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Abstract
Graph coloring is an NP-hard problem in the combinatorial optimization category with sev-
eral real-world applications. Here, we create dockerized algorithms and cloud benchmarking
tools to evaluate constructive heuristics, exact algorithms and constraint propagation on a
subset of graphs from the DIMACS challenges dataset. We also create a web visualizer
targeted at smaller graphs to replay graph coloring actions in a step-by-step manner,
including incrementally displaying the backtracking tree. Our cloud test results show
that the Pass implementation solved the most number of graphs in one hour, while exact
DSATUR was often the fastest algorithm. Our proposed custom GAC algorithm only
solved more graphs than the arbitrary ordering algorithm. The presence of DSATUR for
both heuristics and exact algorithms resulted, in general, in better approximations for the
chromatic number of a graph.

Keywords: graph coloring, greedy, dsatur, sewell, pass, web visualizer, backtracking,
ac-3, constraint satisfaction problem, constraint propagation, arc consistency, cloud, test,
docker.
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1 Introduction

A graph is a mathematical structure consisting of a set of vertices and a set of edges that
represent relationships between the vertices. When modeling a problem, vertices can be
considered any entities for which pairwise relationships are important. Some practical
uses of graphs require that these entities are grouped in a way such that no two vertices
which are adjacent share the same label, while using the minimum amount of labels. This
problem is known as the graph coloring problem.

It is believed that the study of graph coloring started when Francis Guthrie conjectured
that a map could always be colored with four colors avoiding clashes between adjacent
regions. In this conjecture, the adjacency relationship would require at least one boundary,
and would not apply to a single point in common between two regions [1]. Francis asked his
brother Frederick Guthrie, a mathematics undegraduate student at Cambridge University
at the time, about the existence of such theoretical upper bound on the number of colors
for map colorings. Frederick then asked his teacher Augustus de Morgan – the creator of
De Morgan’s law – who also did not have an answer to the conjecture [2]. The problem
went unsolved for a while, until an upper bound of five colors was proven indirectly by
Alfred Kempe in 1879 in an incorrect attempt to prove the four color theorem (later
disproven by Percy John Heawood in 1890) [3]. In 1989, Kenneth Appel and Wolfgang
Haken finally proved, with the aid of computers, that every planar graph (and thus every
planar map) can be colored with four colors [4].

The graph coloring problem is widely applied in the cartography area for coloring maps [5, 6],
as any planar map can be transformed into a planar graph representation with vertices
defining states, countries or arbitrary regions, and edges reflecting adjacency relationships.
Naturally, one way of obtaining a trivial, non-optimal solution is to assign a single different
color to each vertex, but doing so would create a map with many similar adjacent hues
when a large number of vertices are present. Therefore, it is desired to reduce the quantity
of used colors to a minimum.

The graph coloring problem is also used in other fields involving applications that deal
with assignment restrictions, such as register allocation for compiler optimization [7, 8].
Registers are faster than RAM and cache memory for value access, although they come in
fewer units. Given a large set of variables (long-lived or temporary), the compiler has to
decide which register should allocate which variable, possibly reusing the same register
across multiple variable assignments. The goal is to improve execution performance by
storing as many independent variables concurrently, since a register can only hold the
result of a single computation at a given time and no two variables assigned to the same
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register can live concurrently. A solution can be obtained by applying the graph coloring
algorithm, where temporary variables are represented by vertices, registers are represented
as colors, and constraints are given by an interference graph, where edges connect the
variables that live simultaneously in the program.

Besides register allocation, detecting bipartite graphs is another application of the graph
coloring problem. A graph is said to be bipartite if its vertices can be rearranged into
two disjoint sets such that all edges connect vertices from different sets. If the chromatic
number is lower than or equal to 2, then the graph is bipartite [9].

Finally, a fourth use case is generating a schedule for school classes where one teacher
may lecture multiple subjects, implying that two subjects cannot be lectured at the same
time by the same teacher. The problem can be modeled as a graph coloring instance, with
each vertex representing a subject, and edges connecting subjects that contain the same
teacher as lecturer.

Graph coloring is considered to be in the category of combinatorial optimization, where
solutions are optimal objects from a finite set of objects [10]. More specifically to the
problem, an optimal solution is one that partitions graph vertices into the smallest set
of independent sets [11]. An independent set is a set of vertices where each vertex is not
adjacent to any other vertex contained in it. The chromatic number is defined as the
number of colors used in an optimal solution.

The graph coloring problem was proven to be NP-Hard by Stephen Arthur Cook [12]. Let
G be some graph to be analyzed. The main coloring problems can be expressed by the
following questions [11]:

1. Can G be colored with at most k colors?

2. What is the chromatic number of G?

3. What is some optimal coloring of G?

The three questions above are interconnected, although the latter is the most desirable
and difficult one to be answered. By performing an enumeration in the space of solutions
one can find an optimal coloring in exponential time. As the amount of vertices and edges
grow in a graph, coloring it tends to become an intractable problem [13].

Extensive research has been conducted to overcome the intrinsic complexity of the graph
coloring problem. The development of heuristics have been successful for applications
where the optimal solution is desired but not necessary. For example, both the Classic
Greedy Coloring heuristic and DSATUR heuristic were developed to obtain approximate
solutions in polynomial time, with DSATUR usually offering best results (closer to optimal
solutions) [13].
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Another area of research that has helped to simplify the problem is the study of upper and
lower bounds for the chromatic number. Setting boundary ranges provides more insight
about the problem to be solved, although it still leaves a wide room of possibilities. By
using them, it is possible to reduce the search space considering only combinations where
the chromatic number is between certain bounds. For example, an upper bound related
to the maximum vertex degree (∆(G) + 1) can be applied to any graph. An even more
specific upper bound of four colors can be used only on planar graphs [4], although it is
often not implemented in exact algorithms, because denser graphs tend to have a smaller
probability of being planar. Likewise, a lower bound of some maximal clique size can be
used to avoid redundant coloring assignments and branching during a complete search for
solutions. By combining these approaches with techniques to avoid coloring symmetries,
exact algorithms for graph coloring can discard a great part of the initial search space by
using the branch-and-bound strategy with backtracking.

The search space for the graph coloring problem can be further reduced by pruning unfea-
sible branches with constraint propagation. First, the problem is modeled as a Constraint
Satisfaction Problem (CSP), described by a triple of variables, domains and constraints. In
case one or more domains become empty, the branch can be discarded earlier, as no more
valid solutions may be obtained from the current assignment. Given a Constraint Network,
which represents a set of variables, constraints and their interrelationships, constraint
propagation is achieved by applying an algorithm that guarantees Generalized Arc Consis-
tency (GAC), where “every value in a domain is consistent with every constraint” [14].
These are called Propagator Functions, capable of pruning off unfeasible assignments and
invalidating previously assumed solutions. Some known algorithms are AC-3, MDDC, and
STR2, as well as the GenTree Algorithm [15].

1.1 Goals
The goal of this work is to implement and compare the performance of heuristics and exact
constructive algorithms such as the Arbitrary Ordering Coloring algorithm, DSATUR,
and some of its variations (Sewell and Pass) [13, 16], by measuring their running time
and creating step-by-step visualization tools to analyze color assignments and heuristic-
dependent metrics. The performance of each algorithm will be compared on a set of graphs
from the DIMACS challenge 1. For heuristics implementations, the primary goal is to
analyze both the running time and how close the obtained results are to the chromatic
number of a DIMACS graph. For exact algorithm implementations, the primary goal is
to find the fastest algorithms for a given graph type, with the secondary goal being to
analyze the size of generated backtracking trees during execution. For the CSP approach,
1 Challenge information and datasets are available at https://dimacs.rutgers.edu/programs/

challenge/ and https://mat.tepper.cmu.edu/COLOR/instances.html

https://dimacs.rutgers.edu/programs/challenge/
https://dimacs.rutgers.edu/programs/challenge/
https://mat.tepper.cmu.edu/COLOR/instances.html
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we also analyze the execution of AC-3 propagators, capable of achieving GAC for the
contraint network of the graph coloring problem.

1.2 Text Structure
The rest of this document is divided as follows. Section 2 contains a brief history about
graph coloring origins and formal concepts from a more technical perspective. In Section 3,
we will understand about the problem’s intractability, lower and upper bounds for the
chromatic number, and will introduce algorithms for obtaining both exact and approximate
solutions, as well as some concepts related to the CSP approach. In Section 4, we explain our
methodology and algorithm implementations used for comparing graph coloring instances,
and in Section 5 we present our test bench implementation, which will coordinate the
benchmarking of our algorithms. Section 6 introduces a visualizer which can be used to
improve understanding of some colored graphs. Finally, in Section 7 we will demonstrate
the obtained results and make considerations about the overall performance of the tests,
as well as to suggest further improvements and final conclusions.
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2 Formal Definitions

In this section, we present the fundamental concepts for the study of algorithms for graph
coloring by first introducing some definition of graphs and later formalizing graph coloring
concepts.

Definition 1. An (undirected) graph is an ordered pair G = (V (G), E(G)) where V (G)
is a set containing elements called vertices of the graph G, and E(G) is a set disjoint from
V (G) containing elements called edges of the graph G which are pairs of vertices.

Definition 2. Two vertices v1, v2 ∈ V (G) are adjacent if there exists an edge e ∈ E(G)
such that e = {v1, v2}. We also write e = v1v2 for convenience. A vertex is incident with an
edge if the vertex is one of the two vertices of the edge. Two edges are said to be adjacent
if they share a vertex.

Example 1. The following sets define a graph G with eight vertices and 11 edges:

V (G) = {x1, x2, x3, x4, x5, x6, x7, x8}

E(G) = {x1x2, x1x3, x1x8, x2x3, x2x8, x3x4, x3x8, x4x6, x4x7, x5x6, x6x7}

Figure 1 is a visual representation of the undirected graph given in Example 1, where
vertices are drawn as circles and edges are drawn as lines connecting adjacent vertices.

x1

x2

x3

x4

x5

x6x7x8

Figure 1 – Graphic representation of the graph of Example 1.

Definition 3. The degree deg(v) of some vertex v is defined as the number of edges that
are incident to v.

In Example 1, deg(x1) = deg(x2) = 3, deg(x3) = 4, and deg(x7) = 2.

Definition 4. A complete graph is a graph where all of its distinct pairs of vertices are
adjacent. By convention, Kn denotes the complete graph that contains exactly n vertices.

Figure 2 shows some examples of complete graphs.
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K1

v1

K2

v1 v2

K3

v1

v2 v3

K4

v1 v2

v3 v4

K5

v1

v2 v3

v4 v5

Figure 2 – Examples of Kn for 1 ≤ n ≤ 5.

Definition 5. A cycle graph Cn, with n ≥ 3 is a graph defined by V (Cn) = {v1, . . . , vn}
and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. A wheel graph Wn, with n ≥ 4, is composed
by the cycle Cn−1 plus a vertex vn connected to all other vertices of the cycle.

Definition 6. A partition of a set is a grouping of its elements into subsets such that
none of the subsets are empty and every element is contained in exactly one subset.

Definition 7. A bipartite graph is a graph whose vertices can be partitioned into sets VA
and VB such that for all e ∈ E(G), e connects two vertices from distinct sets.

Figures 3 and 4 illustrate the cycle, wheel, and bipartite graphs.

C6

v1 v2

v3

v4v5

v6

W7

v1 v2

v3

v4v5

v6 v7

Figure 3 – Examples of C6 (cycle graph) and W7 (wheel graph). W7 contains all vertices and
edges from C6, plus a vertex v7 which is connected to the other vertices.
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GB

v1

v2

v3

v4

v5

Figure 4 – Example of bipartite graph GB, with two sets VA = {v1, v2, v3} and VB = {v4, v5}.

Definition 8. A graph G′ is a subgraph of a graph G if V ′(G) ⊆ V (G) and E ′(G) ⊆ E(G).
Given a set S ⊆ V (G), the subgraph G[S] is the subgraph of G induced by the set S and
is defined in a way such that V (G[S]) = S and E(G[S]) ⊆ E(G) contains all edges of G
whose endpoints are vertices in S.

Definition 9. A clique of G is a subset of vertices that induces a complete graph. The
size of a clique is defined by the number of vertices contained in it.

Figure 5 shows some cliques contained in the graph of Example 1. Each combination of
colored vertices represents a clique contained in Example 1, respectively from left to right
and top to bottom: {x1, x2, x3, x8}, {x4, x7}, and {x5}.

x1

x2

x3

x4

x5

x6x7x8

x1

x2

x3

x4

x5

x6x7x8

x1

x2

x3

x4

x5

x6x7x8

Figure 5 – In green, some cliques contained in the graph of Example 1.

Definition 10. A maximal clique of G is a clique that is not included in a larger clique.
A maximum clique of some graph G is a clique of largest size in G. The clique number
ω(G) is the size of a maximum clique in G.
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A maximum clique of some graph is always a maximal clique, but the converse might not
be true. Figure 6 shows some maximal and maximum cliques for the graph in Example 1.

x1

x2

x3

x4

x5

x6x7x8

x1

x2

x3

x4

x5

x6x7x8

Figure 6 – Maximal cliques for the graph in Example 1. Note that the one to the left is
maximum, and thus ω(G) = 4 for the graph in Example 1.

