Autômatos Finitos Não Determinísticos

MCTA015-13 - Linguagens Formais e Autômata

Profa. Carla Negri Lintzmayer

carla.negri@ufabc.edu.br www.professor.ufabc.edu.br/~carla.negri

Centro de Matemática, Computação e Cognição – Universidade Federal do ABC

Autômato Finito Não Determinístico (AFN)

Descrição formal

Um Autômato Finito Não Determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- Q é um conjunto finito de elementos chamados estados;
- Σ é um alfabeto;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ é a função de transição;
- $q_0 \in Q$ é o estado inicial;
- $F \subseteq Q$ é o conjunto de **estados finais** (ou de **aceitação**).

Autômato Finito Não Determinístico (AFN)

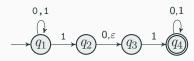
- A única diferença entre um AFD e um AFN é a sua função de transição:
 - um estado pode ter zero ou mais transições para cada símbolo do alfabeto ou ε saindo dele;
 - uma transição rotulada com ε indica que a máquina pode mudar de estado sem ler um símbolo da entrada;
 - após ler um símbolo, a máquina divide-se em várias cópias de sim mesma e segue todas as possibilidades em paralelo;
 - cada cópia continua como antes;
 - se existirem escolhas subsequentes, a máquina divide-se novamente;
 - se o próximo símbolo da entrada não aparece nas transições, a cópia morre;
 - se alguma das cópias está em um estado final ao fim da leitura da entrada, o AFN aceita a cadeia.
- Observe que todo AFD é um AFN!

Autômato Finito Não Determinístico (AFN)

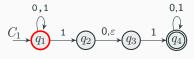
Considere o seguinte AFN $N_1=(Q,\Sigma,\delta,q_1,F)$, onde $Q=\{q_1,q_2,q_3,q_4\}$, $\Sigma=\{0,1\}$, $F=\{q_4\}$ e δ é definida como

δ	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	\emptyset
q_4	$\{q_4\}$	$\{q_4\}$	Ø

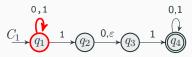
Seu diagrama de estados é:



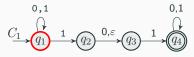
Antes de qualquer símbolo ser lido, nenhuma transição ε sai de nenhum estado, portanto apenas q_1 fica ativo e há uma cópia da máquina:



Quando o primeiro símbolo, 0, é lido, C_1 segue a transição para q_1 :



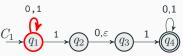
Logo após a leitura do primeiro símbolo, não há transições ε a partir de nenhum estado ativo, então nada acontece:



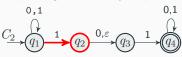
$\underset{\uparrow}{01101}$

Quando o segundo símbolo, 1, é lido, a máquina é duplicada:

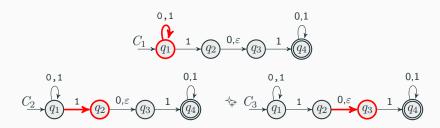
Uma cópia segue a transição que leva a q_1 :



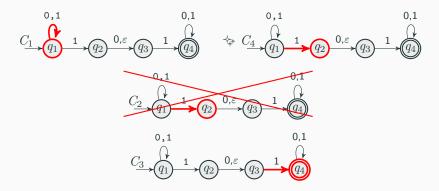
A outra cópia segue a transição que leva a q_2 :



Logo após a leitura do segundo símbolo, 1, existe um estado ativo com transição ε saindo dele, por isso C_2 é duplicada para seguir tal transição:

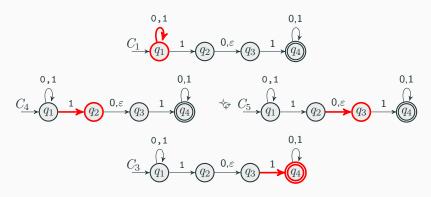


Quando o terceiro símbolo é lido, 1, cada cópia segue sua devida transição, se houver, podendo ser duplicada, ou então morre:



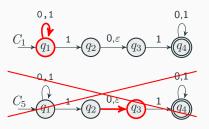
$011_{\uparrow}01$

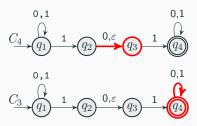
Logo após a leitura do terceiro símbolo, 1, existe um estado ativo com transição ε saindo dele, por isso C_4 é duplicada para seguir tal transição:



