delta \right\} \quad (\bullet)$$

para algum $a \in \mathbb{R}^n$, $a \neq 0$ e $\delta \in \mathbb{R}$. H é linear (homogêneo) se $\delta = 0$ e afim (inomogêneo) em caso contrário. O vetor a é dito normal ao hiperplano H.

Um hiperplano H divide o espaço \mathbb{R}^n em dois *meio-espaços*:

$$H^- = \left\{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{a}^ op oldsymbol{x} \leq \delta
ight\} \quad ext{e} \quad H^+ = \left\{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{a}^ op oldsymbol{x} \geq \delta
ight\}.$$

Claramente, $H = H^- \cap H^+$. Os meio-espaços são lineares ou afins de acordo com o valor de δ .

A dimensão de um hiperplano $H\subset\mathbb{R}^n$ é $\dim(H)=n-1$ e a recíproca é verdadeira: todo subconjunto $X\subset\mathbb{R}^n$ tal que $\dim(X)=n-1$ é um hiperplano e pode ser expresso na forma (\bullet) – prove!

Hiperplanos e Meio-espaços

Proposição

- (a) A intersecção de dois conjuntos convexos é convexa.
- (b) Todo meio-espaço é um conjunto convexo.

Prova. (a) Sejam S_1, S_2 convexos e $S = S_1 \cap S_2$. Para quaisquer $\boldsymbol{x}, \boldsymbol{y} \in S$, temos que $(1 - \lambda)\boldsymbol{x} + \lambda \boldsymbol{y} \in S_i$ para todo $\lambda \in [0, 1]$, pois S_i é convexo. O mesmo vale para S; logo ele é convexo.

(b) Considere o meio-espaço $H^-=\left\{ m{x}\in\mathbb{R}^n: m{a}^{\!\top}\!m{x}\leq\delta \right\}$ e tome $m{x}, m{y}\in H^-$. Para todo $\lambda\in[0,1]$, defina $m{z}(\lambda):=(1-\lambda)m{x}+\lambdam{y}$. Temos que

$$\boldsymbol{a}^{\top}\boldsymbol{z}(\lambda) = \boldsymbol{a}^{\top}((1-\lambda)\boldsymbol{x} + \lambda\boldsymbol{y}) = (1-\lambda)\boldsymbol{a}^{\top}\boldsymbol{x} + \lambda\boldsymbol{a}^{\top}\boldsymbol{y} \leq (1-\lambda)\delta + \lambda\delta = \delta$$

mostrando que $z(\lambda) \in H^-$. Logo, H^- é convexo.

Resultado semelhante é válido para H^+ .

Poliedros

Um conjunto $\mathcal{P} \subseteq \mathbb{R}^n$ é um *poliedro* se

$$\mathcal{P} = \left\{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}
ight\}$$

para alguma matriz $A \in \mathbb{R}^{m \times n}$ e vetor $b \in \mathbb{R}^m$. Caso $A \in \mathbb{Q}^{m \times n}$ e $b \in \mathbb{Q}^m$, o poliedro é dito *racional*.

Nota: As transformações introduzidas nas reduções de PLs às formas canônica e padrão claramente se aplicam a poliedros; vamos, por vezes, considerar poliedros em tais formas e adotar a nomenclatura.

Hiperplanos e meio-espaços são poliedros e a recíproca é verdadeira no sentido de que um poliedro é uma intersecção de um número finito de meio-espaços.

Corolário

Todo poliedro é um conjunto convexo.

Poliedros

Um poliedro \mathcal{P} como acima é *limitado* se existe uma constante real M>0 tal que $|x_i|< M$ para todo $\boldsymbol{x}\in\mathcal{P}$ e $i\in[n]:=\{1,2,\ldots,n\}.$

Um conjunto $\mathcal{Q} \subset \mathbb{R}^n$ é um *politopo* se

$$Q = \operatorname{conv}(X) := \left\{ \sum_{i=1}^k \lambda_i \boldsymbol{x}_i : \sum_{i=1}^k \lambda_i = 1, \ \lambda_i \ge 0 \right\},\,$$

para um conjunto finito $X = \{x_1, x_2, \dots, x_k\} \subset \mathbb{R}^n$. Em outras palavras, um politopo \mathcal{Q} é um conjunto convexo finitamente gerado.