Definition 11. An independent set in a graph is a set of vertices that are not pairwise
adjacent.

Figure 7 shows sets {x1, x4, x5}, and {x3, x6}, which are independent sets for the graph in
Example 1.

x1

x2

x3

x4

x5

x6x7x8

x1

x2

x3

x4

x5

x6x7x8

Figure 7 – Some independent sets for the graph in Example 1.

Definition 12. The order |V (G)| of a graph is given by the number of vertices in the
graph.

Definition 13. The size |E(G)| of a graph is given by the number of edges in the graph.

Definition 14. The graph density of a graph G is given by the ratio between its size and
the size of the complete graph Kn with the same order as G, that is

D(G) = |E(G)|
|E(K|V (G)|)|

= |E(G)|
|V (G)|(|V (G)|−1)

2

= 2|E(G)|
|V (G)|(|V (G)| − 1) .

Note that the density of a graph can range between 0 and 1.

Example 2. The graph in Example 1 has order |V (G)| = 8, size |E(G)| = 11 and density
D(G) = 2·11

8·7 = 11
28 .
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2.1 Graph Coloring Definitions
In this section, we present concepts that are specific to the graph coloring problem.

Definition 15. A k-vertex-coloring, for k ∈ N, of a graph G is a function c : V (G) −→
{1, . . . , k} such that c(u) 6= c(v) for all u and v that are adjacent vertices. Additionally,
one can see a k-vertex-coloring as a partition of V (G) into k independent sets, where k is
said to be the number of colors used, and each independent set is called a color class.

Figure 8 shows a 4-coloring for the graph in Example 1, where each color class is represented
in the drawing with a different color.

f(x1) = f(x4) = f(x5) = 1, f(x2) = f(x6) = 2, f(x3) = f(x7) = 3, f(x8) = 4

x1

x2

x3

x4

x5

x6x7x8

Figure 8 – A 4-coloring for the graph in Example 1 where yellow represents the color for
number 1, green for number 2, red for number 3 and cyan for number 4.

Definition 16. A coloring of G is optimal if it partitions the vertices of G into the
smallest possible number of independent sets. The chromatic number χ(G) is defined as
the number of colors used by an optimal coloring of G.

Example 3. The coloring in Figure 8 is an optimal coloring for the graph in Example 1
because it partitions the vertices into 4 independent sets and it is not possible to partition
them into 3 or fewer independent sets. Thus, the chromatic number for Example 1 is 4.

Lemma 1. The chromatic number is greater than or equal to the number of vertices in a
maximum clique of G, that is,

χ(G) ≥ ω(G).

Proof. Let K be a maximum clique contained in G. Then K contains ω(G) vertices
(|K| = ω(G)). Since all vertices in K are pairwise adjacent in G, then a valid coloring for
G must contain at least a unique color for each vertex in K to satisfy Definition 15.

In Problem 1, we present the definition of the graph coloring problem.

Problem 1. Given a graph G and a k ∈ N≥1, can G be colored with at most k colors?
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There exists a polynomial-time algorithm, which simply uses breadth-first search (BFS),
for deciding whether some graph G is colorable when k = 2. However, when k ≥ 3 the
problem of colorability is NP-complete, as it can be reduced to the Satisfiability Problem
(SAT), which was proven to be NP-complete [12] by Cook in 1971. This implies that
finding the chromatic number of a graph G is NP-hard [13, 17]. In practice, one will often
resort to making use of heuristics and trade execution time with colorings that are only
approximate to optimal solutions.
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3 Algorithms

In this chapter, we will introduce the algorithms implemented in this work that are
commonly used to solve the graph coloring problem. We begin by defining the concept of
search space, and show some techniques to find the optimal solution using exact algorithms
or sub-optimal with heuristics.

3.1 Preliminaries
An algorithm that solves the graph coloring problem must return some k-vertex-coloring
that satisfies Definition 15. Often, the optimal value χ(G) is not known prior to the
algorithm execution. Since the graph coloring problem is NP-hard, we have separated the
study of such algorithms into two classes: exact algorithms, which only return optimal
solutions, and heuristic algorithms, which return local optimal solutions of the chromatic
number of the analyzed graph.

Next, we present some definitions to analyze the possible number of combinations required
for obtaining solutions to the graph coloring problem.

Definition 17. The search space of some problem is the set of all the feasible solutions.

Specifically to the graph coloring problem, the search space can be visually represented
by a tree structure, where each level corresponds to some vertex chosen from the graph,
and each branch represents a color assigned to the vertex in question [11, 13]. The leaves
represent complete assignments that are valid. For example, the graph K2 has a search
space tree represented in Figure 9.

The size of the search space is correlated to the running time of the coloring algorithm and
therefore it is desired to try to reduce its size as much as possible to improve the overall
algorithm performance. A naive attempt, given an arbitrary graph with n vertices, would
be to find the optimal solution by enumerating all coloring possibilities, where each of the
n vertices contain n possible colors, generating a total number of combinations of nn. This
is clearly intractable for graphs with a large number of vertices.

To reduce the search space size, the solution could then be modeled as a set of independent
sets, where given a graph of n vertices it is desired to separate such vertices into sets where
vertices in each set are not mutually adjacent. This differs from the initial enumeration
approach because it addresses the coloring symmetry issue [13]. For example, in a graph
with three isolated vertices v1, v2, and v3, with each coloring identified respectively in
an ordered set (c1, c2, c3), the assignments (0, 1, 2), (1, 2, 0) and (2, 0, 1) are isomorphic.
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. .

x2

. .

x1 = 1
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Figure 9 – Search space tree for the complete graph with two vertices (K2) and coloring
possibilities x1 = {1, 2}, x2 = {1, 2}.

Definitions 18 and 19 give us the total number of combinations obtained for the partition
approach.

Definition 18. The Stirling number defines the number of ways that n items can be
partitioned into k non-empty subsets. It is defined as: n

k

 = 1
k!

k∑
j=0

(−1)k−j
 k

j

 jn.

Definition 19. The maximum number of combinations C to be analyzed from k = 1 up
to k = χ(G) for the optimal solution is given by:

C =
χ(G)∑
k=1

 n

k

 .

Using the number C, an algorithm could attempt all k-colorings starting from k = 1 until
some solution where k = χ(G) [13]. Unfortunately this strategy is also intractable for
larger graphs, as it takes an exponential number of attempts to get closer to k = χ(G).

Instead of applying the enumeration techniques described above, making use of upper and
lower bounds and heuristics can provide us more insight on a better starting point for
k and more approximate results for non-optimal scenarios, which we will discuss more
in-depth next.

3.2 Constructive Graph Coloring Algorithms
Here, we introduce the concept of Constructive Algorithms, which by definition create the
solution by assigning a color to each vertex one at a time [13].
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3.2.1 Heuristics

Heuristics have been developed to find approximate solutions when the general solution is
considered to be too costly in terms of running time. Instead of exploring all of the search
space, heuristic algorithms will simply return one feasible solution without guaranteeing
optimality. We will now present two heuristics that will be used throughout our work.

3.2.1.1 Classic Greedy Coloring Heuristic

The Classic Greedy Coloring Heuristic (CGCH) is the simplest and most intuitive coloring
heuristic. Given a graph, an arbitrary ordering of its vertices is initially generated and
will be subsequently iterated by the algorithm. During the setup phase, the heuristic
initializes totalColors = 0, as the coloring procedure begins with no vertices assigned to
any of the colors. In the iteration phase, each vertex will be analyzed in an attempt to
get the next available color, which is a color that none of its adjacent vertices have been
assigned to. This is done by the FindNextAvailableColor function. However, if all
colors have been analyzed but none satisfy the graph constraints, then a new color should
be created and assigned to the vertex, being followed by an update to the totalColors
value. The output of the algorithm will be an ordered list where each value represents a
color for the respective vertex index. The CGCH algorithm is the fastest and simplest
heuristic, however it rarely produces the best results when compared to other algorithms.
A pseudocode is illustrated in Algorithm 1.

Algorithm 1 ClassicGreedyColoringHeuristic(G)
1: let vertexColors be an array of size |V (G)|
2: totalColors ← 0
3: for each v in V (G) do
4: color ← FindNextAvailableColor(G, vertexColors, v, totalColors)
5: if (color == −1) then
6: vertexColors[v]← totalColors
7: totalColors ← totalColors + 1
8: end if
9: end for

10: return vertexColors

The CGCH has worst-case time complexity of O(n2), because the outer loop in Algorithm 1
will call FindNextAvailableColor for each vertex, which obtains the vertex color by
comparing it against its at most n − 1 neighbors, thus generating at most n · (n − 1)
comparisons in total, and resulting on a time complexity of O(n2).

The order in which vertices are assigned colors in the CGCH will also influence the quality
of the final result.
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Lemma 2. When given the vertices of some feasible solution sorted by respective color
classes, the CGCH will produce a solution whose number of colors is less than or equal to
the number of colors in the provided solution.

Proof. Let S = {S1, . . . , Sk} be the partition of all vertices into color classes for some
feasible solution. By analyzing each of the vertices for each color class in ascending order,
the CGCH algorithm will try to assign a color to it that has its index lower than or equal
to the current color in the feasible solution.

Note that sets S1, . . . , Sk from a partition S and the vertices contained inside the sets
themselves may be fed to the CGCH algorithm in different permutations, implying that
more than one input choice may lead to the optimal solution. The number of permutations
resulting in the optimal solution when fed to the CGCH algorithm is given by the following
equation [13], where k = χ(G) is the number of colors of the optimal solution (chromatic
number) and Si represents a color class from the solution:

χ(G)!
χ(G)∏
i=1
|Si|!

Using the Classic Greedy Coloring Heuristic, it is possible to set an upper bound to the
chromatic number, as explained in Lemma 3.

Definition 20. The maximum degree of a graph G, denoted as ∆(G), is the maximum
degree of all vertices in G.

Lemma 3. For any graph G, χ(G) ≤ ∆(G) + 1.

Proof. Let v ∈ V (G) be some vertex about to be colored by the CGCH. Given deg(v),
the number of neighbors of v already colored is not greater than deg(v), and by definition
deg(v) ≤ ∆(G). Therefore, in the worst case, v will require a new color ∆(G) + 1, implying
that χ(G) ≤ ∆(G) + 1.

3.2.1.2 DSATUR

Created by Daniel Brélaz in 1979, DSATUR is a widely used graph coloring algorithm [18].
Unlike the CGCH, DSATUR rearranges the order of vertices dynamically during the
execution based on the concept of degree of saturation. At any given time, the DSATUR
heuristic chooses the vertex with the highest saturation degree, which is the vertex with
the highest number of colors used by its adjacent vertices. Ties are broken by choosing
the vertex of largest degree and, in case of a further tie, any of the compared vertices may
be chosen. The goal of using degree of saturation for ordering is to prioritize vertices that
have the least amount of colors remaining for use.
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Algorithm 2 DSATURHeuristic(G)
1: let vertexColors be an array of size |V (G)|
2: totalColors ← 0
3: dsaturOrdering ← (1, 2, ..., |V (G)|)
4: for i = 1 to |V (G)| do
5: dsaturOrdering ← ReorderDSATUR(G, dsaturOrdering, i)
6: v ← dsaturOrdering[i]
7: color ← FindNextAvailableColor(G, vertexColors, v, totalColors)
8: if (color == −1) then
9: vertexColors[v]← totalColors

10: totalColors ← totalColors + 1
11: end if
12: end for
13: return vertexColors

A pseudocode is illustrated in Algorithm 2. The dsaturOrdering array is responsible
for maintaining the order of vertices of the vertexColors array based on their degree of
saturation. On each iteration, the ReorderDSATUR function gets the next unvisited
vertex that contains the highest degree of saturation, breaking ties with largest degree
and subsequent ties with arbitrary choices, respectively, and swaps the iterated vertex
index with the newly chosen vertex in the dsaturOrdering[i] position. Then, the DSATUR
index is translated back to the vertex index in vertexColors and assigned to a variable v.
From this point on, the coloring of vertexColors[v] is identical to the CGCH until the next
iteration, with the difference being that dsaturOrdering updates the DSATUR ordering
dynamically, unlike the CGCH that has a fixed ordering since the beginning. Its complexity
is also O(n2), although it runs slightly slower than the CGCH algorithm because it needs
to keep track of the saturation degree vertex order.

The DSATUR heuristic usually provides better solutions than the Classic Greedy Coloring
heuristic, and it always returns the optimal solution for specific types of graphs such as
cycle, wheel, and bipartite [13]. Moreover, DSATUR always finds a maximal clique for the
first colored vertices which can be later used to compute a lower bound for the graph’s
chromatic number.