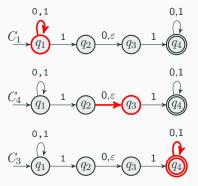
$01101 \\ \uparrow$

Quando o quarto símbolo é lido, 0, cada cópia segue sua devida transição, se houver, podendo ser duplicada, ou então morre:



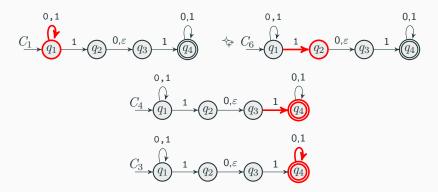


Logo após a leitura do quarto símbolo, 0, nenhum dos estados ativos tem transição ε saindo dele, por isso nada acontece:



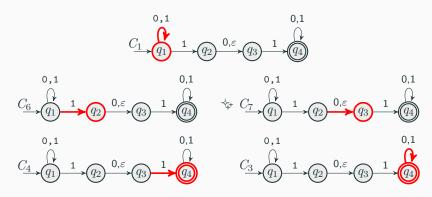
 01101_{\uparrow}

Quando o último símbolo é lido, 1, cada cópia segue sua devida transição, se houver, podendo ser duplicada, ou então morre:



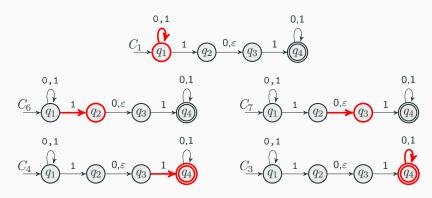
 01101_{\uparrow}

Logo após a leitura do último símbolo, 1, existe um estado ativo com transição ε saindo dele, por isso C_6 é duplicada para seguir tal transição:



01101_{\uparrow}

Não há mais símbolos na entrada, e existe pelo menos uma cópia com estado ativo que é final. Assim, aceitamos a cadeia 01101.



Os passos anteriores podem ser resumidos pela seguinte tabela:

estados at	símbolo lido	
q_1		
$ec{q}_1$	_0 1 1 0 1	
$ \not q_1$	01101	
q_1 q_2		0_1 1 0 1
q_1	q_2 q_3	0 1 1 0 1
q_1 q_2	$ \stackrel{\bullet}{\mathscr{D}} \stackrel{\bullet}{q_4} $	0 1_1 0 1
q_1 q_2 q_3	q_3 q_4	0 1 <u>1</u> 0 1
\vec{q}_1 \vec{q}_3	q_4	0 1 1_0 1
$-\dot{q}_1$ \dot{q}_3	\dot{q}_4	0 1 1 <u>0</u> 1
q_1 q_2 q_4	q_4	0 1 1 0_1
\vec{q}_1 \vec{q}_2 \vec{q}_4	q_4	0 1 1 0 <u>1</u>
\vec{q}_1 \vec{q}_2 \vec{q}_3 \vec{q}_4	$ec{q}_4$	0 1 1 0 1_

Observações:

- O processamento da cadeia 01101 foi simulado como se ela fosse a cadeia $\varepsilon 0\varepsilon 1\varepsilon 1\varepsilon 0\varepsilon 1\varepsilon$.
- ε não é de fato lido pela máquina.
- A simulação da leitura de um ε só vai disparar alguma ação caso haja algum estado ativo com uma transição ε saindo dele.

Definição formal de computação

Seja $N=(\mathit{Q},\Sigma,\delta,\mathit{q}_0,\mathit{F})$ um AFN e seja ω uma cadeia sobre $\Sigma.$

Dizemos que N aceita ω se podemos escrever $\omega=\alpha_1\alpha_2\cdots\alpha_m$, onde $\alpha_i\in\Sigma\cup\{\varepsilon\}$ para $1\leq i\leq m$, e existe uma sequência de estados (r_0,r_1,\ldots,r_m) tais que

- $r_0 = q_0$
- $r_{i+1} \in \delta(r_i, \alpha_{i+1}) \quad \forall i = 0, \dots, m-1$
- $r_m \in F$

Linguagem reconhecida por um AFN

Se X é o conjunto de todas as cadeias que um AFN N aceita, então dizemos que

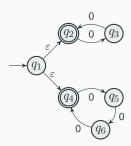
- lacksquare X é a **linguagem** de N
- L(N) = X
- N reconhece X

Outro exemplo

Considere o seguinte AFN $N_2=(Q,\Sigma,\delta,q_1,F)$, onde $Q=\{q_1,q_2,q_3,q_4,q_5,q_6\},~\Sigma=\{0,1\},~F=\{q_2,q_4\}$ e δ é definida como