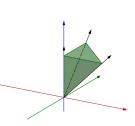
Podemos intuir que os conceitos poliedro limitado e politopo descrevem as mesmas regiões convexas do espaço: o primeiro, de forma externa e o segundo, de forma interna.

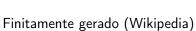
A intuição é correta e vamos provar que um poliedro é limitado se e somente se ele é um politopo.

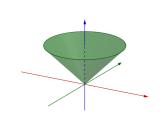
Cones Convexos

Um cone $\emptyset \neq \mathcal{C} \subset \mathbb{R}^n$ é

- lacktriangledown poliédrico se $\mathcal{C}=\left\{oldsymbol{x}\in\mathbb{R}^n:oldsymbol{A}oldsymbol{x}\leq\mathbf{0}
 ight\}$ para $oldsymbol{A}\in\mathbb{R}^{m imes n}$;
- ▶ finitamente gerado se para algum $X = \{x_1, x_2, \dots, x_k\} \subseteq \mathbb{R}^n$ finito, $C = \text{cone}(X) := \{\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k : \lambda_i \geq 0\}.$



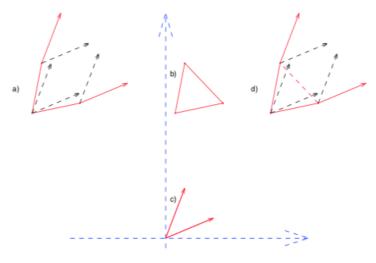




Não finitamente gerado (idem)

Vamos mostrar que: um cone é poliédrico se e somente se é finitamente gerado; um conjunto $\mathcal{P} \subseteq \mathbb{R}^n$ é um poliedro se e somente se $\mathcal{P} = \mathcal{Q} + \mathcal{C}$ para algum politopo \mathcal{Q} e cone poliédrico \mathcal{C} .

Cones e Poliedros



(a) poliedro \mathcal{P} . (b) politopo \mathcal{Q} . (c) cone \mathcal{C} . (d) $\mathcal{P} = \mathcal{Q} + \mathcal{C}$. (extraído de Nemirovski, pg. 48)

Outline

Conjuntos e Cones Convexos Redux

Inequações, Fourier-Motzkin e Farkas

Onde Estamos ...

Para uma matriz $A \in \mathbb{R}^{m \times n}$ e um vetor $b \in \mathbb{R}^n$, mostramos que o sistema afim Ax = b tem solução $x \in \mathbb{R}^n$ se e somente se o sistema linear

$$\boldsymbol{y}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{0}, \ \boldsymbol{y}^{\mathsf{T}}\boldsymbol{b} = -1$$

não tem solução $\boldsymbol{y} \in \mathbb{R}^m$.

Mais ainda, o algoritmo de Eliminação Gaussiana pode ser usado para determinar x ou y — e também para produzir uma prova alternativa.

Para $c \in \mathbb{R}^n$ e $\delta \in \mathbb{R}$, podemos provar que implicações entre equações lineares podem ser testadas em tempo polinomial:

Corolário (exercício)

Supondo que Ax = b tem solução, temos que Ax = b implica que $c^{\mathsf{T}}x = \delta$ se e somente se existe $y \in \mathbb{R}^m$ tal que $y^{\mathsf{T}}A = c$ e $y^{\mathsf{T}}b = \delta$.

Onde Estamos ...

O Corolário acima junto à Eliminação Gaussiana e Busca Binária pode ser usado para resolver o PL $\min\{c^{\top}x:Ax=b\}$ em tempo polinomial. (Como?)