Both CGCH and DSATUR heuristics are not exact algorithms and thus are not suitable
for all use cases. In order to get the optimal solution, one must use an exact algorithm
with the trade-off of a potentially exponential complexity. Several strategies have been
created for obtaining exact results, including integrating constructive algorithms with
backtracking, which we will see next.
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3.2.2 Exact Algorithms

An exact graph coloring algorithm must potentially explore the entire search space of color
assignments to find an optimal solution. At first sight, exact algorithms could enumerate
all combinations of the problem instance, but this approach would not work well for larger
and/or denser graphs. Here, we discuss some techniques used to reduce the search space
size, and we present a version of an exact, constructive graph coloring algorithm.

3.2.2.1 Tight Ordering

Enumerating the entire search space of solutions does not cancel the symmetry shared
between multiple assignments. To avoid exploring all permutations, Brown created the
concept of a tight ordering [16], where vertices and colors must respect the following
restrictions. Let c(vi) be a function that returns some label for the vertex color vi, colors(i)
be a function that returns the number of assigned colors in the current partial coloring up
to the vertex i, and let V (G) = {v1, . . . , vn} with n = |V (G)|. Then c is a tight coloring if:

c (v1) = 1
c (vi+1) ≤ colors(i) + 1 ∀i = 1, . . . , n− 1
colors(i) = maxs c (vs) 1 < s ≤ i

Tight coloring restrictions mitigate the coloring symmetry issue by forcing all labels to
respect the maximum number of colors in a partial coloring. The label of a vertex vi is
bounded by the formula using c(vi), and the number of colors in a partial coloring of i
vertices is given by the formula for colors(i). For example, when constructing a feasible
solution, vertex v1 must always be colored with the label 1, and vertex v2 must contain
a label not greater than 2. Assuming that c(v1) = c(v2) = 1, then c(v3) will be limited
by the maximum color of its predecessors such that c(v3) ≤ 2, implying that c(v4) ≤ 3
and so on. In this way, part of the search search space tree that was already represented
symmetrically by previously visited branches will be avoided.

3.2.2.2 Backtracking

Backtracking is a procedure used to refine brute-force search algorithms by possibly
pruning the search tree at an earlier stage. It eliminates the need for an explicit check of all
candidate solutions of the problem by discarding partially invalid assignment branches [19].

A backtracking example code for an exact graph coloring algorithm can be seen in Algo-
rithm 3. It receives as input a graph instance, an array for the current assignment and
an array for the current best coloring. The algorithm works recursively with a depth-first
search approach and only returns the current assignment, but it mutates the bestColoring
array reference for later use. During the first invocation, both assignment and bestColoring
are empty. The algorithm chooses some uncolored vertex with the GetNextVertex
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Algorithm 3 Backtrack(G, assignment, bestColoring)
1: if all vertices are colored in assignment then
2: if assignment uses fewer colors than bestColoring then
3: bestColoring ← assignment
4: end if
5: return assignment
6: else
7: v ← GetNextVertex(assignment, G)
8: for each color in GetVertexColors(v, G) do
9: if IsConsistent(v, color , assignment, bestColoring) then

10: AddToAssignment({〈v, color〉}, assignment)
11: inferences ← InferNextColors(assignment, bestColoring)
12: if inferences 6= failure then
13: AddToAssignment(inferences, assignment)
14: result ← Backtrack(G, assignment, bestColoring)
15: if result 6= failure then
16: return result
17: end if
18: end if
19: end if
20: RemoveFromAssignment({〈v, color〉}, assignment)
21: end for
22: return failure
23: end if

method by following some arbitrary criteria (for example, CGCH or DSATUR heuris-
tics), loops through possible colors for the vertex with GetVertexColors, and checks
whether each color is consistent with the current partial assignment. If all constraints
of the problem remain valid, the tuple 〈v, color〉 will be added to the assignment. Next,
the InferNextColors function will add any extra tuples inferred from the assignment
made by the AddToAssignment call. This includes, for example, vertices which now
contain only a single color left for assignment. If, however, there are any vertices with no
colors available, the InferNextColors call will fail, thus forcing the algorithm to ignore
the branch of the new current assignment. The algorithm continues to explore remaining
coloring assignments by recursively calling the Backtrack function in the successful
branches. Finally, if there are no further possibilities, the algorithm returns either failure
or a complete assignment 1. Once the execution is finished, the bestColoring variable will
contain the optimal coloring for the analyzed graph instance.

3.2.2.3 Enforcing Upper and Lower Bounds

Enforcing upper and lower bounds for the chromatic number, previously seen on Lemmas 1
and 3, may reduce the number of explored combinations of the search space and converge
1 Original backtracking pseudocode available at https://www.youtube.com/watch?v=lCrHYT_EhDs.

https://www.youtube.com/watch?v=lCrHYT_EhDs
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quicker to optimal solutions. During the execution of exact constructive algorithms,
the lower bound remains fixed while the upper bound progressively decreases with the
application of branch and bound. This strategy includes bounding by the chromatic number
of current bestColoring array and possibly by the clique number ω(G), explained in more
details below.

3.2.2.3.1 Branch and Bound

Branch and bound is a specific type of backtracking procedure that applies a bound
evaluation to partial assignments. The goal is to eliminate branches containing partial
solutions that, although valid, present a new bound worse than the current one. In
graph coloring algorithms, the upper bound can be set to the chromatic number of
the last best solution found (usually denoted as k), thus discarding part of the search
space that generates any coloring with more than k colors. Both IsConsistent and
InferNextColors methods receive bestColoring and assignment and compare them. If
the current assignment contains more colors than the current best coloring, both methods
will return failure and stop further exploration of vertices, forcing an earlier backtracking
action.

One can modify Algorithm 3 to implement branch and bound. A new variable k should
be added to the Backtrack function parameters, initialized with value 0, and it should
be mutated whenever a new solution with fewer colors is found (after bestColoring is
updated). Then, the variable k should be passed to all Backtrack recursive calls, as well
as IsConsistent and InferNextColors, which would compare k with the number of
colors of the current explored solution, and fail earlier if the current number of colors is
not smaller than k.

3.2.2.3.2 Clique Detection

The addition of clique detection identifies the size of the clique for the first explored
vertices, and stops the execution once the algorithm backtracks to the last visited vertex
in the clique. Since all of its vertices are connected, it does not make sense to allow further
backward movements as each vertex in the clique will always need a unique color. In order
to simplify our pseudo code, the clique detection feature was not added to Algorithm 3,
but it could be implemented by keeping track of the first vertices assigned to v that make
a clique, and then finishing the algorithm once the recursion reaches back to the last
registered vertex. Note that the initial clique found by the backtracking algorithm will not
necessarily be the maximum clique of the graph, since the Maximum Clique Problem is
NP-complete [13], and the order of the chosen vertices depends directly on the heuristic
used by the GetNextVertex function.
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3.2.2.4 Combining Features

To summarize, a more complete exact graph coloring algorithm based on Algorithm 3 com-
bined with the features we have mentioned so far will present the following characteristics:

• it uses backtracking with some heuristic to choose vertices wisely;

• it uses the concept of tight ordering to explore only a subset of the search space and
avoid exploring permutations of previous branch assignments;

• it enforces a decreasing dynamic upper bound for χ(G) by using branch and bound
for the k variable;

• it enforces a fixed lower bound for χ(G) with some initial clique, and it only colors
such clique once.

Based on this new improved algorithm, we will now present some exact heuristics that
can be used for vertex selection.

3.2.2.5 Heuristics for Exact Algorithms

The efficiency of backtracking algorithms compared to basic enumeration approaches varies
based on the quality of the heuristics used for deciding the next branch assignment. In
Algorithm 3, for example, a heuristic called by the GetNextVertex function should
ideally choose vertices in a way that generates an inference failure quickly, forcing the
algorithm to backtrack and to prune the search space early on. For this reason, our work
will study the following exact heuristics, which are based on the non-exact heuristics
previously mentioned in Section 3.2.1.

3.2.2.5.1 Arbitrary Ordering

The arbitrary ordering heuristic behaves similarly to the CGCH algorithm, as vertices will
be traversed in the same order in which they are declared in the graph. It demonstrates
the least predictable behavior, since its efficiency will vary with the input. There are also
no guarantees about the size of the initial clique to be found by the algorithm.

3.2.2.5.2 Exact DSATUR

The exact version of DSATUR uses DSATUR as the chosen heuristic with the enumeration
approach proposed by Korman [11], where vertices are dynamically reordered both during
forward and backward movements. This occurs because new assignments can alter the
ordering of vertices based on the degree of saturation. It can be implemented in Algorithm 3
by adding the specific features from Algorithm 2, such as the dsaturOrdering variable
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and the ReorderDSATUR function call. The DSATUR heuristic finds a large maximal
clique initially, although it is not guaranteed to be the maximum clique in the graph [20].

3.2.2.5.3 Sewell Improvements

Sewell [20] proposed three improvements to the original Exact DSATUR algorithm:

• Rearrange vertices to find the maximum clique first: the original Exact DSATUR
already finds a clique for the first explored vertices, but it is not guaranteed to be
the maximum one, so Sewell proposed to use different algorithms for the task. It is
important to note, however, that the problem of finding a maximum clique is also
NP-Hard.

• Find better upper bounds: most of the execution runtime improvement happens
when reducing the upper bound to match the graph’s chromatic number. To achieve
this, Sewell’s implementation suggested the use of RLF heuristic with TABUCOL
before the maximum clique is found, followed by TABUCOL again [13, 20]. An
exception to this rule are random geometric graphs, where the suggestion is to use
the DSATUR heuristic with tree search depth limited by a constant.

• Different tie-breaking rule: instead of breaking ties by choosing the vertex with the
largest degree, Sewell proposes to use the CELIM heuristic, defined as follows [20]:
let T be the set of tied vertices; for each vertex v ∈ T , for each color c that is
still available to v, count how many uncolored neighbors of v also have the color c
available; sum all of the counters for each vertex v; the vertex v with the largest sum
will be chosen as the winner.

3.2.2.5.4 Pass Improvements

San Segundo [16] extended Sewell’s work by modifying the CELIM rule by restricting its
application only for candidate vertices. The new rule is named PASS, and it is defined as
follows: let T be the set of tied vertices; for each vertex v ∈ T , for each color c that is still
available to v, count how many uncolored neighbors of v which are elements of T (v ∈ T )
also have the color c available; sum all of the counters for each vertex v; the vertex v with
the largest sum will be chosen as the winner.

The author also noted that the new rule should be applied selectively, because during
the initial steps of the search many uncolored neighbor vertices of v ∈ T might also be
elements of T , thus avoiding the desired effect of reducing the total number of comparisons.
To fix this, he recommends to apply the modified CELIM depending on the value of a
parameter µ, which is defined as:

µ := colors(Π)− ρΠ(v ∈ T ) µ ≥ 0,
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where colors(Π) is the number of colors in the current partial coloring Π, and ρΠ is the
saturation degree (the number of colors not available for the vertices), which is always
the same value for any v ∈ T (although their colors could differ). San Segundo [16]
recommends to apply the PASS rule when µ ≤ 3, and to apply the original DSATUR
heuristic otherwise.

3.3 Constraint Programming
In addition to constructive graph coloring algorithms, the graph coloring problem can
be modeled as a constraint satisfaction problem (CSP). In this section, we will present
some concepts related to the CSP approach [15], which can be used with backtracking to
further prune the search space.

Definition 21. A constraint satisfaction problem (CSP) instance is a triple 〈V,D,C〉,
where V is a finite set of variables, D is a function from variables to their domains, such
that for all v ∈ V , D(v) ⊂ Z and D(v) is finite, and C is a set of constraints.

The constraints for CSPs of graph coloring problems are represented by binary inequalities
involving adjacent vertices. Since the relationship is mutual, the order of the variables
does not matter.

Definition 22. A literal of a CSP is a pair 〈v, d〉, where v ∈ V and d ∈ D(v). An
assignment to any subset X ⊆ V is a set that contains a single literal for each variable
in X. A solution to a CSP instance is an assignment to V where all of the instance
constraints are satisfied.

The formulation of domains and constraints in the CSP will influence the overall efficiency
of pruning algorithms. The following example intentionally allows for symmetric color
assignments.

Example 4. Instance definition for a CSP named P0 = 〈V,D,C〉 for Example 1. Each
edge from the graph has been converted into a constraint for the CSP and all vertex variables
contain initial domains from 1 to 8:

V = {x1, x2, x3, x4, x5, x6, x7, x8}

D(x1) = D(x2) = ... = D(x8) = {1, 2, ..., 8}, C = {c1, c2, ..., c11}

c1 := x1 6= x2, c2 := x1 6= x3, c3 := x1 6= x8, c4 := x2 6= x3,

c5 := x2 6= x8, c6 := x3 6= x4, c7 := x3 6= x8, c8 := x4 6= x6,

c9 := x4 6= x7, c10 := x5 6= x6, c11 := x6 6= x7

Assuming x1 is the first vertex to be colored, it could accept eight different labels in
the obtained solutions, although in practice only one would be necessary. An obvious
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Figure 10 – Graphic representation of the constraint network for the graph of Example 1.

improvement to Example 4 would be to include the constraints presented by the definition
of tight coloring created by Brown (see Section 3.2.2.1). Instead, our work will limit the
study of CSPs only to the concepts necessary for obtaining arc consistency.

