On the c_0 -extension property

Claudia Correa Universidade Federal do ABC – Brazil This research was partially supported by FAPESP grants 2018/09797-2 and 2019/08515-6

48th Winter School in Abstract Analysis, Svratka, Czech Republic, 11-18 January 2020

Question

Let X and Z be Banach spaces, Y be a closed subspace of X and T : $Y \rightarrow Z$ be a bounded operator. Does T admit a bounded and linear extension $\tilde{T} : X \rightarrow Z$?

Question

Let X and Z be Banach spaces, Y be a closed subspace of X and T : $Y \rightarrow Z$ be a bounded operator. Does T admit a bounded and linear extension $\tilde{T} : X \rightarrow Z$?

Answer: No.

Theorem (Phillips-1940)

The identity operator of c_0 does not admit a bounded and linear extension defined on ℓ_{∞} .

Theorem (Sobczyk–1941)

If X is a **separable** Banach space, then every c_0 -valued bounded operator defined on a closed subspace of X admits a bounded and linear extension defined on X.

Theorem (Sobczyk–1941)

If X is a **separable** Banach space, then every c_0 -valued bounded operator defined on a closed subspace of X admits a bounded and linear extension defined on X.

The heart of Sobczyk's theorem is the weak-star metrizability of the closed dual unit ball of the separable Banach space X.

Notation

Given a Banach space X, we write:

$$B_{X^*} = \{ \alpha \in X^* : \|\alpha\| \le 1 \}.$$

We denote by w^* the weak-star topology on X^* .

Notation

Given a Banach space X, we write:

$$B_{X^*} = \{ \alpha \in X^* : \|\alpha\| \le 1 \}.$$

We denote by w^* the weak-star topology on X^* .

Proposition

A Banach space X is separable if and only if B_{X^*} is w^* -metrizable.

We say that a Banach space X has the c_0 -extension property (c_0-EP) if every c_0 -valued bounded operator defined on a closed subspace of X admits a c_0 -valued bounded extension defined on X.

We say that a Banach space X has the c_0 -extension property (c_0-EP) if every c_0 -valued bounded operator defined on a closed subspace of X admits a c_0 -valued bounded extension defined on X.

Example

• Every separable Banach space has the c_0 -EP.

We say that a Banach space X has the c_0 -extension property (c_0-EP) if every c_0 -valued bounded operator defined on a closed subspace of X admits a c_0 -valued bounded extension defined on X.

Example

- Every separable Banach space has the c_0 -EP.
- The space ℓ_{∞} does not have the c_0 -EP.

We say that a Banach space X has the c_0 -extension property (c_0-EP) if every c_0 -valued bounded operator defined on a closed subspace of X admits a c_0 -valued bounded extension defined on X.

Example

- Every separable Banach space has the c_0 -EP.
- The space ℓ_∞ does not have the c_0 -EP.

Question

Is there a nonseparable Banach space with the c_0 -EP?

We say that a Banach space X has the c_0 -extension property (c_0-EP) if every c_0 -valued bounded operator defined on a closed subspace of X admits a c_0 -valued bounded extension defined on X.

Example

- Every separable Banach space has the c_0 -EP.
- The space ℓ_∞ does not have the c_0 -EP.

Question

Is there a nonseparable Banach space with the c_0 -EP?

Answer: Yes. Every Hilbert space has the c_0 -EP.

We say that a Banach space is weakly compactly generated (WCG) if it contains a weakly compact subset that is linearly dense.

We say that a Banach space is weakly compactly generated (WCG) if it contains a weakly compact subset that is linearly dense.

Proposition

• Every separable Banach space is WCG.

We say that a Banach space is weakly compactly generated (WCG) if it contains a weakly compact subset that is linearly dense.

Proposition

- Every separable Banach space is WCG.
- Every reflexive Banach space is WCG. Thus every Hilbert space is WCG.

We say that a Banach space is weakly compactly generated (WCG) if it contains a weakly compact subset that is linearly dense.

Proposition

- Every separable Banach space is WCG.
- Every reflexive Banach space is WCG. Thus every Hilbert space is WCG.
- $c_0(I)$ is WCG, for every set I.

We say that a Banach space is weakly compactly generated (WCG) if it contains a weakly compact subset that is linearly dense.