Pergunta: O que está faltando / resta a ser feito?

Não é possível reduzir o PL genérico a $\min\{c^{\top}x: Ax = b\}$ pois não temos como expressar restrições do tipo $x_i \ge 0$ nele.

Lembre-se que a redução de um PL com inequações $Ax \leq b$ ou $Ax \geq b$ à forma padrão envolvendo equações A'x' = b' requer que as variáveis de folga introduzidas sejam não negativas.

Mais ainda, a Eliminação Gaussiana não oferece suporte a desigualdades: o algoritmo processa equações cujas variáveis são irrestritas!

Entra em cena o algoritmo de eliminação de *Fourier-Motzkin*: análogo à Eliminação Gaussiana, mas para sistemas $Ax \leq b$ com m inequações em n variáveis.

O algoritmo de eliminação de *Fourier-Motzkin* é análogo à Eliminação Gaussiana, mas para sistemas $Ax \leq b$ com m inequações em n variáveis.

Multiplicando cada inequação por uma constante positiva, transformamos a primeira coluna de A em um vetor com entradas em $\{-1,0,1\}$. Assim, $Ax \leq b$ pode ser re-escrito como

$$(\boldsymbol{a}_i')^{\top} \boldsymbol{x}' \leq b_i$$
 $(i = 1, \dots, m_1),$
 $-x_1 + (\boldsymbol{a}_j')^{\top} \boldsymbol{x}' \leq b_j$ $(j = m_1 + 1, \dots, m_2),$
 $x_1 + (\boldsymbol{a}_k')^{\top} \boldsymbol{x}' \leq b_k$ $(k = m_2 + 1, \dots, m),$

em que $x'=(x_2,\ldots,x_n)$ e a'_1,\ldots,a'_m são as linhas de A sem a primeira entrada (correspondente à primeira coluna). Observe que:

$$\max_{j} \left\{ (\boldsymbol{a}_{j}')^{\top} \boldsymbol{x}' - b_{j} \right\} \leq x_{1} \leq \min_{k} \left\{ b_{k} - (\boldsymbol{a}_{k}')^{\top} \boldsymbol{x}' \right\}. \quad (\star)$$

Logo, podemos eliminar a variável x_1 , obtendo

$$(\boldsymbol{a}_i')^{\top} \boldsymbol{x}' \leq b_i$$
 $(i = 1, \dots, m_1),$
 $(\boldsymbol{a}_j')^{\top} \boldsymbol{x}' - b_j \leq b_k - (\boldsymbol{a}_k')^{\top} \boldsymbol{x}'$ $(j = m_1 + 1, \dots, m_2),$
 $(k = m_2 + 1, \dots, m),$

que pode ainda ser re-escrito como

$$(\boldsymbol{a}_i')^{\top} \boldsymbol{x}' \leq b_i$$
 $(i = 1, \dots, m_1),$
 $(\boldsymbol{a}_j' + \boldsymbol{a}_k')^{\top} \boldsymbol{x}' \leq b_k + b_j$ $(j = m_1 + 1, \dots, m_2),$
 $(k = m_2 + 1, \dots, m),$

um sistema $A'x' \le b'$ em n' = n - 1 variáveis e com

$$m' = m_1 + (m_2 - m_1)(m - m_2) - m_2 = O(m^2)$$

restrições.

A prova de que $Ax \leq b$ tem solução x se e somente se $A'x' \leq b'$ tem solução x', com $x = (\alpha_1, x')$ para algum $\alpha_1 \in \mathbb{R}$, é imediata: dado x', basta tomar α_1 satisfazendo (\star) no lugar de x_1 .

lterando a eliminação acima n-1 vezes, obtém-se um sistema em uma única variável, caso em que determinar a existência ou não de uma solução é trivial.

