Twisted sums of c_{0} and $C(K)$ Joint work with Daniel Tausk

Claudia Correa

Universidade Federal do ABC—Brazil
claudia.correa@ufabc.edu.br
5 de julho de 2018
(1) Birth of the Problem
(2) Childhood and Adolescence of the Problem
(3) The Great Surprise

- Scattered spaces
(4) Future Promisses
(5) Bibliography

Definition

Let X and Y be Banach spaces. A twisted sum of Y and X is a short exact sequence of the form:

$$
0 \longrightarrow Y \xrightarrow{T} Z \xrightarrow{S} X \longrightarrow 0,
$$

where Z is a Banach space and the maps T and S are linear and bounded.

Remark

Note that since $T[Y]=$ KerS, it follows from the Open Mapping Theorem that Y is isomorphic to $T[Y]$ and the quotient $Z / T[Y]$ is isomorphic to X, through $\bar{S}: Z / T[Y] \rightarrow X$.

Example

If X and Y are Banach spaces and the direct sum $Y \bigoplus X$ is endowed with some product norm, then:

$$
0 \longrightarrow Y \xrightarrow{i_{1}} Y \bigoplus X \xrightarrow{\pi_{2}} X \longrightarrow 0
$$

is a twisted sum of Y and X, where i_{1} is the canonical embedding and π_{2} is the second projection.

Definition

A twisted sum:

$$
0 \longrightarrow Y \xrightarrow{T} Z \xrightarrow{S} X \longrightarrow 0
$$

of Banach spaces Y and X is called trivial if $T[Y]$ is complemented in Z.

Question

Are there nontrivial twisted sums of Banach spaces?
Answer: Yes.

Theorem (Phillips-1940)

The sequence space c_{0} is not a complemented subspace of ℓ_{∞}.

Corollary

The twisted sum:

$$
0 \longrightarrow c_{0} \xrightarrow{i n c} \ell_{\infty} \xrightarrow{q} \ell_{\infty} / c_{0} \longrightarrow 0,
$$

is not trivial, where inc denotes the inclusion map and q denotes the quotient map.

Theorem (Sobczyk-1941)

Every isomorphic copy of c_{0} inside a separable Banach space is complemented.

Corollary

If X is a separable Banach space, then every twisted sum of c_{0} and X is trivial.

Proof. Let Z be a Banach space such that:

$$
0 \longrightarrow c_{0} \longrightarrow Z \longrightarrow X \longrightarrow 0
$$

is an exact sequence. In this case Z is separable and therefore this twisted sum is trivial.

Definition

Given a compact Hausdorff space K, we denote by $C(K)$ the Banach space of continuous real-valued functions defined on K, endowed with the supremum norm.

Proposition

Let K be a compact Hausdorff space. The Banach space $C(K)$ is separable if and only if K is metrizable.

Corollary (Corollary of Sobczyk's Theorem)

If K is a metrizable compact space, then every twisted sum of c_{0} and $C(K)$ is trivial.
X separable \Rightarrow every twisted sum of c_{0} and X is trivial
Question
Let X be a Banach space. If every twisted sum of c_{0} and X is trivial, then X must be separable?

Answer: No.

Proposition

If I is an uncountable set, then the Banach space $\ell_{1}(I)$ is not separable and every twisted sum of c_{0} and $\ell_{1}(I)$ is trivial.

Proof. The space $\ell_{1}(I)$ is a projective Banach space, i. e., if W and Z are Banach spaces and $q: W \longrightarrow Z$ is a quotient map, then every bounded operator $T: \ell_{1}(I) \longrightarrow Z$ admits a lifting:

K metrizable \Rightarrow every twisted sum of c_{0} and $C(K)$ is trivial

Open Problem (Cabelo, Castillo, Kalton and Yost-2003)
 Is there a nonmetrizable compact Hausdorff space K such that every twisted sum of c_{0} and $C(K)$ is trivial?

This problems remains open, but we are working on it!

Remark

If K is a compact metric space, then K is homeomorphic to a ||.\|-compact subset of a Banach space.

Definition

A compact space is said an Eberlein compactum if it is homeomorphic to a weakly compact subset of a Banach space, endowed with the weak topology.

Example

Every metrizable compact space is Eberlein and the one-point compactification of an uncountable discrete space is a nonmetrizable Eberlein compactum.

Remark

Eberlein compacta share many properties with compact metrizable spaces. For instance: If K is an Eberlein compact space, then K is a sequential space.

Theorem (Cabello, Castillo, Kalton and Yost-2003)

If K is a nonmetrizable Eberlein compact space, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

In the same paper, the authors claimed that with similar arguments one could prove that if K is a nonmetrizable Corson compact space, then there exists a nontrivial twisted sum of c_{0} and $C(K)$. It turns out that similar arguments do not work and that the situation is much more complicated.

Theorem (Amir and Lindenstrauss-1968)

A compact space K is an Eberlein compactum if and only if K is homeomorphic to a weakly compact subset of the Banach space $c_{0}(\Gamma)$, for some index set Γ.

Corollary

If K is an Eberlein compactum, then K is homeomorphic to a compact subspace of $c_{0}(\Gamma)$, endowed with the product topology.