Proposition

- Every separable Banach space is WCG.
- Every reflexive Banach space is WCG. Thus every Hilbert space is WCG.
- $c_0(I)$ is WCG, for every set I.

Theorem

Every WCG Banach space has the c_0 -EP.

Tommaso Russo at the 47th Winter School

WLD spaces are amazing!!

Every WCG space is WLD.

We say that a Banach space X is weakly Lindelöf determined (WLD) if (B_{X^*}, w^*) is a Corson compactum.

We say that a Banach space X is weakly Lindelöf determined (WLD) if (B_{X^*}, w^*) is a Corson compactum.

Remark

Recall that a compact space is metrizable if and only if it embeds homeomorphically in \mathbb{R}^{ω} .

We say that a Banach space X is weakly Lindelöf determined (WLD) if (B_{X^*}, w^*) is a Corson compactum.

Remark

Recall that a compact space is metrizable if and only if it embeds homeomorphically in \mathbb{R}^{ω} .

Definition

We say that a compact space K is a **Corson compactum** if there exists a set I such that K embeds homeomorphically in

 $\Sigma(I) = \{f \in R^I : supp(f) \text{ is countable}\}.$

WLD Banach spaces

Proposition

Every WCG Banach space is WLD.

WLD Banach spaces

Proposition

Every WCG Banach space is WLD.

Theorem (Claudia-2019)

Every WLD Banach space has the c₀-EP.

WLD Banach spaces

Proposition

Every WCG Banach space is WLD.

Theorem (Claudia-2019)

Every WLD Banach space has the c₀-EP.

୬ ୯.୯ 25 / 58

The space $C[0, \omega_1]$ has the c_0 -EP.

The space $C[0, \omega_1]$ has the c_0 -EP.

Question

Is the space $C[0, \omega_1]$ WLD?

The space $C[0, \omega_1]$ has the c_0 -EP.

Question

Is the space $C[0, \omega_1]$ WLD?

Answer: No.

The space $C[0, \omega_1]$ has the c_0 -EP.

Question

Is the space $C[0, \omega_1]$ WLD?

Answer: No.

Question

What does the space $C[0, \omega_1]$ have in common with the WLD spaces?

The space $C[0, \omega_1]$ has the c_0 -EP.

Question

```
Is the space C[0, \omega_1] WLD?
```

Answer: No.

Question

What does the space $C[0, \omega_1]$ have in common with the WLD spaces?

Answer: If $X = C[0, \omega_1]$ or X is WLD, then (B_{X^*}, w^*) is monolithic.

We say that a compact and Hausdorff space K is monolithic if every closed and separable subspace of K is metrizable.

We say that a compact and Hausdorff space K is monolithic if every closed and separable subspace of K is metrizable.

Proposition

• Every Corson compactum is monolithic. Therefore, if X is WLD, then (B_{X*}, w^{*}) is monolithic.

We say that a compact and Hausdorff space K is monolithic if every closed and separable subspace of K is metrizable.

Proposition

- Every Corson compactum is monolithic. Therefore, if X is WLD, then (B_{X*}, w^{*}) is monolithic.
- (Claudia–2019) If $X = C[0, \omega_1]$, then (B_{X^*}, w^*) is monolithic.

We say that a compact and Hausdorff space K is monolithic if every closed and separable subspace of K is metrizable.

Proposition

• Every Corson compactum is monolithic. Therefore, if X is WLD, then (B_{X*}, w^{*}) is monolithic.

• (Claudia–2019) If $X = C[0, \omega_1]$, then (B_{X^*}, w^*) is monolithic.

Question

Let X be a Banach space. If (B_{X^*}, w^*) is monolithic, then X has the c_0 -EP?

Let X be a Banach space. If (B_{X^*}, w^*) is monolithic, then X has the c_0 -EP.

The amazing C(K) world

Open Problem

Let K be a compact and Hausdorff space. When $(B_{C(K)^*}, w^*)$ is monolithic?

Open Problem

Let K be a compact and Hausdorff space. When $(B_{C(K)^*}, w^*)$ is monolithic?

Remark

If $(B_{C(K)^*}, w^*)$ is monolithic, then K is monolithic.

Open Problem

Let K be a compact and Hausdorff space. When $(B_{C(K)^*}, w^*)$ is monolithic?

Remark

If $(B_{C(K)^*}, w^*)$ is monolithic, then K is monolithic.

