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Online Problems and Competitive Analysis

Input parts arrive one at a time

Each part is served before next one arrives

No decision can be changed in the future

An online algorithm ALG is c-competitive if

ALG(I ) ≤ c OPT(I )

for every input I

As an example, lets take the Ski Rental problem
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Ski Rental Problem

Input: time horizon, skis buying price M (renting cost is 1 per day),
list informing when snow melts

1 t
* * * *
1 1 1

*
M

minimize sum of renting days plus M (if we decide to buy skis)

How to solve the offline version of this problem?

Does a greedy algorithm solve its online version?
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Ski Rental Application and Generalization

Ski rental algorithms are useful to save energy

Help to decide when to turn off parts of a system

Like cores in a processor or computers in a cluster

Generalized into Parking Permit Problem [Meyerson 2005]

Quintessential both to theoretical and practical leasing problems,

in which resources are leased instead of permanently acquired
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Dealing with Regret: Change

When you realize that a course of actions was wrong,

take the better course in retrospect,

even if you have to pay a price for it
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Ski Rental Algorithm

Rent for the first M − 1 days, buy in the M-th day

Algorithm 1: Intuitive SR Algorithm

Input: M
Set day j and total renting cost r to 0;
while a new snow day happens do

if r + 1 < M then
Rent skis at day j and r ← r + 1;

else
Buy skis if still don’t have them;

j ← j + 1;

The algorithm chose greedily to rent, until buying being better

This algorithm is 2-competitive. Why?
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Ski Rental LP Formulations

Linear programming relaxation

min Mx +
∑n

j=1yj

s.t. x + yj ≥ 1 for j = 1, . . . , n

x ≥ 0, yj ≥ 0 for j = 1, . . . , n

(covering problem: constraints arrive online)

and its dual

max
∑n

j=1αj

s.t.
∑n

j=1αj ≤ M

0 ≤ αj ≤ 1 for j = 1, . . . , n

(packing problem: variables arrive online)
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Primal-Dual Ski Rental Algorithm

Algorithm 2: Primal-Dual SR Algorithm

Input: M
Set day j ′ to 0;
while a new snow day happens do

increase αj ′ until one of the following happens:
(a) αj ′ = 1; /* rent skis setting yj ′ = 1 */

(b) M = αj ′ +
∑j ′−1

j=1 αj ; /* buy skis setting x = 1 */

j ′ ← j ′ + 1;

Is it similar to the previous algorithm?
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Primal-Dual SR Algorithm is 2-Competitive

Note that, Mx ≤
∑n

j=1 αj and that yj ≤ αj for any j

Moreover, our dual solution is feasible and,

due to weak duality, any dual feasible solution costs at most OPT

Thus

ALG = Mx +
n∑

j=1

yj

≤
n∑

j=1

αj +
n∑

j=1

αj

≤ 2OPT
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Online Facility Location Problem

Input: G = (V ,E ), d : E → R+, f : V → R+, clients D ⊆ V

2 2

2

1

1

1

f=2

min
∑
i∈F a

f (i) +
∑
j∈D

d(j , a(j))

Total cost = 2 + 2 + 2 = 6.

How a greedy algorithm would behave? What is its worst case?
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Online Facility Location LP Formulation

Linear programming relaxation

min
∑

i∈F f (i)yi +
∑

j∈D
∑

i∈F d(j , i)xji

s.t. xji ≤ yi for j ∈ D and i ∈ F∑
i∈F xji ≥ 1 for j ∈ D

yi ≥ 0, xji ≥ 0 for j ∈ D and i ∈ F

and its dual

max
∑

j∈D αj

s.t.
∑

j∈D(αj − d(j , i))+ ≤ f (i) for i ∈ F

αj ≥ 0 for j ∈ D
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Online Facility Location Algorithm