Semelhante ao feito com sistemas de equações, é possível utilizar estas n-1 iterações como um algoritmo que:

- lacktriangle determina uma solução $m{x}$ para $m{A}m{x} \leq m{b}$, ou
- ▶ fornece um certificado $y \ge 0$ tal que $y^T A = 0$ e $y^T b < 0$, atestando a inconsistência de $Ax \le b$.

A prova desta afirmação será trabalhada na lista de exercícios. Uma consequência, é uma prova construtiva do clássico lema de Farkas para sistemas de inequações.

Fourier-Motzkin permite resolvermos o problema de viabilidade para poliedros $\{x: Ax \leq b\}$ e $\{x: Ax \leq b, x \geq 0\}$.

Aliás, geometricamente, o método consiste em projeções sucessivas: o poliedro

$$\left\{ \boldsymbol{x}' : (\boldsymbol{a}_i')^{\top} \boldsymbol{x}' \leq b_i, (\boldsymbol{a}_j' + \boldsymbol{a}_k')^{\top} \boldsymbol{x}' \leq b_k + b_j \right\}$$

é a projeção ao longo do eixo x_1 do poliedro

$$\{ \boldsymbol{x} := (x_1, \boldsymbol{x}') : (\boldsymbol{a}_i')^{\top} \boldsymbol{x}' \leq b_i, \ -x_1 + (\boldsymbol{a}_j')^{\top} \boldsymbol{x}' \leq b_j, \ x_1 + (\boldsymbol{a}_k')^{\top} \boldsymbol{x}' \leq b_k \}.$$

Podemos resolver $\{x : Ax = b, x \ge 0\}$ reduzindo-o ao caso acima:

- Escalone completamente (via eliminação Gaussiana) o sistema Ax = b no equivalente $(I \ A') \begin{pmatrix} y \\ z \end{pmatrix} = y + A'z = b'$,
- ▶ Aplique Fourier-Motzkin em $A'z \le b'$, $z \ge 0$.

Temos assim que Fourier-Motzkin mais Busca Binária podem ser usados para resolver PLs nas formas canônica e padrão.

Não é difícil perceber que podemos eliminar a dependência na Busca Binária aumentando a dimensão do espaço do PL em uma unidade.

Especificamente, para resolvemos o PL $\max \left\{ m{c}^{\!\top} \! x : A x \leq b \right\}$, consideramos uma variável adicional δ e aplicamos Fourier-Motzkin no sistema

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}, \ \delta - \mathbf{c}^{\mathsf{T}}\mathbf{x} \leq 0,$$

de forma a determinarmos uma solução $egin{pmatrix} x \\ \delta \end{pmatrix}$ com δ o maior possível.

Isto é feito eliminando-se todas as variáveis x_i e resolvendo o sistema resultante em δ de forma que ela tenha o maior valor possível.

Observamos (sem prova) que, ao contrário da eliminação Gaussiana, Fourier-Motzkin requer tempo exponencial em n no pior caso.

Lema (Farkas I: original)

Um sistema $Ax \leq b$ tem solução x se e somente se não existe $y \geq 0$ tal que $y^{T}A = 0$ e $y^{T}b < 0$.

Nota: Enunciamos o lema como uma boa caracterização da solução de $Ax \leq b$: x e y são certificados positivo e negativo, resp. É comum encontrar o lema enunciado como um conjunto de alternativas:

Sejam A uma matriz e b um vetor. Temos que uma e somente uma alternativa se verifica: ou

- (I) existe um vetor x tal que $Ax \leq b$, ou
- (II) existe um vetor $y \ge 0$ tal que $y^T A = 0$ e $y^T b < 0$.

Claramente, as duas formas são logicamente equivalentes (e usaremos a que for mais conveniente a cada momento).

A título de ilustração, vamos mostrar que as duas alternativas são mutuamente exclusivas: i.é, não ocorrem simultaneamente.