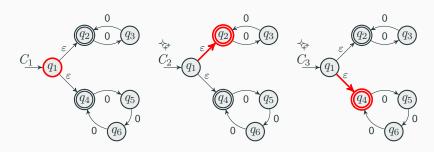
δ	0	1	ε
q_1	Ø	Ø	$\{q_2,q_4\}$
q_2	$\{q_3\}$	Ø	Ø
q_3	$\{q_2\}$	Ø	Ø
q_4	$\{q_5\}$	Ø	Ø
q_5	$\{q_6\}$	Ø	Ø
q_6	$\{q_4\}$	Ø	Ø

Seu diagrama de estados é:



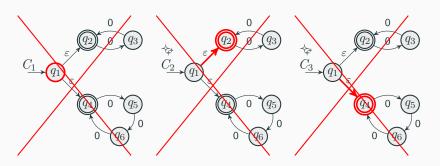
 $_{\scriptscriptstyle \uparrow} 11$

Antes de qualquer símbolo ser lido, existem transições ε que saem de estados ativos (no caso, apenas o estado inicial está ativo no início), portanto a máquina é duplicada:



 ${\displaystyle \mathop{11}_{\uparrow}}$

Quando o primeiro símbolo é lido, 1, cada cópia segue sua devida transição, se houver, podendo ser duplicada, ou então morre:



 $1_{\uparrow}1$

Logo após a leitura do primeiro símbolo, 1, nenhum dos estados ativos tem transição ε saindo dele, por isso nada acontece:

11 ↑

Quando o segundo símbolo é lido, 1, cada cópia segue sua devida transição, se houver, podendo ser duplicada, ou então morre:

 11_{\uparrow}

Logo após a leitura do último símbolo, 1, nenhum estado ativo tem transição ε saindo dele, por isso nada acontece:

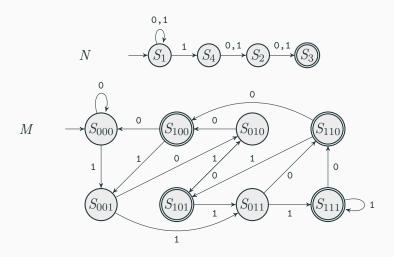
$$11_{\uparrow}$$

Não há mais símbolos na entrada, e nenhuma cópia está em estado ativo que é final. Assim, rejeitamos a cadeia $11.\,$

Os passos anteriores podem ser resumidos pela seguinte tabela:

estados ativos	símbolo lido
q_1	
q_1 q_2 q_4	_1 1
* * *	<u>1</u> 1
	1_1
	1 <u>1</u>
	1 1_

AFN vs. AFD



$$L(\mathit{N}) = L(\mathit{M}) = \{\omega \in \{0,1\}^* \mid \text{ o antepen\'ultimo s\'mbolo de } \omega \text{ \'e } 1\}$$

Definição de Equivalência

Dois autômatos M e N são **equivalentes** se L(M)=L(N), i.e., se ambos reconhecem a mesma linguagem.

Teorema

Todo AFN tem um AFD equivalente.

Demonstração.

Seja $N=(\mathit{Q},\Sigma,\delta,\mathit{q}_0,\mathit{F})$ um AFN.

Teorema

Todo AFN tem um AFD equivalente.

Demonstração.

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN. Precisamos mostrar que existe um AFD que reconhece L(N).

Teorema

Todo AFN tem um AFD equivalente.

Demonstração.

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN. Precisamos mostrar que existe um AFD que reconhece L(N).

Construa $M=(B,\Sigma,\varphi,p_0,\mathit{T})$, que reconhece $L(\mathit{N})$, da seguinte forma:

- $\bullet \quad B = \mathcal{P}(Q)$
- $\qquad \text{Para } R \in B \text{ e } a \in \Sigma, \ \varphi(R,a) = \bigcup_{r \in R} E(\delta(r,a)), \text{ onde }$
 - E(X)= estados que podem ser atingidos a partir dos estados em X por transições ε , incluindo os próprios estados de X
- $p_0 = E(\{q_0\})$
- $T = \{R \in B \mid R \text{ contém um estado de } F\}$

Linguagens regulares

Corolário

Uma linguagem é regular se e somente se algum autômato finito não determinístico a reconhece.

Linguagens regulares

Corolário

Uma linguagem é regular se e somente se algum autômato finito não determinístico a reconhece.