3.3.1 Arc Consistency

Arc consistency allows CSPs to be pruned, that is, to have some values removed from
its domains before the enumeration of the solutions begins. This potentially reduces the
search space given to the constructive algorithm. In order to explain it, we will introduce
the following concepts.

Definition 23. A variable v in a CSP instance is said to be domain consistent if all its
domain values satisfy all of the constraints defined for v.

Definition 24. A constraint network for a CSP instance consists of a graph containing a
node for each variable, a node for each constraint, and edges that connect each constraint
to its variables. Such edges are also called arcs.

Figure 10 contains a graphical representation for the constraint network for Example 4.
Vertices are depicted as circles and constraints as rectangles.

Definition 25. An arc 〈xi, ci,j〉 is consistent if and only if for all x ∈ D(xi) there exists
y ∈ D(xj) such that ci,j is satisfied by the assignment {〈x, xi〉, 〈y, xj〉}.

An arc that is not consistent can be made consistent by removing unsatisfiable values from
the variable domain, since by induction the base case is an empty domain, which is arc
consistent. The removal of a value on the variable domain will never remove any general
solutions, since a general solution depends on all variable assignments to be valid. If all arcs
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of a given network are arc consistent, then the network is also arc consistent. A Generalized
Arc Consistency Algorithm receives a CSP, possibly with non-binary constraints, and
returns a new equivalent CSP with an arc consistent constraint network.

3.3.1.1 AC-3

The AC-3 algorithm is capable of turning an inconsistent CSP instance into consistent by
achieving GAC (Generalized Arc Consistency) on the constraint network. AC-3 requires the
conversion of any non-binary constraints into binary ones, but specifically for graph coloring
there is no need to since all constraints will only contain two variables. A pseudocode is
illustrated in Algorithm 4. First, the algorithm duplicates and inverts each constraint of
the given CSP to a list by calling the GetConstraintArcs function. The inversion
is required because the left and right side variables of some constraint will be treated
differently by the algorithm. To emphasize this, our pseudocode uses a variable named
arcConstraints, where each original constraint generates two constraints based on the
direction of its arcs. AC-3 will then iterate constraintList and check if the domain of the
left-side variable on each constraint c is value consistent. Based on Definition 25, all values
on the left side must contain at least one value in the domain of the right-side variable that
satisfies the constraint requirements. The algorithm checks each value in the left domain
of the constraint by calling GetLeftDomain, and if some value on the left side is not
consistent (LeftValueNotConsistent), then the left side variable will be marked dirty
by setting leftVarDirty = True, and the RemoveLeftValue function call will remove
the inconsistent value from the domain, thus requiring all constraints that reference the
targeted variable on the right-hand side to be rechecked. The procedure of adding such
constraints to to the constraintList will be performed later by the MarkLeftVarDirty
function. After some value removal, in case one or more of the analyzed left domains
become empty, the algorithm will be halted by the ThrowEmptyLeftDomainError
call, as there are no remaining solutions for the CSP. Once each iteration is complete, the
analyzed constraint is removed from the list by the RemoveConstraint function call.
The algorithm finishes once constraintList is empty.

In graph coloring problems, the constraints are defined using the inequality operator,
and this allows for an optimization to be made: in case the right hand variable’s domain
contains at least two values, then all values in the domain of the left side variable are
consistent. If the right hand side contains a single value, one may check for its existence in
the left side and remove it if positive, otherwise it is consistent. If the left side does not
contain it, then nothing should change.
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Algorithm 4 AC3(csp)
1: arcConstraints ← GetConstraintArcs(csp)
2: constraintList ← arcConstraints
3: for each c in constraintList do
4: leftVarDirty ← False
5: for each value in GetLeftDomain(csp, c) do
6: if LeftValueNotConsistent(csp, c, value) then
7: leftVarDirty ← True
8: RemoveLeftValue(csp, value)
9: if LeftDomainEmpty(c) then

10: ThrowEmptyLeftDomainError(c)
11: end if
12: end if
13: end for
14: if leftVarDirty then
15: constraintList ← MarkLeftVarDirty(constraintList, c, arcConstraints)
16: end if
17: constraintList ← RemoveConstraint(constraintList, c)
18: end for

3.4 Summary
We have observed in this chapter the complexity of the graph coloring problem, as well as
why obtaining optimal solutions are considered to be difficult. The division of constructive
algorithms into heuristics and exact algorithms were introduced to separate two common
use cases, one in which heuristics trade optimality with faster execution time. We have
defined both CGCH and DSATUR variations, with DSATUR usually obtaining better
solutions than CGCH [13]. With relation to exact algorithms, we explained the concept of
backtracking and how it is related to reducing the search space, along with other techniques
such as using branch and bound for reducing upper bounds, finding a clique to reduce
lower bounds, and applying tight coloring restrictions to avoid exploring permutations.
Further improvements to the exact DSATUR algorithm were also presented, namely Sewell
and Pass variations. Finally, we presented another proposed approach, which is to solve
the graph coloring problem with the use of constraint satisfaction problems, where it is
possible to prune the search space with the use of GAC (Generalized Arc Consistency)
algorithms, such as the AC-3 algorithm. Our implementations are explained in the next
chapter.
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4 Methodology

The present work has the goal of implementing graph coloring algorithms and study
their performances on a set of diverse graph problem instances found at the DIMACS
Challenges dataset 1. We will implement and benchmark both approximate (heuristics)
and exact algorithm versions: heuristics will be primarily analyzed by how close their
solutions are to the graph’s chromatic number, while exact algorithms will be analyzed by
the time taken to return optimal solutions and the size of their generated backtracking
trees. Our algorithm implementations will use the same structural foundation and return
only the minimum required data upon process completion, unless specified otherwise on
the environment settings.

4.1 Graph Types
The provided DIMACS dataset includes the following graph types and quantities:

• 5 Mycielski graphs: triangle-free graphs where ω(G) = 2;

• 14 Register Allocation graphs: graphs that resemble the allocation of variables during
real code execution;

• 12 Leighton graphs: special graphs with guaranteed coloring size;

• 2 Class Scheduling graphs;

• 5 Book graphs: vertices are characters from a book and edges are created for
encounters between them;

• 1 Game graph: each vertex is a football team and edges represent matches between
teams;

• 5 Miles graphs: created by USA road relationships;

• 13 Queens graphs: related to the n-queens problem;

• 1 Latin Square graph.

Table 1 presents more detailed data about each graph, such as size, order, chromatic
number and minimum and maximum degrees.
1 Challenge information and datasets are available at https://dimacs.rutgers.edu/programs/

challenge/ and https://mat.tepper.cmu.edu/COLOR/instances.html

https://dimacs.rutgers.edu/programs/challenge/
https://dimacs.rutgers.edu/programs/challenge/
https://mat.tepper.cmu.edu/COLOR/instances.html
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4.1.1 DIMACS Files

The dimacs folder in the project source contains a collection of problem instances as
DIMACS files from the chosen graph dataset. A DIMACS file commonly uses the .col
extension, and follows a particular structure where each line may begin with c, p or v:

• c represents lines of comments and therefore are ignored by the graph parser.

• p represents the problem definition, which is expressed on a single line beginning
with p, followed by the edge keyword and two numbers n and m, where n is the
quantity of vertices and m is the quantity of edges in the graph.

• e represents the definition of an edge, followed by two indexes of vertices to be
declared as adjacent. Each vertex index must be an integer between 1 and n.

Table 1 – Graphs from the DIMACS dataset to be analyzed by our graph coloring experiments.
Chromatic number values are given by the DIMACS source website while order, size,
density (D) and minimum and maximum degrees were calculated from file definitions.
Column |E| ignores loops and duplicated edges.

Graph Name Type |V| |E| χ D δ ∆

myciel3.col mycielski 11 20 4 0.36 3 5
myciel4.col mycielski 23 71 5 0.28 4 11
myciel5.col mycielski 47 236 6 0.22 5 23
myciel6.col mycielski 95 755 7 0.17 6 47
myciel7.col mycielski 191 2,360 8 0.13 7 95
anna.col book 138 493 11 0.05 1 71
david.col book 87 406 11 0.11 1 82
huck.col book 74 301 11 0.11 1 53
homer.col book 561 1,628 13 0.01 0 99
jean.col book 80 254 10 0.08 0 36
games120.col game 120 638 9 0.09 7 13
queen5_5.col queen 25 160 5 0.53 12 16
queen6_6.col queen 36 290 7 0.46 15 19
queen7_7.col queen 49 476 7 0.40 18 24
queen8_8.col queen 64 728 9 0.36 21 27
queen8_12.col queen 96 1,368 12 0.30 25 32
queen9_9.col queen 81 1,056 10 0.33 24 32
queen10_10.col queen 100 1,470 ? 0.30 27 35
queen11_11.col queen 121 1,980 11 0.27 30 40
queen12_12.col queen 144 2,596 ? 0.25 33 43
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Graph Name Type |V| |E| χ D δ ∆

queen13_13.col queen 169 3,328 13 0.23 36 48
queen14_14.col queen 196 4,186 ? 0.22 39 51
queen15_15.col queen 225 5,180 ? 0.21 42 56
queen16_16.col queen 256 6,320 ? 0.19 45 59
miles250.col miles 128 387 8 0.05 0 16
miles500.col miles 128 1,170 20 0.14 3 38
miles750.col miles 128 2,113 31 0.26 6 64
miles1000.col miles 128 3,216 42 0.40 13 86
miles1500.col miles 128 5,198 73 0.64 28 106
zeroin.i.1.col register 211 4,100 49 0.19 0 111
zeroin.i.2.col register 211 3,541 30 0.16 0 140
zeroin.i.3.col register 206 3,540 30 0.17 0 140
mulsol.i.1.col register 197 3,925 49 0.20 0 121
mulsol.i.2.col register 188 3,885 31 0.22 0 156
mulsol.i.3.col register 184 3,916 31 0.23 0 157
mulsol.i.4.col register 185 3,946 31 0.23 0 158
mulsol.i.5.col register 186 3,973 31 0.23 0 159
le450_5a.col leighton 450 5,714 5 0.06 13 42
le450_5b.col leighton 450 5,734 5 0.06 12 42
le450_15a.col leighton 450 8,168 15 0.08 2 99
le450_15b.col leighton 450 8,169 15 0.08 1 94
le450_25a.col leighton 450 8,260 25 0.08 2 128
le450_25b.col leighton 450 8,263 25 0.08 2 111
le450_5d.col leighton 450 9,757 5 0.10 29 68
le450_5c.col leighton 450 9,803 5 0.10 27 66
fpsol2.i.1.col register 496 11,654 65 0.09 0 252
fpsol2.i.2.col register 451 8,691 30 0.09 0 346
fpsol2.i.3.col register 425 8,688 30 0.10 0 346
inithx.i.1.col register 864 18,707 54 0.05 0 502
inithx.i.2.col register 645 13,979 31 0.07 0 541
inithx.i.3.col register 621 13,969 31 0.07 0 542
le450_15c.col leighton 450 16,680 15 0.17 18 139
le450_15d.col leighton 450 16,750 15 0.17 18 138
le450_25c.col leighton 450 17,343 25 0.17 7 179
le450_25d.col leighton 450 17,425 25 0.17 11 157
school1.col school 385 19,095 ? 0.26 1 282
school1_nsh.col school 352 14,612 ? 0.24 1 232
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Graph Name Type |V| |E| χ D δ ∆

latin_square_10.col latin 900 307,350 ? 0.76 683 683

4.1.1.1 Reading and Parsing Graphs

A readFile method was created to parse graph coloring instances. It receives a graph file
in the .col DIMACS format and creates a graph structure from the notation consisting
of vertices and edges. Some of the DIMACS files require the removal of duplicate edge
definitions, since some graphs contain edges being defined twice by two edges in opposite
directions. Once instantiated, the graph structure contains the following properties:

• n - the total number of vertices;

• m - the total number of edges;

• the maximum degree in the graph;

• the adjacency list;

• an auxiliary vector that contains the degree of each vertex.

4.2 Algorithms
The following graph algorithms will be analyzed by our tests:

• Classic Greedy Coloring Heuristic

• DSATUR Heuristic

• Exact with Arbitrary Order

• Exact DSATUR

• Exact DSATUR with Sewell rule

• Exact DSATUR with Pass rule with and without µ parameter selection

• Exact DSATUR with AC-3 for GAC with δ = 0, 1, 2 parameter

The algorithms were selected for our study because the Pass algorithm is based on the
DSATUR and Sewell algorithms, and the Pass algorithm is expected to show performance
improvements when compared to the Sewell algorithm, according to the original article [16].

Our custom implementation of DSATUR with AC-3 uses a delta parameter δ to con-
ditionally apply the propagation algorithm during different stages of the backtracking
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exploration. Initially, AC-3 pruning is disabled until some feasible coloring is found by the
DSATUR heuristic. During each backward or forward step, the AC-3 pruning algorithm
will run if δ = k− totalColors. This was required because solving a CSP instance is costly
and thus it is desired to limit its number of calls. Through prior analysis, we noticed that
δ = 0 was found very often, δ = 1 was common and δ = 2 was rare.