Prova. Suponha o contrário, isto é, que existem x e $y \geq 0$ tais que (I) e (II) são verdadeiras. Temos então que

$$0 = \mathbf{0}^{\mathsf{T}} \boldsymbol{x} = \boldsymbol{y}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x} \le \boldsymbol{y}^{\mathsf{T}} \boldsymbol{b} < 0,$$

uma clara contradição. Que (I) e (II) são exaustivas (ao menos uma se verifica) será provado na lista de exercícios.

Existem versões diferentes do Lema de Farkas na literatura. Todas, podem ser facilmente transformadas umas nas outras.

Lema (Farkas II: forma canônica — exercício)

Um sistema $Ax \leq b$ tem solução $x \geq 0$ se e somente se não existe $y \geq 0$ tal que $y^{\top}A \geq 0$ e $y^{\top}b < 0$.

Lema (Farkas III: forma padrão)

Um sistema Ax = b tem solução $x \ge 0$ se e somente se não existe y tal que $y^{\top}A \ge 0$ e $y^{\top}b < 0$.

A prova segue as linhas da redução de PLs à forma padrão.

Prova. Temos que a afirmação $\exists x : Ax = b, x \geq 0$ equivale a $\exists x : Ax \leq b, -Ax \leq -b, -x \leq 0$. Em notação matricial,

$$\exists \, x: \left(egin{array}{c} A \ -A \ -I \end{array}
ight) x \leq \left(egin{array}{c} b \ -b \ 0 \end{array}
ight).$$

O Lema de Farkas I então fornece que $\sharp \, m{y}_1 \geq m{0}, m{y}_2 \geq m{0}, m{y}_3 \geq m{0}$ tal que

$$(\boldsymbol{y}_1^\top,\boldsymbol{y}_2^\top,\boldsymbol{y}_3^\top)\left(\begin{array}{c}\boldsymbol{A}\\-\boldsymbol{A}\\-\boldsymbol{I}\end{array}\right)=\boldsymbol{0}\quad \text{e}\quad (\boldsymbol{y}_1^\top,\boldsymbol{y}_2^\top,\boldsymbol{y}_3^\top)\left(\begin{array}{c}\boldsymbol{b}\\-\boldsymbol{b}\\\boldsymbol{0}\end{array}\right)<0.$$

Isto equivale a $\nexists \boldsymbol{y}_1 \geq \boldsymbol{0}, \boldsymbol{y}_2 \geq \boldsymbol{0}, \boldsymbol{y}_3 \geq \boldsymbol{0} : (\boldsymbol{y}_1 - \boldsymbol{y}_2)^{\!\top} \boldsymbol{A} - \boldsymbol{y}_3 = \boldsymbol{0}, (\boldsymbol{y}_1 - \boldsymbol{y}_2)^{\!\top} \boldsymbol{b} < 0$. Fazendo $\boldsymbol{y} = \boldsymbol{y}_1 - \boldsymbol{y}_2$, obtemos

$$\nexists \boldsymbol{y}, \boldsymbol{y}_3 \geq \boldsymbol{0}: \boldsymbol{y}^{\top} \boldsymbol{A} - \boldsymbol{y}_3 = \boldsymbol{0}, \ \boldsymbol{y}^{\top} \boldsymbol{b} < 0 \iff \nexists \boldsymbol{y}: \boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{0}, \ \boldsymbol{y}^{\top} \boldsymbol{b} < 0.$$

Esta versão do lema de Farkas na forma padrão tem uma interpretação geométrica simples e clara:

- ightharpoonup ou b é uma combinação linear não negativa (= cônica) das colunas de A,
- \blacktriangleright ou existe um hiperplano de normal y que faz ângulos obtusos às colunas de A e faz um ângulo agudo com b.

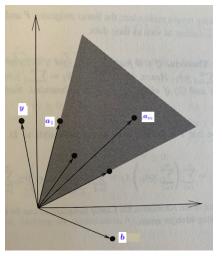
Este é um ponto crucial e não convém dependermos de resultados da lista de exercícios. Vamos, então, provar uma versão ligeiramente mais forte do Lema de Farkas III. A prova é construtiva, baseada em um algoritmo fundamental que é a semente do algoritmo Simplex.