Remark

This copy of K is contained in $\Sigma(\Gamma)$, where:

$$
\Sigma(\Gamma)=\left\{x \in \mathbb{R}^{\Gamma}: x \text { has countable support }\right\} .
$$

Definition

A compact space is called a Corson compact space if it is homeomorphic to a subset of $\Sigma(\Gamma)$, endowed with the product topology, for some index set Γ.

Remark

Every Eberlein compact space is Corson, but there are Corson compact spaces that are not Eberlein.

Theorem (Correa and Tausk, JFA-2016)

Assume MA. If K is a nonmetrizable Corson compact space, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

Open Problem

Does it hold in ZFC that there exists a nontrivial twisted sum of c_{0} and $C(K)$, for every nonmetrizable Corson compact space?

Definition

A Compact space K is called a Valdivia compactum if there exists a continuous and injective map $\varphi: K \longrightarrow \mathbb{R}^{\ulcorner }$such that $\varphi^{-1}[\Sigma(\Gamma)]$ is dense in K. In this case, $\varphi^{-1}[\Sigma(\Gamma)]$ is called a dense Σ-subset of K.

Example

Every Corson compact space is Valdivia. Examples of Valdivia spaces that are not Corson are given by the product spaces 2^{κ}, for any uncountable κ.

Theorem (Correa and Tausk, JFA-2016)

Assume CH. Let K be a Valdivia compact space. If K satisfies any of the following properties, then there exists a nontrivial twisted sum of c_{0} and $C(K)$:

- K has a G_{δ} point with no second countable neighborhoods;
- K has a dense \sum-subset A such that some point of $K \backslash A$ is the limit of a nontrivial sequence in K.

Theorem (Correa and Tausk, JFA-2016)

There exists a nontrivial twisted sum of c_{0} and $C\left(2^{\mathfrak{c}}\right)$. Therefore, under $C H$, there exists a nontrivial twisted sum of c_{0} and $C\left(2^{\omega_{1}}\right)$.

Theorem (Marciszewski and Plebanek, JFA-2018)

Assume MA $+\neg C H$. Every twisted sum of c_{0} and $C\left(2^{\kappa}\right)$ is trivial, for $\omega_{1} \leq \kappa<\mathbf{c}$.

Corollary

It is consistent with ZFC that there is a nonmetrizable compact space K such that every twisted sum of c_{0} and $C(K)$ is trivial.

Open Problem

Is there in ZFC a nonmetrizable compact space K such that every twisted sum of c_{0} and $C(K)$ is trivial?

Definition

We say that a topological space \mathcal{X} is scattered if there exists an ordinal α such that its α-Cantor-Bendixson derivative $X^{(\alpha)}$ is empty. If \mathcal{X} is scattered, then the least ordinal α such that $X^{(\alpha)}=\emptyset$ is called the height of \mathcal{X}. We say that \mathcal{X} has finite height if its height is a natural number.

Theorem (Castillo, Top. Appl.-2016)

Assume CH. If K is a nonmetrizable compact space with finite height, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

Theorem (Marciszewski and Plebanek, JFA-2018)

Assume $M A+\neg C H$. If K is a separable compact space with height 3 and weight smaller than \mathfrak{c}, then every twisted sum of c_{0} and $C(K)$ is trivial.

Theorem (Correa and Tausk, Fund. Math.-2018)

Assume MA+ᄀCH. If K is a separable compact space with finite height and weight smaller than \mathfrak{c}, then every twisted sum of c_{0} and $C(K)$ is trivial.

Corollary

The existence of nontrivial twisted sums of c_{0} and $C(K)$, where K is a finite height separable compact space, is independent of ZFC.

Theorem (Marciszewski and Plebanek, JFA-2018)

Assume CH. If K is a nonseparable scattered space, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

Open Problem

Does it hold in ZFC that if K is a nonseparable scattered space, then there exists a nontrivial twisted sum of c_{0} and $C(K)$?

Proposition (Correa-work in preparation)

Assume $M A+\neg C H$. If K is a nonseparable scattered space of weight smaller than \mathfrak{c}, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

Open Problem

Assuming $M A+\neg C H$, is there a nontrivial twisted sum of c_{0} and $C(K)$, for every nonseparable scattered compact space K ?

Conjecture (My personal conjecture)

If K is a compact space with weight greater or equal to \mathfrak{c}, then there exists a nontrivial twisted sum of c_{0} and $C(K)$.

J．M Castillo．
Nonseparable $c(k)$－spaces can be twisted when k is a finite height compact．
Topology Appl．，198：107－116， 2016.
围 F．Cabello，J．M Castillo，N．J．Kalton，and D．T．Yost．
Twisted sums with $c(k)$ spaces．
Trans．Amer．Math．Soc．， 355 （11）：4523－4541， 2003.
目 C．Correa and D．V．Tausk．
Nontrivial twisted sums of c_{0} and $c(k)$ ．
J．Func．Anal．，270：842－853， 2016.

国
C．Correa and D．V．Tausk．
Local extension property for finite height spaces．
To appear Fund．Math．， 2018.
W. Marciszewski and G. Plebanek.

Extension operators and twisted sums of c_{0} and $c(k)$ spaces. J. Funct. Anal., 274 (5):1491-1529, 2018.