4.2.1 Implementation

The src folder of our project contains implementations in C++ for both heuristics and
exact algorithms introduced in the previous section 2. Different algorithms were created
in different C++ namespaces and a base structure for enumerating solutions was shared
across the exact algorithms, starting from Arbitrary Backtracking and later being copied
into the DSATUR variations. Once the program terminates, the optimal solution will be
output to a JSON object that contains the algorithm’s name along with the following
data:

• colors: if the algorithm is exact, this property will represent the chromatic number
of the graph, otherwise it will represent the number of colors found in the solution
for the selected heuristic;

• time: time taken from start to end of the execution (in milliseconds);

• backtrackingVertices: this is an optional property only defined for exact algorithms.
It contains the number of explored vertices in the backtracking tree generated by
the selected implementation;

4.2.1.1 Verifying Correctness

When solving problems, verifying the correctness of implementations can be very chal-
lenging. In our case specifically, possible faulty scenarios for graph coloring algorithm
implementations are divided into the categories below:

1. The chromatic number returned by the program is given by an invalid coloring.
This implies that at least one color clash between two adjacent vertices has gone
unnoticed in the construction of our solution. It can be fixed by creating a function
that will verify – in polynomial time – that the provided coloring vector and the
graph’s adjacency list produce a valid coloring. Our code automatically performs
this verification before returning any answer.

2 Source code for our algorithm implementations can be accessed at https://github.com/
rafaelcalpena/graph-coloring

https://github.com/rafaelcalpena/graph-coloring
https://github.com/rafaelcalpena/graph-coloring
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2. The program did not perform search on branches that were meant to be explored.
Without predefined external information, this scenario is more difficult to detect and
address. It can be sub-divided in two possibilities:

• The resulting chromatic number is greater than the real chromatic number. It
is possible to detect this bug in case we are provided with the correct result
by some external source. The DIMACS dataset used in our tests contains the
correct chromatic number for every instance, so these values were used in our
Test Benchmark Configuration to catch for any divergences in the final answer.

• The resulting chromatic number is still the same as the real chromatic number.
This case is harder to detect, because one key feature of a good heuristic is to
reduce the search space so that the optimal result is returned faster. The final
answer would still be correct for the analyzed graph, but the program would not
execute properly for other graphs that contain the optimal solution in branches
that were incorrectly skipped. A way to mitigate such possibility is to test the
algorithm with as many graphs as possible. Passing all of the DIMACS dataset
instances does not guarantee the correctness of our algorithms, but it does
reduce the likelyhood of a bug not being caught in any of the instances. Other
mitigation strategies include the implementation of logging functionality for
manual inspection and step-by-step debugging of targeted graph instances. We
have explored such possibilities and will introduce our created tools next.

4.2.1.2 Logging and Debugging

In order to improve understanding of how our implementations behave for some particular
graphs it was convenient to analyze their progress with the help of logging artifacts.
We have achieved this by breaking each algorithm into smaller units of work called log
statements, which include actions such as variable assignments and internal state update
calls as well as forward and backward movements during the exploration of the search space.
Each log statement is created by calling the debug method that receives two parameters:
the message and an fstream reference for some desired log file as the write target.

The message to be appended takes the form of an action object, declared as JSON
document on a stringified format, and contains an action key and optionally extra properties
depending on its type. Since actions usually contain information about integer vectors and
sets, we have created utility functions to serialize such structures into the payload.

4.2.1.2.1 Common Log Actions

Below we have a list of actions that are commonly used throughout our coloring algorithm
implementations:
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• set: defines the update or registration of a new variable where the key property
corresponds to the identifier of the variable that is being updated and the value
property represents the updated value. Usage examples of this action are: setting
the current coloring vector, current best coloring vector, upper and lower bounds,
ordering of vertices for some heuristic, and setting the current targeted vertex;

• finishInitialSetup: this action happens exactly once and is triggered before the
beginning of the iteration section. During initial setup, variables are initialized and
some vertex will be selected to start the exploration of the backtracking tree;

• iteration: this action is emitted in the beginning of every while iteration step. Our
algorithms use an i index for the analyzed vertex position. During each iteration
it is possible for i to change into a higher value (move forward into some deeper
branch), a lower value (backtrack) or stay the same (on a new worse coloring found,
where the chromatic number is greater than the current upper bound);

• moveForward and moveBackwards: these actions happen when the i index increases
or decreases, respectively. They represent branching and backtracking movements in
the search space tree;

• preventSearchInSubBranches: triggered when some valid coloring has been found
but does not satisfy the upper bound limit (coloringWorseThanLimit), or when
Generalized Arc Consistency algorithms have detected an empty domain to one of the
variables (gacEmptyDomain). Both cases will prevent the exploration of unnecessary
sub-branches;

• foundColoring: activated when a new coloring has been found. Contains vertex colors
as a serialized integer vector for the value property. This event is guaranteed to
happen at least once during the program execution;

• stop: declared when the program backtracks to the first vertex of the chosen ordering
and stops. Only happens once during program execution;

• finalResult: guaranteed to happen exactly once when final result is obtained. Contains
the assigned colors represented in a serialized integer vector for the value property;

• getMaximumDegree: activated after the program calculates the result of the most
recent maximum degree in the graph;

• getColoringNumber : activated after the program calculates the most recent number
of colors in the graph.
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Example 5. Final output for myciel4.col graph with arbitrary-backtracking algorithm

{
"arbitrary-backtracking": {

"colors": 5,
"time": 22565,
"backtrackingVertices": 220476

}
}

4.2.1.2.2 Flexibility and Performance Impact

The debug method checks for the DEBUG environment variable and behaves differently
depending on its assigned value:

• when DEBUG=0, logging will be skipped;

• when DEBUG=1, the logger will append the message to the log file. This is the
preferred configuration for analyzing the execution output;

• when DEBUG=2, the debugger will append the message to the log file and output
it to the terminal. In general, this option is discouraged as it greatly increases the
time taken to finish execution and prevents communication between the algorithm’s
implementation and the test bench, since the latter requires obtaining the final
output JSON object (from Example 5).

During development it was observed that using DEBUG=0 still had a noticeable impact
in the overall execution time, therefore a compiler flag -DDEBUG and a DEBUG C++
macro were also created to remove the performance issue entirely:

• when the -DDEBUG flag is absent on compile time, the DEBUG macros will not be
expanded into debug calls, thus producing faster benchmarks;

• when the -DDEBUG flag is present on compile time, the DEBUG macro will be
expanded into a debug method call.

Table 2 displays a comparison of all possibilities for an example of myciel4.col graph and
arbitrary-backtracking algorithm, colored optimally with 5 colors and containing 220,476
vertices in the search space tree.

In the next chapter, we will see more details about the environment in which our tests are
executed.
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Table 2 – Comparison between -DDEBUG build option and DEBUG environment variable values
and their impact on the execution time of coloring for myciel4.col graph with arbitrary-
backtracking algorithm.

Configuration Execution Time (in ms) Recommended For
with -DDEBUG and DEBUG=2 111,592 –
with -DDEBUG and DEBUG=1 22,565 Logging
with -DDEBUG and DEBUG=0 4,097 –
without -DDEBUG 1,724 Benchmarking
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5 Test Bench

A test bench setup was created to help analyze, coordinate and verify the results of our
graph coloring algorithm implementations 1. By default, the test bench will instantiate all
possible combinations of algorithms and graph files described on Table 1, and will save
reported results into a concatenated JSON file. When a solution is obtained, it should
verify that optimal colorings for exact algorithms also match the chromatic numbers from
the solutions provided by the DIMACS dataset 2. Since there are many combinations
of DIMACS graphs and coloring algorithms, the test bench may distribute them across
different cores when possible. Finally, it should also allow for a maximum timeout setting
to finish the algorithm’s execution in case the program’s execution does not return an
optimal answer within the desired time.

To make this reproducible, our test bench was designed to run as a Docker container,
which encapsulates all required dependencies (such as the gcc compiler) on an immutable
image composed by our software stack along with a specific system kernel version for
Linux. We will see later that this architecture also allows the test bench to run on cloud
service providers. Given that all our studied algorithms are of deterministic nature, only
minor fluctuations (usually in milliseconds) are expected to occur between multiple runs
with the same configuration.

5.1 Implementation
The test bench was written in JavaScript and runs on Node.js. During each test instance,
it will invoke the desired C++ algorithm implementation by calling execFile from Node’s
child_process native module and await for the returned JSON summary (see example 5).
Our algorithms are always compiled without the -DDEBUG flag when running within the
test bench to remove any performance penalties caused by logging statements (see Table 2
for an example comparison).

5.1.1 Environment Variables

It is possible to customize test suite settings by configuring the following environment
variables:
1 Source code for the test bench can be acessed at https://github.com/rafaelcalpena/

graph-coloring
2 Challenge information and datasets are available at https://dimacs.rutgers.edu/programs/

challenge/ and https://mat.tepper.cmu.edu/COLOR/instances.html

https://github.com/rafaelcalpena/graph-coloring
https://github.com/rafaelcalpena/graph-coloring
https://dimacs.rutgers.edu/programs/challenge/
https://dimacs.rutgers.edu/programs/challenge/
https://mat.tepper.cmu.edu/COLOR/instances.html
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• TIMEOUT (in milliseconds): Defines the timeout limit for algorithm execution.
Default value is 10 minutes (600,000 ms).

• FILES : Defines a list of comma-separated graph filenames to be colored in the test
suite. By default, all graph instances from the DIMACS Challenge Dataset will be
used.

• ALGORITHMS : Defines a list of algorithms to be included in the test suite. By
default, all of our algorithm implementations will be analyzed.

5.1.2 Test Modes

The testing framework was written to support two modes: local and remote (cloud-based).

5.1.2.1 Local Mode

With local mode, one can run test suites on a local machine by installing Docker and
running the docker-compose.yml file located at the graph-coloring folder of the project’s
source. A summary-like JSON file will be generated to the output folder and will be
updated when new results are emitted. Each graph file will be analyzed sequentially by
spawning different algorithm implementations at the same time. Once all algorithms are
complete, the test suite moves on to the next graph instance.

Since obtaining optimal coloring solutions for graph instances is a slow procedure especially
in larger and/or denser graphs, using the local mode is only recommended in specific
cases such as when running on a powerful machine, using a lower value for the timeout
configuration or running to assert that the test bench setup itself is working properly. It is
also not ideal because the number of algorithms running in parallel may not be the same
as the existing number of cores in the machine, and thus concurrent processes may affect
overall results.

5.1.2.2 Remote Mode (Cloud-Based)

With remote mode, test scripts are located in the cloud folder of the source project, and
the workflow is composed by semi-automated actions. This mode requires a cloud provider
(AWS in our case) and obtains results by distributing the computation across multiple
containers on self-managed virtual machines.

5.1.2.3 Pros and Cons of Cloud Testing

In comparison with local mode, cloud mode presents the following advantages:
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• It is only necessary to leave the local machine working during the initial and final
testing stages, such as during resource deployment, triggering batch job starts and
performing data synchronization.

• It reduces the chance of unpredictable events like power failures halting the test
bench execution, since cloud providers are usually redundant against such scenarios.

• Resource utilization for the local machine is significantly reduced.

• The jobs run fully in parallel as each docker container instance behaves as a separate
test bench. All results get synchronized to the local machine and concatenated into
a single file after test completion.

• The computing power in the cloud is elastic and is limited mostly by account limits.
For example, AWS accounts have a limit of 100 simultaneously running containers.

In contrast, the cloud environment also presents disadvantages:

• A provider’s user account is necessary for creating and utilizing resources. The root
user must also have assigned permissions for all cloud services used in the test bench
execution.

• Depending on the allocated quantity of computing resources, provider billing can be
significant. It is also difficult to predict the total charged amount upfront and it may
not be possible to revert billing in case extra resources are utilized unintentionally.

• Cloud providers host different services with different usage limits, causing potential
vendor lock-in. Although our tests run inside a container to reduce complexity,
pushing and running such containers to different providers require different cloud
test bench implementations, and therefore we have limited our testing to a single
provider.

5.1.2.4 Cloud Workflow

Running the test bench on a cloud provider can be achieved with the following steps,
which are illustrated in Figure 11:

1. A user account is created in the cloud provider’s website and assigned the necessary
permissions to run all services.

2. User builds and runs the Dockerfile located at the cloud folder with docker build and
docker run commands, provides necessary volume mounts and cloud login credentials,
and accesses the container from the terminal.
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3. User runs start.sh script, which will automate resources provisioning with Pulumi
library, and will trigger a job submission via the AWS CLI once the resources are up.

4. AWS Batch will run a job array, that is, a collection of test suites each with a unique
combination of an algorithm and a graph instance to be analyzed. Each container
instance will be running on a virtual machine that is self managed by the computing
provider. Overall progress of the execution can be tracked via the provider’s website
dashboard.

5. Once all container instances have returned results, user runs the datasync.sh script
which will transfer all JSON files from the EFS volume shared between containers
to an S3 Bucket (storage service).

6. User calls the concatenate.sh script to download JSON files from S3 Bucket to local
computer and combine them into a single JSON file.