Teorema (fundamental de desigualdades lineares; Farkas III')

Para vetores a_1, a_2, \ldots, a_m , com $d = \text{rank}(\{a_1, a_2, \ldots, a_m, b\})$, uma e somente uma das possibilidades abaixo se verifica:

- (I) b é uma combinação cônica de d-1 vetores linearmente independentes dentre a_1, a_2, \ldots, a_m , ou
- (II) existe um hiperplano $\{z: y^{\top}z = 0\}$, contendo d-1 vetores linearmente independentes dentre a_1, a_2, \ldots, a_m tal que

$$\mathbf{y}^{\mathsf{T}}\mathbf{b} < 0$$
 \mathbf{e} $\mathbf{y}^{\mathsf{T}}\mathbf{a}_1 \ge 0, \mathbf{y}^{\mathsf{T}}\mathbf{a}_2 \ge 0, \dots, \mathbf{y}^{\mathsf{T}}\mathbf{a}_m \ge 0.$



(extraído de Lee, pg. 13; modificado)

Ou $b \in \text{cone}(\{a_{i_1}, \dots, a_{i_{d-1}}\})$, ou existe um vetor y com o qual b faz um ângulo agudo e todo a_i faz um ângulo obtuso (ilustrado na figura).

Prova. Podemos supor que $L:=\lim_n \operatorname{span}(\{a_1,a_2,\ldots,a_m\})=\mathbb{R}^n$ já que, em caso contrário, podemos estender $\{a_1,a_2,\ldots,a_m\}$ a uma base de \mathbb{R}^n e trabalhar no subespaço complementar a L^\perp . Em nossa notação: $d=n\leq m$.

Temos que (I) e (II) não ocorrem simultaneamente. Caso contrário, $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_m \mathbf{a}_m = \mathbf{b}$ com $x_i \geq 0$ implica a clara contradição:

$$0 \le x_1 \mathbf{c}^{\mathsf{T}} \mathbf{a}_1 + x_2 \mathbf{c}^{\mathsf{T}} \mathbf{a}_2 + \dots + x_m \mathbf{c}^{\mathsf{T}} \mathbf{a}_m = \mathbf{c}^{\mathsf{T}} \mathbf{b} < 0.$$

Nota: Os d-1 vetores mencionados podem ser claramente obtidos por eliminação Gaussiana em $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} = 0, i = 1, 2, \dots, m$.

Mostramos agora que ou (I) ou (II) ocorre. Para isso, considere o seguinte algoritmo que recebe vetores a_1, a_2, \ldots, a_m, b e devolve $x \geq 0$ de acordo com (I) ou y de acordo com (II).

Escolha $D=\{a_{i_1},a_{i_2},\ldots,a_{i_d}\}\subseteq\{a_1,a_2,\ldots,a_m\}$ de forma que D seja linearmente independente.

(1) Determine $\lambda_{i_1}, \lambda_{i_2}, \dots, \lambda_{i_d}$ tais que

$$\lambda_{i_1}\boldsymbol{a}_{i_1} + \lambda_{i_2}\boldsymbol{a}_{i_2} + \ldots + \lambda_{i_d}\boldsymbol{a}_{i_d} = \boldsymbol{b};$$

Se $\lambda_{i_i} \geq 0$, pare: o caso (I) ocorre.