Definition

We say that a compact and Hausdorff space K has Property (M) if every measure in M(K) has separable support.

If K is a monolithic compact space with Property (M), then $(B_{C(K)^*}, w^*)$ is monolithic.

If K is a monolithic compact space with Property (M), then $(B_{C(K)^*}, w^*)$ is monolithic.

Corollary

If K is a monolithic compact space with Property (M), then C(K) has the c_0 -EP.

If K is a monolithic compact space with Property (M), then $(B_{C(K)^*}, w^*)$ is monolithic.

Corollary

If K is a monolithic compact space with Property (M), then C(K) has the c_0 -EP.

Example

Every metrizable compact space has Property (M).

If K is a monolithic compact space with Property (M), then $(B_{C(K)^*}, w^*)$ is monolithic.

Corollary

If K is a monolithic compact space with Property (M), then C(K) has the c_0 -EP.

Example

- Every metrizable compact space has Property (M).
- Every Eberlein compactum has Property (M).

The amazing C(K) world

The amazing C(K) world

Theorem (Argyros, Mercourakis and Negrepontis-1988)

Assume $MA + \neg CH$. Every Corson compactum has Property (M).

Theorem (Argyros, Mercourakis and Negrepontis–1988)

Assume $MA + \neg CH$. Every Corson compactum has Property (M).

Corollary

Assume $MA + \neg CH$. If K is a Corson compactum, then C(K) has the c_0 -EP.

Theorem (Argyros, Mercourakis and Negrepontis–1988)

Assume $MA + \neg CH$. Every Corson compactum has Property (M).

Corollary

Assume $MA + \neg CH$. If K is a Corson compactum, then C(K) has the c_0 -EP.

Theorem (Argyros, Mercourakis and Negrepontis–1988)

Assume CH. There exists a Corson compactum without Property (M).

If K is the Corson compact space built by Argyros, Mercourakis and Negrepontis under CH, then C(K) does not have the c_0 -EP.

If K is the Corson compact space built by Argyros, Mercourakis and Negrepontis under CH, then C(K) does not have the c_0 -EP.

Sketch of the proof:

• C(K) contains an isomorphic copy of $\ell_1(\omega_1)$.

If K is the Corson compact space built by Argyros, Mercourakis and Negrepontis under CH, then C(K) does not have the c_0 -EP.

Sketch of the proof:

- C(K) contains an isomorphic copy of $\ell_1(\omega_1)$.
- (Claudia–2019) $\ell_1(\omega_1)$ does not have the c_0 -EP.

If K is the Corson compact space built by Argyros, Mercourakis and Negrepontis under CH, then C(K) does not have the c_0 -EP.

Sketch of the proof:

- C(K) contains an isomorphic copy of $\ell_1(\omega_1)$.
- (Claudia–2019) $\ell_1(\omega_1)$ does not have the c_0 -EP.
- The c_0 -EP is hereditary for closed subspaces.

If K is the Corson compact space built by Argyros, Mercourakis and Negrepontis under CH, then C(K) does not have the c_0 -EP.

Sketch of the proof:

- C(K) contains an isomorphic copy of $\ell_1(\omega_1)$.
- (Claudia–2019) $\ell_1(\omega_1)$ does not have the c_0 -EP.
- The c_0 -EP is hereditary for closed subspaces.

Corollary

The existence of a Corson compactum K such that C(K) does not have the c_0 -EP is independent from the axioms of ZFC.

Proposition

Every scattered compact space has Property (M).

Proposition

Every scattered compact space has Property (M).

Corollary

If K is a monolithic scattered compact space, then C(K) has the c_0 -EP.

Proposition

Every scattered compact space has Property (M).

Corollary

If K is a monolithic scattered compact space, then C(K) has the c_0 -EP.

Open Problem

If K is a scattered compact space such that C(K) has the c_0 -EP, then K is monolithic?

Let K be a scattered compact space with height at most $\omega + 1$. If C(K) has the c_0 -EP, then K is monolithic.

A. Argyros, S. Mercourakis, and S. Negrepontis. Functional-analytic properties of corson-compact spaces. Studia Math., 89:197–229, 1988.

C. Correa.

On the *c*₀-extension property. *https://arxiv.org/pdf/1912.08564.pdf*.

C. Correa and D. V. Tausk.
Compact lines and the sobczyk property.
J. Func. Anal., 266 (9):5765–5778, 2014.