7. User may optionally call convert-to-csv.js script to migrate results from JSON file
into a csv spreadsheet.

5.1.2.5 Job Array Combinations

In addition to previously defined variables, AWS Batch will inject two more environment
values during runtime:

• AWS_BATCH_JOB_ID: Used to identify and concatenate jobs from the same test
suite into a single file.

• AWS_BATCH_JOB_ARRAY_INDEX : Used to assign unique combinations of
algorithms and graph files into different containers. When the job array index is
present the test bench will filter a single combination of an algorithm and a graph
file. The corresponding graph index (g) is given by the formula i div |A| and the
algorithm index (a) is given by i rem |A|, where i is the job array index and |A| is
the size of the set containing all algorithms to be tested.

Table 3 depicts an example of a matrix of 15 container instances (max(i) = 14) distributed
over 5 algorithms (|A| = 5).



Chapter 5. Test Bench 38

Local computer

Security Groups, Policies, Roles and Rules
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ECS - Elastic Container Service
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Figure 11 – Cloud Resources Diagram - The testing procedure begins with the upload of
resources to ECR, and finishes with the retrieval of the generated data hosted at an

S3 bucket.

Table 3 – Example of graph coloring algorithms and file combinations. Each algorithm is repre-
sented by a value of a and a graph file by a value of g. Container instances are therefore
identified by values of i, which combine the file from the row with the algorithm from
the column.

— a = 0 a = 1 a = 2 a = 3 a = 4
g = 0 i = 0 i = 1 i = 2 i = 3 i = 4
g = 1 i = 5 i = 6 i = 7 i = 8 i = 9
g = 2 i = 10 i = 11 i = 12 i = 13 i = 14

In the next chapter, we will see another tool created to aid the development of coloring
algorithms, especially for analyzing small graphs.
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6 Visualizer

Along with the creation of heuristics and exact algorithms, a web visualizer was built to aid
understanding of the generated final results and log files 1. By reading debug statements
from JSON output files mentioned in Section 4.2.1.2 (created when running the algorithms
with -DDEBUG and DEBUG=1 options), the visualizer is capable of replaying coloring
operation steps that were registered during the algorithm’s execution, thus allowing the
user to specify a given point in time to review the internal state for the current graph
coloring and for the search space backtracking tree. The visualizer’s user interface contains
information such as the algorithm used, number of vertices and edges, maximum and
minimum degree of the graph, graph density, adjacency list, chromatic number, and
colorings found. It also displays visualizations for the graph and the backtracking tree.

6.1 Implementation
The web visualizer was built using VueJs for the UI framework along with CytoscapeJs
for the graph viewers. It works exclusively for exact algorithms; CGCH and DSATUR
heuristics can be visualized by inspecting the the generated backtracking tree for the
equivalent exact implementation up until the first solution is found. Figure 12 gives us an
overview of the web visualizer interface, which will be explained with more details next.

6.1.1 Features

The user interface for the visualizer is divided in three sections: left menu, graph and
backtracking tree. The left menu contains the following components, shown in Figures 13
and 14:

• Info: Presents useful information about the targeted graph file, such as file name,
algorithm used during coloring procedure, vertex count, edge count, maximum and
minimum vertex degrees and graph density (for simple graph types).

• Adjacency List: Contains a list of numbers and corresponding vectors where each
number represents an adjacency relationship between both vertices.

• Chromatic Number : The chromatic number given by the algorithm’s result with
relation to the analyzed graph.

1 The web visualizer can be accessed at https://rafaelcalpena.github.io/graph-coloring

https://rafaelcalpena.github.io/graph-coloring
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Figure 12 – Web visualizer interface, divided into left menu, graph and backtracking tree
sections.

• Valid Colorings Found: Contains all colorings that have been found during execution
of the algorithm sorted in descending order. This a characteristic of the branch-and
bound-methodology, which will lower the upper bound incrementally throughout
search.

• Render Backtracking Tree: Enable or disable the rendering of the backtracking tree.
This option is present because the backtracking tree becomes the primary performance
bottleneck on large graphs, and it could potentially freeze the user interface. It is also
possible to use asynchronous layout rendering for a small performance improvement.
It is possible to disable the backtracking tree rendering.

• Algorithm Execution: Allows the user to control replaying of the results in a step-by-
step manner. Contains the current step (begins at 0) and the final step indicators.
There are previous and next buttons for navigating steps, and an operations slider
allows the user to skip to the action in the desired step. The speed slider will fast-
forward actions automatically. This is useful for replaying the algorithm’s execution
in slow motion. The maximum speed input adjusts the sensitivity of the speed slider
so that larger and smaller values are possible. The real speed reports the actual
rendered speed in operations per second.

• Logs: Contains a list of actions that have been performed during execution. Each
action contains a key and optionally extra values. Only a subset of all actions is
rendered relative to the current selected step to avoid making the user interface
unresponsive. Selecting an action skips to the specific step.
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Figure 13 – Left menu components, including Info, Adjacency List, Vertex Analysis, Chromatic
Number, Valid Colorings Found and Available Colors panels.

• Problem Variables: Contains the current internal state of the execution in the selected
step, and usually includes values for the current coloring vector, best coloring vector,
upper bound, vertex ordering, current analyzed vertex and current color.

• Vertex Analysis: Displays a table with the vertex index and degree and DSATUR
degree information, as well as order of candidate vertices.

• Available Colors: Displays a list of available colors and respective color indexes. This
list is based on the current value for the upper bound defined in the analyzed step.

The graph section contains a visual representation of the analyzed graph, where assignments
for the current step are translated into background colors. Each vertex can be identified by
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Figure 14 – Left menu components, including Logs, Render Backtracking Tree, Problem
Variables and Algorithm Execution panels.

its index located on the top label region. The light grey color implies that the respective
vertex lacks a color assignment for the current step. The backtracking tree renders visually
all assignments that have been tried until the current step. The topmost vertex represents
the initially chosen vertex and each branch represents choices for next vertices. Labels
contain both the ordering index as well as the selected vertex index (located inside curly
brackets). The current analyzed vertex is covered by a black border.

Figures 15, 16, and 17 show both graph and backtracking tree sections during different
stages of the DSATUR exact algorithm execution for myciel3.col graph. At first, the
graph to be colored has not been assigned any colors and the backtracking tree is empty
(Figure 15); after the first solution is found (Figure 16), the algorithm backtracks several
times to possibly find another solution with a lower chromatic number (Figure 17). The
algorithm finishes once all possible branches in the backtracking tree have been explored.
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Figure 15 – Graph myciel3.col and empty backtracking tree on initial step.

Figure 16 – Graph myciel3.col and backtracking tree on first solution found. The tree displays
the colors assigned to each vertex in the solution found.



Chapter 6. Visualizer 44

Figure 17 – Graph myciel3.col and explored backtracking tree after executing the last step of the
coloring procedure. Some branches have diverged into two color choices for the

same vertex.

6.1.2 Building and Running

The recommended approach for running the visualizer is to make use of its Docker con-
tainers. On a computer with Docker installed, the visualizer folder has to be built as a
container image and initialized with FILE and ALG environment variables provided by
the user. Our docker compose file internally uses -DDEBUG compilation during build
step and DEBUG=1 for executing algorithm implementations. The command docker
compose up will spawn the respective containers: the desired graph coloring algorithm
implementation with logging enabled, and a web server on port 8080 by default. Once
the graph-coloring process is complete, the resulting logs will be stored on a JSON file
and the visualizer user interface will become accessible through a local web interface at
http://localhost:8080/visualizer/?algorithmType={ALG}, where the ALG environ-
ment variable must match one of the following values:

• dsatur-backtracking;

• dsatur-sewell;

• dsatur-pass-always;

• dsatur-pass-conditional;
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• dsatur-gac-0;

• dsatur-gac-1;

• dsatur-gac-2;

• arbitrary-backtracking.

6.1.3 Limitations

Although the web visualizer interface can be helpful to understand the coloring of small
to medium-sized graphs, the complexity of rendering the backtracking tree tends to grow
exponentially for larger graphs, thus requiring the user to disable the backtracking tree
view either temporarily or permanently. In the graph section viewer, edges and vertices also
become more overlapped in denser graphs, making the identification of adjacent vertices
more difficult. Finally, the -DDEBUG with DEBUG=1 environment options will generate a
large quantity log statements to be saved in storage, therefore drastically slowing down the
execution of the algorithms prior to the visualizer’s execution (see Table 2 for an example
comparison). For these reasons, the web visualizer is mostly limited to a debugging and/or
learning tool for graph coloring. Our test results presented next in Chapter 7 do not store
any log statements (no -DDEBUG option) and use only the JSON data provided by the
algorithm in the standard output (see Example 5).
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7 Results and Discussion

In this chapter, we present the results obtained by our test suite to measure the overall
performance of our developed algorithm implementations.

7.1 Test Configuration
Our experiments ran a test suite using the remote (cloud-based) mode of the test bench.
The setup was composed of 58 DIMACS files from the dataset, generating a total of 580
combinations (each algorithm was tested against each graph). Instances were configured
with a TIMEOUT value of 1h (3600s), and the cloud provider dynamically managed the
execution of each instance based on resource availability and limits. Default cloud quotas
limited the execution to a maximum of 100 simultaneous instances.

Figure 18 illustrates resource utilization in the compute environment during testing.
Upward spikes in the graph represent the initialization of new instances while downward
spikes represent their termination, caused either by a successful exit or a timeout exit. In
the beginning of the test execution, 100 of the 580 instances were initialized simultaneously,
and many heuristic instances quickly finished causing downward spikes in the utilization
percentage until more complex exact instances were automatically spawned by AWS
Fargate. The job continued with occasional downward larger spikes representing multiple
instances often timing out during similar periods. In the final stage, the last batch of
spawned instances did not need 100% resource allocation since at that point there were
fewer instances remaining in the queue. The entire test job array finished after a total run
time of approximately 4h.

Figure 18 – AWS Fargate Resource Count Utilization During Benchmarking (in %).

7.2 Results
Table 4 shows obtained results for non-exact algorithms with optimal solutions highlighted
by green background cells. As initially expected, colorings given by the DSATUR heuristic
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Table 4 – Elapsed run time (in ms) for each heuristic, followed by χ(G), and the number of
colors assigned obtained by each heuristic. Results highlighted in green are equal to
χ(G).

Graph Name |V| |E| CGCH
Time

DSATUR
Time

Optimal
Colors

CGCH
Colors

DSATUR
Colors

myciel3.col 11 20 0 0 4 4 4
myciel4.col 23 71 0 0 5 5 5
myciel5.col 47 236 0 77 6 6 6
myciel6.col 95 755 0 6 7 7 7
myciel7.col 191 2,360 0 100 8 8 8
anna.col 138 493 0 7 11 12 11
david.col 87 406 0 3 11 12 11
huck.col 74 301 0 83 11 11 11
homer.col 561 1,628 0 489 13 15 13
jean.col 80 254 0 79 10 10 10
games120.col 120 638 0 86 9 9 9
queen5_5.col 25 160 0 0 5 8 5
queen6_6.col 36 290 0 0 7 11 9
queen7_7.col 49 476 0 1 7 10 11
queen8_8.col 64 728 0 2 9 13 12
queen8_12.col 96 1,368 0 10 12 15 14
queen9_9.col 81 1,056 0 80 10 16 13
queen10_10.col 100 1,470 0 85 ? 16 14
queen11_11.col 121 1,980 0 73 11 17 15
queen12_12.col 144 2,596 0 94 ? 20 16
queen13_13.col 169 3,328 0 186 13 21 17
queen14_14.col 196 4,186 0 115 ? 23 19
queen15_15.col 225 5,180 0 206 ? 25 21
queen16_16.col 256 6,320 0 293 ? 25 23
miles250.col 128 387 0 82 8 9 8
miles500.col 128 1,170 0 7 20 22 20
miles750.col 128 2,113 0 87 31 34 31
miles1000.col 128 3,216 0 93 42 44 42
miles1500.col 128 5,198 0 102 73 76 73
zeroin.i.1.col 211 4,100 0 120 49 49 49
zeroin.i.2.col 211 3,541 0 183 30 30 30
zeroin.i.3.col 206 3,540 0 190 30 30 30
mulsol.i.1.col 197 3,925 0 105 49 49 49
mulsol.i.2.col 188 3,885 0 106 31 31 31
mulsol.i.3.col 184 3,916 0 102 31 31 31
mulsol.i.4.col 185 3,946 0 107 31 31 31
mulsol.i.5.col 186 3,973 0 186 31 31 31
le450_5a.col 450 5,714 0 515 5 14 10
le450_5b.col 450 5,734 0 593 5 13 9
le450_15a.col 450 8,168 0 688 15 22 17
le450_15b.col 450 8,169 1 691 15 22 16
le450_25a.col 450 8,260 1 608 25 28 25
le450_25b.col 450 8,263 0 606 25 27 25
le450_5d.col 450 9,757 0 801 5 18 12
le450_5c.col 450 9,803 0 801 5 17 10
fpsol2.i.1.col 496 11,654 1 690 65 65 65
fpsol2.i.2.col 451 8,691 1 618 30 30 30
fpsol2.i.3.col 425 8,688 83 607 30 30 30
inithx.i.1.col 864 18,707 2 1911 54 54 54
inithx.i.2.col 645 13,979 1 1402 31 31 31
inithx.i.3.col 621 13,969 1 1409 31 31 31
le450_15c.col 450 16,680 1 1196 15 30 23
le450_15d.col 450 16,750 1 1192 15 31 24
le450_25c.col 450 17,343 1 1201 25 37 29
le450_25d.col 450 17,425 81 1122 25 35 28
school1.col 385 19,095 1 904 ? 42 17
school1_nsh.col 352 14,612 1 698 ? 39 27
latin_square_10.col 900 307,350 92 30191 ? 213 132
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were optimal for more instances than CGCH solutions: out of 50 instances with known
chromatic numbers, DSATUR matched 33 optimal solutions while CGCH only matched
22. When the optimal coloring was not achieved by any of the heuristics, DSATUR also
performed better than CGCH overall by assigning at least one fewer color to the solution,
with the exception of a single graph, queen7_7.col (11 and 10 colors respectively). The
difference in coloring efficiency of both heuristics became more evident in larger graphs,
with school1_nsh.col, school1.col and latin_square_10.col displaying a disparity
of 12, 25 and 81 colors between DSATUR and CGCH solutions, respectively.