- (2) Seja $k = \min\{i_j : j \in [d], \lambda_{i_j} < 0\}$ e seja $\{x : y^{\mathsf{T}}x = 0\}$ o hiperplano gerado por $D \setminus \{a_k\}$, com y normalizado de forma que $y^{\mathsf{T}}a_k = 1$. [Logo, $y^{\mathsf{T}}b = \lambda_k$.]
- (3) Caso $\mathbf{y}^{\mathsf{T}} \mathbf{a}_1, \mathbf{y}^{\mathsf{T}} \mathbf{a}_2, \dots, \mathbf{y}^{\mathsf{T}} \mathbf{a}_m \geq 0$, pare: o caso (II) ocorre.
- (4) Seja $\ell = \min\{j \in [m] : {\pmb{y}}^{\top}{\pmb{a}}_j < 0\}$. Faça

$$D \leftarrow (D \setminus \{\boldsymbol{a}_k\}) \cup \{\boldsymbol{a}_\ell\}$$

e volte ao passo (1).

Resta mostrar que o processo acima termina (= é um algoritmo). Suponha o contrário e denote por D_s o conjunto D no início da s-ésima iteração. Como $\binom{m}{d}$ é finito, $D_s = D_t$ para algum t > s.

Dentre os elementos removidos de $D_s, D_{s+1}, \ldots, D_{t-1}$ no passo (4), seja \boldsymbol{a}_h o de maior índice e seja p a iteração de sua remoção. Como $D_s = D_t$, seja q a iteração em que \boldsymbol{a}_h foi re-adicionado a D_q , com $s \leq p < q < t$. $\Longrightarrow D_p \cap \{\boldsymbol{a}_{h+1}, \ldots, \boldsymbol{a}_m\} = D_q \cap \{\boldsymbol{a}_{h+1}, \ldots, \boldsymbol{a}_m\}$.

Sejam $D_p = \{ \boldsymbol{a}_{i_1}, \boldsymbol{a}_{i_2}, \dots, \boldsymbol{a}_{i_d} \}$, $\boldsymbol{b} = \lambda_{i_1} \boldsymbol{a}_{i_1} + \lambda_{i_2} \boldsymbol{a}_{i_2} + \dots + \lambda_{i_d} \boldsymbol{a}_{i_d}$, e \boldsymbol{y}_q o vetor determinado no passo (2) da iteração q. Temos a contradição

$$0 > \boldsymbol{y}_q^{\top} \boldsymbol{b} = \lambda_{i_1} \boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_1} + \lambda_{i_2} \boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_2} + \ldots + \lambda_{i_d} \boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_d} > 0,$$

pois por (2), $\lambda_{i_j} \geq 0$, $\boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_j} \geq 0$ se $i_j < h$; por (4), $\lambda_{i_j} < 0$, $\boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_j} < 0$ se $i_j = h$, e por h ser máximo, $\boldsymbol{y}_q^{\top} \boldsymbol{a}_{i_j} = 0$ se $i_j > h$. \square

O algoritmo iterativo acima é uma versão preliminar (ou disfarçada; depende do ponto de vista) do "famoso" algoritmo Simplex para PL, já equipado com uma regra anti-ciclagem:

A regra de Bland, que consiste em escolher k e ℓ mínimos nos passos (2) e (4) a cada iteração.

Sem uma regra anti-ciclagem (a de Bland, a lexicográfica, ou outras), o processo pode não terminar.

A escolha inicial de D e os passos (1) e (2) podem ser realizados via Eliminação Gaussiana (e em tempo polinomial se o poliedro for racional).

Mesmo com a regra de Bland, existem exemplos de pior caso em que o número de iterações pode ser exponencial em n. Falaremos mais sobre isso posteriormente.

A cada iteração, o conjunto D é uma base para o subespaço L. Isto dá origem ao conceito de solução básica no algoritmo Simplex.

Este e outros detalhes técnicos envolvendo inicialização, ilimitação e degeneração — que precisam ser tratados para um algoritmo funcional — serão endereçados após desenvolvermos as ferramentas adequadas para tal.

Enquanto isso, observe que a equivalência entre o Lema Farkas III e o Teorema Fundamental é imediata: a_1, a_2, \ldots, a_m são as colunas da matriz A.