Algorithm 3: OFL Algorithm

Input: (G , d , f , F )
F a ← ∅; D ← ∅;
while a new client j ′ arrives do

increase αj ′ until one of the following happens:
(a) αj ′ = d(j ′, i) for some i ∈ F a; /* connect only */
(b) f (i) = (αj ′ − d(j ′, i)) +

∑
j∈D(d(j ,F a)− d(j , i))+ for

some i ∈ F \ F a; /* open and connect */
F a ← F a ∪ {i}; D ← D ∪ {j ′}; a(j ′)← i ;

return (F a, a);
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Algorithm is (4 ln n)-competitive

Lemma 1: ALG ≤ 2
∑

j∈D αj

Lemma 2:
∑

j∈D

(
αj

2H|D|
− d(j , i)

)
≤ fi , for any i ∈ F

Using Lemmas 1 and 2, we can prove the main result

ALG ≤ 2
∑
j∈D

αj

= 4H|D|
∑
j∈D

αj

2H|D|

≤ 4H|D|OPT

≤ 4 ln nOPT

Result due to [Fotakis 2007] and [Nagarajan and Williamson 2013]
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Dealing with Regret: Avoidance

When you don’t know the best choice,

do not compromise,

by using continuous variables and randomness

As an example, consider the online bipartite matching worst case
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Recalling the Ski Rental LP Formulations

Linear programming relaxation

min Mx +
∑n

j=1yj

s.t. x + yj ≥ 1 for j = 1, . . . , n

x ≥ 0, yj ≥ 0 for j = 1, . . . , n

(covering problem: constraints arrive online)

and its dual

max
∑n

j=1αj

s.t.
∑n

j=1αj ≤ M

0 ≤ αj ≤ 1 for j = 1, . . . , n

(packing problem: variables arrive online)
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Fractional Ski Rental Algorithm

Constraint must be satisfied as they arrive

and variables can only increase in value

Algorithm 4: Fractional SR Algorithm

Input: M
while a new snow day j ′ happens do

if x < 1 then
yj ′ ← 1− x
x ← x

(
1 + 1

M

)
+ 1

cM

αj ′ ← 1

Constant c will be define later
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Analyzing Fractional Algorithm

Let P be the cost of the primal solution and D the dual one

Proof relies on the following three steps

P is feasible

In each iteration, ∆P ≤ (1 + 1/c)∆D

D is feasible

Notice that, we are still relying on the primal-dual relation to obtain
the bounds
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Analyzing Fractional Algorithm

Since primal feasibility constraint is x + yj ≥ 1,

P is feasible because either x = 1 or yj = 1− x

Since primal objective function is Mx +
∑n

j=1 yj ,

∆P = M x
M

+ M 1
cM

+ 1− x = 1 + 1
c

Since dual objective function is
∑n

j=1 αj ,

∆D = 1

Since dual feasibility constraint is
∑n

j=1 αj ≤ M ,

We need to show that after M days x ≥ 1
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Analyzing Fractional Algorithm

Since dual feasibility constraint is
∑n

j=1 αj ≤ M ,

we need to show that after M days x ≥ 1

Since at each new day x ← x
(
1 + 1

M

)
+ 1

cM
,

x value corresponds to the sum of a geometric progression
x0 = 1

cM
x1 = 1

cM

(
1 + 1

M

)
+ 1

cM

x2 = 1
cM

(
1 + 1

M

)2
+ 1

cM

(
1 + 1

M

)
+ 1

cM

with initial term 1
cM

and ratio
(
1 + 1

M

)
x =

1

cM

(1 + 1/M)M − 1

(1 + 1/M)− 1
=

(1 + 1/M)M − 1

c
≥ 1

Since (1 + 1/M)M ' e we have c ≤ e− 1 and 1 + 1
c

= e
e−1
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Analyzing Fractional Algorithm

Thus, we have a e
e−1 -competitive algorithm,

but it is for the fractional version of the problem

We use randomization to obtain an algorithm for the discrete problem

In particular, we use the increment of x on a day
as the probability that the algorithm will buy at that day
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