In terms of performance, CGCH was the fastest heuristic in all instances, with its slowest
execution taking 92ms for latin_square_10.col. On the other hand, for the DSATUR
algorithm, it took 30,191ms to color the same graph. The difference in DSATUR and
CGCH running times grew as the size of graphs increased, as we can especially see on
queen instances results. Possible further improvements to the DSATUR implementation
layer would impact time benchmark results for both exact and heuristic versions.

Below we compare the optimality of heuristic results separated by the type of the analyzed
graphs:

• Mycielski graphs: Both CGCH and DSATUR found optimal solutions for all analyzed
graphs (from myciel3.col to myciel7.col).

• Book graphs (Anna, David, Huck, Homer, Jean): Only DSATUR found optimal
solutions for all graphs, while CGCH colored optimally 2 of 5 graphs.

• Games graphs: Both heuristics optimally colored the graph.

• Queen graphs: Except for queen5_5.col (colored optimally by DSATUR), none
of the heuristics found optimal solutions for any of the 12 remaining graphs (from
queen6_6.col to queen16_16.col). This implies that backtracking versions of the
heuristics will not find the optimal solution initially for graphs of queen type, and
thus they can be used to clarify how exact algorithms behave progressively during
lower bound updates.

• Miles graphs: Only the DSATUR heuristic found optimal colorings for this graph
type.

• Zeroin and Mulsol graphs: Both heuristics colored all graphs optimally.

• Leighton graphs: DSATUR only colored 2 graphs optimally (le450_25a.col and
le450_25b.col), while CGCH did not color any of the graphs optimally.

• Fpsol and Inithx graphs: Both heuristics were optimal for all instances.
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• School graphs: Although the optimal chromatic number was not provided by the
dataset, we have noticed a significant difference in the number of colors for both
heuristics for school1.col and school1_nsh.col, respectively 12 and 25 between
CGCH and DSATUR solutions.

• Latin Square: This graph presented the largest difference in colorings from both
heuristics (81 colors). The optimal solution was not originally given by the dataset.

7.2.1 Exact Algorithms

Table 5 displays the time taken by each test instance to finish execution and return
the optimal solution. Cells highlighted by the green background help identify the fastest
algorithm for each graph, while the dash symbol (–) represents a timeout exit (no solution
after 1h). Table 6 contains the backtracking tree vertex count, with highlighted cells
representing the smallest value obtained for the graph instance.

An analysis of the results for exact algorithms indicates that 34 of 58 graphs were optimally
colored by at least one algorithm while the remaining 24 graphs terminated with timeouts.
Overall, original DSATUR Backtracking had the best performance in terms of fastest
solved instances compared to other algorithms on the same graph: original DSATUR
was the fastest on 20 graphs, followed by both DSATUR Pass variations on 7 unique
graphs each. DSATUR Sewell Backtracking obtained the fastest solution for le450_5b.col
graph which was solved only by Sewell algorithm itself. GAC variations and Arbitrary
Backtracking did not find solutions first in any of the graphs.

Performance was also measured by sorting algorithms in descending order by quantity of
generated solutions for all graphs in the dataset. This is a better metric for checking how
their execution handles different graph types on average cases, such as when the provided
graph type is unknown. DSATUR Pass Always Backtracking was the algorithm that
solved most of the instances in 1h (32 out of 58), followed by DSATUR Pass Conditional
Backtracking (31), original DSATUR Backtracking and DSATUR Sewell Backtracking (25
each), DSATUR GAC-2 (17), DSATUR GAC-1 (14), DSATUR GAC-0 Backtracking (8)
and Arbitrary Backtracking (6).

7.2.1.1 GAC Variations

None of the DSATUR Backtracking variations with GAC achieved good run time results.
This is probably attributed to a slow formulation of CSP instances, as our algorithm had
to take into account the k value (upper bound) which is dynamic and decreases over time.
For larger graphs, it appears that the pruning benefit was reduced, in some instances
being of no help at all. The most aggressive version of our pruning algorithm, GAC-0,
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reduced the search tree size to approximately 1/3 of the size in one of the instances, but
the algorithm only solved 8 of the 58 graphs in 1h.

Overall, the GAC-2 algorithm only solved the graphs that original DSATUR Backtracking
also solved, but GAC-2 always added extra overhead to the execution time. The same
happened with GAC-1 in relation to GAC-2 and GAC-0 with relation to GAC-1, meaning
that the creation of CSP instances for performing pruning operations was too costly and
never repaid any benefits.

7.2.1.2 Factors of Influence

Size, order and density of graphs are important metrics when analyzing graph coloring,
but the graph structure itself can impact execution time significantly. For example, it is
worth noting that huck.col has the same chromatic number as anna.col and david.col
and all three were colored optimally by DSATUR heuristic, but huck.col was not colored
by our exact algorithms even though anna.col contains more edges and vertices. In
another example, myciel6.col has a similar number of edges and fewer vertices than
miles250.col but it did not have an optimal coloring given in our tests while the latter
did.

The results have demonstrated the Backtracking Tree size was also inversely correlated to
performance in some cases, such as DSATUR Pass Backtracking improvements for queen
and zeroin graph types, as we can see in more details by grouping graphs by their types.

7.2.1.3 Results by Graph Types

• Mycielski graphs: Arbitrary Backtracking only solved 2 of the instances, while
DSATUR backtracking variations except GAC-0 solved 3 instances. Original DSATUR
backtracking was the fastest algorithm for this graph type. DSATUR GAC-0 Back-
tracking had the smallest backtracking tree size for myciel3.col and myciel4.col
instances, while DSATUR Sewell Backtracking pruned myciel5.col the most.

• Book graphs: Arbitrary Backtracking did not solve any of the instances but all
DSATUR Backtracking algorithms were able to solve anna.col and david.col
graphs. Original DSATUR Backtracking was the fastest for all solved graphs, and
jean.col graph was only solved by original DSATUR Backtracking, Sewell and
GAC-2 variations. GAC-2 reduced jean.col backtracking tree size by about 500
vertices, a small number compared to the tree order (approximately 2.2 million
vertices).

• Games graphs: Only DSATUR Backtracking Pass Always was able to color the
games120.col graph.
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• Queen graphs: None of the algorithms were able to solve instances from queen9_9.col
to queen16_16.col. From queen5_5.col to queen8_12.col, DSATUR Pass Always
Backtracking presented a clear advantage being the algorithm which solved the most
instances (5) and also the fastest in most of them (3), followed by DSATUR Pass
Conditional Backtracking and original DSATUR with 4 solved instances and 1 fastest
instance each. Both Pass variations (especially Pass Always) had excellent results in
reducing the size of the Backtracking tree for this graph type. Surprisingly, Arbitrary
Backtracking solved 4 queen instances, including queen8_12.col which was only
solved again by DSATUR Pass Always Backtracking.

• Miles graphs: The original DSATUR Backtracking algorithm was the fastest in
all instances it solved (3), but Pass Always Backtracking and Pass Conditional
Backtracking both solved all instances (5) and were the fastest for 1 instance each.
Pass variations also reduced the size of the backtracking tree compared to the original
DSATUR Backtracking algorithm, although not as significantly and consistently as
their previous achievements for queen graphs. DSATUR Sewell had an unusually
high backtracking tree vertex count for the miles750.col graph relative to other
algorithms.

• Zeroin graphs: Original DSATUR Backtracking and both Pass Backtracking varia-
tions solved all 3 instances, while DSATUR Sewell Backtracking only solved one in-
stance. Fastest solutions presented mixed results, since zeroin.i.1.col was quickly
colored by the original DSATUR algorithm with relation to DSATUR Pass condi-
tional, but the latter was much faster for zeroin.i.2.col and zeroin.i.3.col
graphs due to its excellent reduction in the backtracking tree size for both instances.

• Mulsol graphs: mulsol.i.1.col was not optimally colored by any algorithm, but
original DSATUR backtracking presented a clear advantage for graphs of same
type, solving all remaining instances and being the fastest for all of them by a
significant margin. Arbitrary backtracking on the other hand timed out for all
graphs. Each mulsol instance contained the same backtracking tree vertex count for
different algorithms, suggesting that there are not enough search space optimization
techniques available for this type of graph.

• Leighton graphs: Instances le450_15c.col, le450_15d.col, le450_25c.col and
le450_25d.col were not optimally colored by any of the algorithms. For remaining
instances, DSATUR Sewell Backtracking and DSATUR Pass Conditional Backtrack-
ing both solved 5 instances, and Sewell exclusively solved le450_5b.col. This was
also the only graph in the dataset where Sewell was the fastest. Original DSATUR
backtracking and DSATUR Pass Always presented the largest count of fastest so-
lutions (2 each). Arbitrary Backtracking did not color instances of Leighton type.
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DSATUR Pass variations had a small reduction in the number of explored vertices
for the backtracking tree, and Sewell had an unusually high backtracking vertex
count for the le450_15b.col graph.

• Fpsol graphs: fpsol2.i.1.col was not solved by any of the algorithms, and
fpsol2.i.2.col and fpsol2.i.3.col were solved by all DSATUR variations except
GAC ones. Original DSATUR backtracking was the fastest to obtain a solution for
both graphs. Sewell had a small decrease in the backtracking vertex count while
Pass variations had a significant increase for graphs of this type.

• Inithx graphs: Only the inithx.i.1.col graph was solved by DSATUR Pass Back-
tracking variations, with Conditional being the fastest even when both algorithms
explored the same number of backtracking tree vertices.

• School graphs: school1.col graph was solved by all DSATUR Backtracking vari-
ations except GAC ones. school1_nsh.col graph on the hand was only solved
by DSATUR Pass variations, with DSATUR Pass Conditional Backtracking being
approximately 2.4 seconds faster than DSATUR Pass Always Backtracking. Although
not specified in the initial dataset, the obtained chromatic numbers were 14, differ-
ing from approximate solutions obtained by initial heuristics and matching results
obtained by other experiments [21]. Pass variations had excellent reductions in the
number of backtracking vertices for school1.col compared to original DSATUR
and Sewell Backtracking.

• Latin Square graph: All algorithms timed out when attempting to solve the Latin
Square graph instance.
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Table 5 – χ(G), and elapsed run time (in ms) for each exact algorithm. The fastest algorithm for each graph file is highlighted in green. Timeouts
after 1h are represented by dashes. The last row displays the quantity of graphs that were solved by each algorithm before timing out.

