The golden open problem Scattered spaces Bibliography

Twisted sums for scattered spaces

Claudia Correa Universidade Federal do ABC – Brazil This project was partially supported by FAPESP grant 2018/09797-2

47th Winter School in Abstract Analysis, Svratka, Czech Republic, 12-19 January 2019

イロト イポト イヨト イヨト

1/17

The golden open problem Scattered spaces Bibliography

Let X and Y be Banach spaces. A twisted sum of Y and X is a short exact sequence of the form:

$$0\longrightarrow Y\stackrel{T}{\longrightarrow} Z\stackrel{S}{\longrightarrow} X\longrightarrow 0,$$

where Z is a Banach space and the maps T and S are linear and bounded.

Remark

Note that since T[Y] = KerS, it follows from the Open Mapping Theorem that Y is isomorphic to T[Y] and the quotient Z/T[Y] is isomorphic to X, through $\overline{S} : Z/T[Y] \to X$.

Example

If X and Y are Banach spaces and the direct sum $Y \bigoplus X$ is endowed with some product norm, then:

$$0 \longrightarrow Y \xrightarrow{i_1} Y \bigoplus X \xrightarrow{\pi_2} X \longrightarrow 0$$

is a twisted sum of Y and X, where i_1 is the canonical embedding and π_2 is the second projection.

Definition

A twisted sum:

$$0 \longrightarrow Y \xrightarrow{T} Z \xrightarrow{S} X \longrightarrow 0$$

of Banach spaces Y and X is called trivial if T[Y] is complemented in Z.

Question

Are there nontrivial twisted sums of Banach spaces?

Answer: Yes.

Theorem (Phillips-1940)

The sequence space c_0 is not a complemented subspace of ℓ_{∞} .

Corollary

The twisted sum:

$$0 \longrightarrow c_0 \xrightarrow{inc} \ell_{\infty} \xrightarrow{q} \ell_{\infty}/c_0 \longrightarrow 0,$$

is not trivial, where inc denotes the inclusion map and q denotes the quotient map.

Theorem (Sobczyk–1941)

Every isomorphic copy of c_0 inside a separable Banach space is complemented.

Corollary

If X is a separable Banach space, then every twisted sum of c_0 and X is trivial.

Proof. Let Z be a Banach space such that:

$$0 \longrightarrow c_0 \longrightarrow Z \longrightarrow X \longrightarrow 0$$

is an exact sequence. In this case Z is separable and therefore this twisted sum is trivial.

Given a compact Hausdorff space K, we denote by C(K) the Banach space of continuous real-valued functions defined on K, endowed with the supremum norm.

Proposition

Let K be a compact Hausdorff space. The Banach space C(K) is separable if and only if K is metrizable.

Corollary (Corollary of Sobczyk's Theorem)

If K is a metrizable compact space, then every twisted sum of c_0 and C(K) is trivial.

Open Problem (Cabelo, Castillo, Kalton and Yost-2003)

Is there a nonmetrizable compact Hausdorff space K such that every twisted sum of c_0 and C(K) is trivial?

This problems remains open, but we are working on it!

A topological space is said to be scattered if every nonempty subspace has an isolated point with respect to the subspace topology.

Example

If Γ is a discrete topological space, then its one-point compactification $\Gamma \cup \{\infty\}$ is scattered.

Let \mathcal{X} be a topological space. We define by recursion on α a decreasing family of closed subsets of \mathcal{X} :

- $\mathcal{X}^{(0)} = \mathcal{X};$
- For every ordinal α, X^(α+1) = X^(α) \ ls(X^(α)), where ls(X^(α)) denotes the set of isolated points of X^(α);
- For every limit ordinal α , $\mathcal{X}^{(\alpha)} = \bigcap_{\beta \in \alpha} \mathcal{X}^{(\beta)}$.

The space $\mathcal{X}^{(\alpha)}$ is called the α^{th} Cantor–Bendixson derivative of \mathcal{X}

Example

If Γ is an infinite discrete topological space and \mathcal{X} is its one-point compactification, then $\mathcal{X}^{(1)} = \{\infty\}$ and $\mathcal{X}^{(2)} = \emptyset$.

Proposition

A topological space \mathcal{X} is scattered if and only if there exists an ordinal α such that $\mathcal{X}^{(\alpha)} = \emptyset$.

Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}^{(\alpha)} = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.

Theorem (Castillo, Top. Appl.–2016)

Assume CH. If K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and C(K).

Theorem (Marciszewski and Plebanek, JFA–2018)

Assume $MA+\neg$ CH. If K is a separable scattered compact space with height 3 and weight smaller than c, then every twisted sum of c_0 and C(K) is trivial.

Theorem (Correa and Tausk, Fund. Math.–2018)

Assume $MA+\neg$ CH. If K is a separable scattered compact space with finite height and weight smaller than c, then every twisted sum of c_0 and C(K) is trivial.

Corollary

It is consistent with ZFC the existence of a nonmetrizable compact Hausdorff space K such that every twisted sum of c_0 and C(K) is trivial.

Open Problem

Is there in ZFC a nonmetrizable compact Hausdorff space K such that every twisted sum of c_0 and C(K) is trivial?

Question

What happens, under MA+ \neg CH, if K is a finite height space with big weight, i.e., $w(K) \ge c$?

Theorem (Correa-2018)

Assume $MA+\neg$ CH. If K is a finite height compact space with $w(K) \ge c$, then there exists a nontrivial twisted sum of c_0 and C(K).

Open Problem

Does it hold in ZFC that if K is a finite height compact space with $w(K) \ge c$, then there exists a nontrivial twisted sum of c_0 and C(K)?

Question

What happens, under MA+ \neg CH, if K is a nonseparable scattered compact space with w(K) < c?

Theorem (Marciszewski and Plebanek, JFA-2018)

If K is a nonseparable scattered space with $w(K) = \omega_1$, then there exists a nontrivial twisted sum of c_0 and C(K).

Theorem (Correa–2018)

Assume $MA+\neg$ CH. If K is a nonseparable scattered space $w(K) < \mathfrak{c}$, then there exists a nontrivial twisted sum of c_0 and C(K).

J. M. Castillo.

Nonseparable c(k)-spaces can be twisted when k is a finite height compact.

Top. Appl., 198:107-116, 2016.

- F. Cabello, J. M Castillo, N. J. Kalton, and D. T. Yost. Twisted sums with c(k) spaces. *Trans. Amer. Math. Soc.*, 355 (11):4523–4541, 2003.
 - C. Correa.

Nontrivial twisted sums for finite height spaces under martin's axiom.

https://arxiv.org/abs/1808.00205, 2018.

C. Correa and D. V. Tausk. Local extension property for finite height spaces. *To appear in Fund. Math.*, 2018.

W. Marciszewski and G. Plebanek.

Extension operators and twisted sums of c_0 and c(k) spaces. J. Funct. Anal., 274 (5):1491-1529, 2018.