Mais ainda, a prova do Teorema Fundamental fornece a prova de:

Corolário (Carathéodory: linear)

Se $X \subset \mathbb{R}^n$ e $\boldsymbol{x} \in \operatorname{cone}(X)$, então $\boldsymbol{x} \in \operatorname{cone}(\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_d\})$ para vetores $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_d$ linearmente independentes em X.

Já a versão afim pode ser provada via homogenização.

Mostramos anteriormente que Farkas I → Farkas III. Por consistência — e porque provamos Farkas III e não I — vamos mostrar a recíproca: que Farkas III → Farkas I.

Prova. Considere a matriz $A' = (I \ A - A)$. Segue que $Ax \le b$ tem uma solução x se e somente se A'x' = b tem uma solução $x' \ge 0$ (verifique!), e a existência desta é garantida pelo Lema de Farkas III.

A seguinte versão afim será útil posteriormente.

Lema (Farkas IV: afim)

Suponha que $Ax \leq b$ é consistente e sejam c um vetor e δ um escalar. Temos que $c^{\top}x \leq \delta$ é válida para todo x em que $Ax \leq b$ se e somente se existe $y \geq 0$ tal que $y^{\top}A = c^{\top}$ e $y^{\top}b \leq \delta$.

Prova. Se um tal vetor y existe, para todo vetor x tal que $Ax \leq b$, temos que $c^{\top}x = y^{\top}Ax \leq y^{\top}b \leq \delta$, provando que $c^{\top}x \leq \delta$ é válida.

Caso y não exista, o sistema linear nas variáveis y e $\nu \in \mathbb{R}$,

$$(\boldsymbol{y}^{\top} \ \nu) \begin{pmatrix} \boldsymbol{A} & \boldsymbol{b} \\ 0 & 1 \end{pmatrix} = (\boldsymbol{c}^{\top} \ \delta),$$

não tem solução não negativa: $(\boldsymbol{y}^{\top} \ \nu) \geq (\mathbf{0} \ 0)$. Aplicando Farkas I, temos então que existe um vetor $\begin{pmatrix} \boldsymbol{z} \\ \mu \end{pmatrix}$ tal que

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{b} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{z} \\ \mu \end{pmatrix} \geq \begin{pmatrix} \boldsymbol{0} \\ 0 \end{pmatrix} \qquad \text{e} \qquad (\boldsymbol{c}^\top \ \delta) \begin{pmatrix} \boldsymbol{z} \\ \mu \end{pmatrix} < (0 \ 0).$$

Temos dois casos a analisar.

Caso $\mu=0$. Temos que $Az \geq \mathbf{0}$ e $\mathbf{c}^{\top}z < 0$. Por hipótese, $Ax \leq \mathbf{b}$ tem uma solução x_0 . Assim, para $\alpha \in \mathbb{R}$ grande o suficiente,

$$A(\boldsymbol{x}_0 - \alpha \boldsymbol{z}) \leq \boldsymbol{b}$$
 e $\boldsymbol{c}^{\top}(\boldsymbol{x}_0 - \alpha \boldsymbol{z}) > \delta$,

contradizendo o fato de que $Ax \leq b$ implica $c^{\top}x \leq \delta$.

Caso $\mu > 0$. Tomando $\boldsymbol{x} = -\frac{1}{\mu}\boldsymbol{z}$, temos que $\boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}$ e $\boldsymbol{c}^{\top}\boldsymbol{x} < \delta$; novamente, uma contradição.

Neste ponto, você já pode ter percebido que a semente do conceito de dualidade forte entre PLs está contida no Lema de Farkas.

De fato, é possível provar o Teorema Forte de Dualidade utilizando o Teorema Fraco em conjunto com o Lema de Farkas IV (supondo que você provou o Lema de Farkas I à partir de Fourier-Motzkin). Esta foi a linha percorrida na lista de exercícios. Tomamos, aqui, um outro caminho: direto de Farkas I.