Graph
Name χ(G)

Arbitrary
Bkt Time

DSATUR
Bkt Time

DSATUR
Sewell

Bkt Time

DSATUR Pass
Always

Bkt Time

DSATUR Pass
Conditional
Bkt Time

DSATUR
GAC-0

Bkt Time

DSATUR
GAC-1

Bkt Time

DSATUR
GAC-2

Bkt Time

myciel3.col 4 76 0 2 1 1 15 5 2
myciel4.col 5 8296 106 304 298 294 21090 2397 216
myciel5.col 6 - 121198 191121 299905 271884 - 1699102 146712
myciel6.col 7 - - - - - - - -
myciel7.col 8 - - - - - - - -
anna.col 11 - 213 1701 1318 1016 31097 32900 13604
david.col 11 - 98 1117 811 790 2392 2494 2495
huck.col 11 - - - - - - - -
homer.col 13 - - - - - - - -
jean.col 10 - 1045891 2109206 - - - - 1834187
games120.col 9 - - - 77610 - - - -
queen5_5.col 5 1 1 183 14 90 102 280 109
queen6_6.col 7 1506 1095 4793 498 418 2430318 230802 30121
queen7_7.col 7 7513 7188 23192 591 4790 - 1416924 99717
queen8_8.col 9 - 3269886 - 794112 988191 - - -
queen8_12.col 12 1536801 - - 1807 - - - -
queen9_9.col 10 - - - - - - - -
queen10_10.col ? - - - - - - - -
queen11_11.col 11 - - - - - - - -
queen13_13.col 13 - - - - - - - -
queen14_14.col ? - - - - - - - -
queen15_15.col ? - - - - - - - -
queen16_16.col ? - - - - - - - -
miles250.col 8 - 190 610 336 308 7695 1016 813
miles500.col 20 - 380 3018 1697 1510 185494 199602 78791
miles750.col 31 - 2107 752696 5988 6087 - - -
miles1000.col 42 - - - 18995 18709 - - -
miles1500.col 73 - - - 83202 84089 - - -
zeroin.i.1.col 49 - 1804 73501 65500 49492 - - -
zeroin.i.2.col 30 - 2218195 - 32909 28503 - - 2812521
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Graph
Name χ(G)

Arbitrary
Bkt Time

DSATUR
Bkt Time

DSATUR
Sewell

Bkt Time

DSATUR Pass
Always

Bkt Time

DSATUR Pass
Conditional
Bkt Time

DSATUR
GAC-0

Bkt Time

DSATUR
GAC-1

Bkt Time

DSATUR
GAC-2

Bkt Time

zeroin.i.3.col 30 - 2215410 - 31306 29200 - - 2742210
mulsol.i.1.col 49 - - - - - - - -
mulsol.i.2.col 31 - 893 50616 28405 23789 - 428702 431998
mulsol.i.3.col 31 - 892 51314 28003 25409 - 431601 436610
mulsol.i.4.col 31 - 894 52620 28802 24099 - 449920 438003
mulsol.i.5.col 31 - 813 56293 28792 24673 - 453506 436298
queen12_12.col ? - - - - - - - -
le450_5a.col 5 - - - 141517 143104 - - -
le450_5b.col 5 - - 246814 - - - - -
le450_15a.col 15 - - - - - - - -
le450_15b.col 15 - - 886303 - 69102 - - -
le450_25a.col 25 - 5793 56207 24394 23305 - - -
le450_25b.col 25 - 5816 44810 23499 21795 - - -
le450_5d.col 5 - - - - - - - -
le450_5c.col 5 - - 377606 56996 58365 - - -
fpsol2.i.1.col 65 - - - - - - - -
fpsol2.i.2.col 30 - 34006 423793 204602 176716 - - -
fpsol2.i.3.col 30 32912 423713 194802 174712 - - -
inithx.i.1.col 54 - - - 2413091 1940781 - - -
inithx.i.2.col 31 - - - - - - - -
inithx.i.3.col 31 - - - - - - - -
le450_15c.col 15 - - - - - - - -
le450_15d.col 15 - - - - - - - -
le450_25c.col 25 - - - - - - - -
le450_25d.col 25 - - - - - - - -
school1.col ? - 8695 635988 665700 634198 - - -
school1_nsh.col ? - - - 99192 96807 - - -
latin_square_10.col ? - - - - - - - -

Qty. Solved (1h) - 6 25 25 32 31 8 14 17
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Table 6 – Number of backtracking vertices explored by each algorithm to find the optimal solution. For each graph, the algorithm with the lowest
quantity of backtracking vertices is highlighted in green. Timeouts after 1h are represented by dashes.

Graph
Name

Arbitrary
Bkt Vtcs

DSATUR
Bkt Vtcs

DSATUR
Sewell

Bkt Vtcs

DSATUR Pass
Always

Bkt Vtcs

DSATUR Pass
Conditional

Bkt Vtcs

DSATUR
GAC-0

Bkt Vtcs

DSATUR
GAC-1

Bkt Vtcs

DSATUR
GAC-2

Bkt Vtcs

myciel3.col 80 29 24 25 25 17 29 29
myciel4.col 220476 906 614 755 755 327 892 906
myciel5.col - 448650 181474 470021 439559 - 447611 448026
myciel6.col - - - - - - - -
myciel7.col - - - - - - - -
anna.col - 873 873 870 871 868 871 868
david.col - 432 432 437 439 432 432 432
huck.col - - - - - - - -
homer.col - - - - - - - -
jean.col - 2261607 2261607 - - - - 2261123
games120.col - - - 55830 - - - -
queen5_5.col 114 25 28 26 26 25 25 25
queen6_6.col 29325 4987 3488 580 580 1647 4942 4957
queen7_7.col 119682 22130 11490 449 5236 - 22052 24306
queen8_8.col - 7161560 - 633809 818489 - - -
queen8_12.col 13395034 - - 726 - - - -
queen9_9.col - - - - - - - -
queen10_10.col - - - - - - - -
queen11_11.col - - - - - - - -
queen13_13.col - - - - - - - -
queen14_14.col - - - - - - - -
queen15_15.col - - - - - - - -
queen16_16.col - - - - - - - -
miles250.col - 503 504 505 503 502 503 503
miles500.col - 1171 1168 1159 1151 1166 1169 1166
miles750.col - 2740 261094 1392 1412 - - -
miles1000.col - - - 1375 1385 - - -
miles1500.col - - - 1595 1593 - - -
zeroin.i.1.col - 5234 5234 5104 5104 - - -
zeroin.i.2.col - 904621 - 2525 2521 - - 904621
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Graph
Name

Arbitrary
Bkt Vtcs

DSATUR
Bkt Vtcs

DSATUR
Sewell

Bkt Vtcs

DSATUR Pass
Always

Bkt Vtcs

DSATUR Pass
Conditional

Bkt Vtcs

DSATUR
GAC-0

Bkt Vtcs

DSATUR
GAC-1

Bkt Vtcs

DSATUR
GAC-2

Bkt Vtcs

zeroin.i.3.col - 904477 - 2381 2377 - - 904477
mulsol.i.1.col - - - - - - - -
mulsol.i.2.col - 1635 1635 1635 1635 - 1635 1635
mulsol.i.3.col - 1486 1486 1486 1486 - 1486 1486
mulsol.i.4.col - 1488 1488 1488 1488 - 1488 1488
mulsol.i.5.col - 1492 1492 1492 1492 - 1492 1492
queen12_12.col - - - - - - - -
le450_5a.col - - - 17320 17320 - - -
le450_5b.col - - 13795 - - - - -
le450_15a.col - - - - - - - -
le450_15b.col - - 93453 - 8839 - - -
le450_25a.col - 3905 3909 3836 3929 - - -
le450_25b.col - 3811 3817 3828 3792 - - -
le450_5d.col - - - - - - - -
le450_5c.col - - 5668 3056 3056 - - -
fpsol2.i.1.col - - - - - - - -
fpsol2.i.2.col - 9196 9180 13024 13024 - - -
fpsol2.i.3.col - 8445 8429 12273 12273 - - -
inithx.i.1.col - - - 80606 80606 - - -
inithx.i.2.col - - - - - - - -
inithx.i.3.col - - - - - - - -
le450_15c.col - - - - - - - -
le450_15d.col - - - - - - - -
le450_25c.col - - - - - - - -
le450_25d.col - - - - - - - -
school1.col - 2765 3082 610 610 - - -
school1_nsh.col - - - 1102 1102 - - -
latin_square_10.col - - - - - - - -
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7.3 Further Improvements
In this section, we discuss some further improvements which could be implemented in our
work.

7.3.1 Algorithms

Our implementations for Sewell and Pass could become faster by following all suggestions
from Sewell’s original article [20]. It states that the initial coloring found should be an
optimal coloring, otherwise the original version of DSATUR could still be faster. The
author therefore suggested the use of TABUCOL (or non-exact DSATUR for geometric
graphs) with RLF during the beginning of execution.

For further speed improvements on exact algorithms we suggest making heavier use of
caching where possible to avoid recalculations such as saturation degree and heuristic
dependent information, where upon backward movements the cached information could be
restored more quickly. Other data structures such as heaps, linked lists and binary trees
could be added, and measured against the existing implementation that uses arrays and
sets. The current implementation contained in this work should not, however, interfere
significantly with the overall results of the analysis, since all algorithm heuristics were built
on the same foundation layer. This was an important requirement to compare different
heuristics and reduce differences to the minimum surface possible.

7.3.2 Test Bench

The code for the Test bench feature could be abstracted into scripts to allow for testing
of different programs both in local and remote environments. Our approach guarantees
modularity through container-based development, and uses job array execution for tasks
that are resource-intensive. Another useful addition, specifically for the graph coloring
program, would be to add more metrics, such as standard deviation and average of the
obtained results.

7.3.3 Web Visualizer

The web visualizer could be published on a website, and contain our developed C++
algorithms compiled with the WebAssembly technology, allowing for inspection and real-
time execution of graph coloring instances via a simple website. It could also lazy-load log
files to avoid freezing the UI when loading larger graphs.
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7.4 Conclusion
In this work, we measured the performance of multiple constructive graph coloring
algorithms on a set of graph files from the DIMACS challenges, and we developed a
web visualizer to inspect actions performed by the studied algorithms in small graphs. We
began by presenting a brief history about the origins of the graph coloring problem and its
applications, and introduced the definition of the problem itself, along with some formal
concepts required to understand our developed coloring algorithms.

Due to the intractability of the graph coloring problem, the study of coloring algorithms
was divided into two categories: heuristics and exact algorithms. We selected the Classical
Greedy Coloring Heuristic (CGCH) and the DSATUR Heuristic for the approximation
algorithms. Extra concepts necessary for understanding exact algorithms were presented,
such as the search space, backtracking, tight ordering, branch-and-bound, clique detection,
the existence of upper and lower bounds for the chromatic number, the formulation of the
problem as a constraint satisfaction problem, constraint networks and arc consistency. The
exact algorithms studied in our work were: the Arbitrary Ordering Algorithm and four
exact DSATUR algorithms (Original, Sewell, Pass and GAC). We suggested the creation of
the GAC algorithm as a new DSATUR variant, which obtains generalized arc consistency
with AC-3 in specific steps during backtracking to perform pruning of the search space.

Our graph coloring algorithms were implemented in C++, and the code was encapsulated
in Docker containers to improve portability and to allow for more predictable behavior
across different environments. The test bench, which runs on Node.js, supports both local
and cloud modes. It was responsible for managing the execution of multiple coloring
instances and for concatenating their results into a single file. We also created a web
visualizer to inspect previous algorithm outputs in the browser. It was made using VueJs
and CytoscapeJs, and it contains a left menu which displays information about the
algorithm, the colored graph, intermediate colorings found and the action logs. It depicts
the graph visualization and the backtracking tree visualization in the center and right
panels, whose current state can be set by the controls in the left menu.

In order to measure the performance of the studied algorithms, we executed the test bench
on AWS Batch and AWS Fargate cloud services. It generated a job array containing each
combination of DIMACS graphs and studied algorithms, with a timeout of 1h for each
instance. The algorithms were tested on .col files containing the definition of the graph
to be colored. We partially verified the correctness of our algorithms by ensuring that
their solutions did not contain any color clashes, and that the chromatic numbers matched
those provided by the DIMACS dataset.

The cloud benchmark test took a total time of about 4h. For heuristics, we evaluated
the elapsed time and the quantity of colors used by each solution; for exact algorithms,
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we evaluated both the elapsed time and the backtracking tree vertex count. Our results
have validated that the DSATUR heuristic is often better than the CGCH heuristic, as
it obtained more optimal colorings, but the CGCH was the fastest in all tested graphs.
Possible improvements for the DSATUR algorithm implementation may reduce the elapsed
time difference between both heuristics. The DSATUR heuristic colored books and miles
graphs optimally, but queens, leighton, school and latin square graphs were not optimally
colored by any heuristic. Exact algorithms had multiple outcomes when analyzing different
graph types, although this may have been related to our algorithm implementations.
Approximately 59% (34 of 58) graphs were colored by at least one exact algorithm, and
the DSATUR-based algorithms were often faster, with original DSATUR being the fastest
one in the greatest quantity of graphs. DSATUR GAC-0,1,2 significantly reduced the
quantity of backtracking vertices for some graphs, but its running time was too long. The
original exact DSATUR algorithm showed good results for books and mulsol graph types.
In general, DSATUR Pass showed good performance by being the exact algorithm to solve
the greatest quantity of graphs in 1h, followed by DSATUR Sewell and original DSATUR
tied for second place, followed by DSATUR GAC variants, and finally by the arbitrary
order backtracking algorithm. For the DSATUR Pass algorithm, some correlation between
the low vertex count in the backtracking tree and the elapsed run time was also noticed.

The general performance of exact algorithms for the DIMACS dataset obtained (from best
to worst) was:

1. DSATUR Pass Always Backtracking

2. DSATUR Pass Conditional Backtracking

3. DSATUR Sewell Backtracking and original DSATUR Backtracking

4. DSATUR GAC-2 Backtracking

5. DSATUR GAC-1 Backtracking

6. DSATUR GAC-0 Backtracking

7. Arbitrary Backtracking.

For future works, we suggest improving our Sewell and Pass algorithm implementations to
follow all modifications proposed by Sewell, and to target our algorithm tests to specific
types of graphs, such as planar graphs. Obtaining more information about the current
state of instances that have timed out may also be particularly useful. The code for the test
bench may be reused for other projects which require tests to run on cloud environments,
and the web visualizer may be refactored to support graph coloring in real-time instead of
only replaying previous logs.
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