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Sobczyk’s theorem

Question
Let X and Z be Banach spaces, Y be a closed subspace of X and
T : Y → Z be a bounded operator. Does T admit a bounded and
linear extension T̃ : X → Z?

X

∃T̃?

��
Y
?�

OO

T // Z

Answer: No.
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Sobczyk’s theorem

Theorem (Phillips–1940)

The identity operator of c0 does not admit a bounded and linear
extension defined on `∞.

`∞

c0
?�

OO

Id // c0

4 / 58



Sobczyk’s theorem

Theorem (Sobczyk–1941)

If X is a separable Banach space, then every c0-valued bounded
operator defined on a closed subspace of X admits a bounded and
linear extension defined on X .

X

∃T̃

��
Y
?�

OO

∀T // c0

The heart of Sobczyk’s theorem is the weak-star metrizability of
the closed dual unit ball of the separable Banach space X .

5 / 58



Sobczyk’s theorem

Theorem (Sobczyk–1941)

If X is a separable Banach space, then every c0-valued bounded
operator defined on a closed subspace of X admits a bounded and
linear extension defined on X .

X

∃T̃

��
Y
?�

OO

∀T // c0

The heart of Sobczyk’s theorem is the weak-star metrizability of
the closed dual unit ball of the separable Banach space X .

6 / 58



Sobczyk’s theorem

Notation
Given a Banach space X , we write:

BX∗ = {α ∈ X ∗ : ‖α‖ ≤ 1}.

We denote by w∗ the weak-star topology on X ∗.

Proposition
A Banach space X is separable if and only if BX∗ is w∗-metrizable.
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The c0-extension property

Definition (Claudia and Daniel–2014)

We say that a Banach space X has the c0-extension property
(c0-EP) if every c0-valued bounded operator defined on a closed
subspace of X admits a c0-valued bounded extension defined on X .

Example
Every separable Banach space has the c0-EP.
The space `∞ does not have the c0-EP.

Question
Is there a nonseparable Banach space with the c0-EP?

Answer: Yes. Every Hilbert space has the c0-EP.

9 / 58



The c0-extension property

Definition (Claudia and Daniel–2014)

We say that a Banach space X has the c0-extension property
(c0-EP) if every c0-valued bounded operator defined on a closed
subspace of X admits a c0-valued bounded extension defined on X .

Example
Every separable Banach space has the c0-EP.

The space `∞ does not have the c0-EP.

Question
Is there a nonseparable Banach space with the c0-EP?

Answer: Yes. Every Hilbert space has the c0-EP.

10 / 58



The c0-extension property

Definition (Claudia and Daniel–2014)

We say that a Banach space X has the c0-extension property
(c0-EP) if every c0-valued bounded operator defined on a closed
subspace of X admits a c0-valued bounded extension defined on X .

Example
Every separable Banach space has the c0-EP.
The space `∞ does not have the c0-EP.

Question
Is there a nonseparable Banach space with the c0-EP?

Answer: Yes. Every Hilbert space has the c0-EP.

11 / 58



The c0-extension property

Definition (Claudia and Daniel–2014)

We say that a Banach space X has the c0-extension property
(c0-EP) if every c0-valued bounded operator defined on a closed
subspace of X admits a c0-valued bounded extension defined on X .

Example
Every separable Banach space has the c0-EP.
The space `∞ does not have the c0-EP.

Question
Is there a nonseparable Banach space with the c0-EP?

Answer: Yes. Every Hilbert space has the c0-EP.

12 / 58



The c0-extension property

Definition (Claudia and Daniel–2014)

We say that a Banach space X has the c0-extension property
(c0-EP) if every c0-valued bounded operator defined on a closed
subspace of X admits a c0-valued bounded extension defined on X .

Example
Every separable Banach space has the c0-EP.
The space `∞ does not have the c0-EP.

Question
Is there a nonseparable Banach space with the c0-EP?

Answer: Yes. Every Hilbert space has the c0-EP.

13 / 58



WCG Banach spaces

Definition
We say that a Banach space is weakly compactly generated
(WCG) if it contains a weakly compact subset that is linearly dense.

Proposition
Every separable Banach space is WCG.
Every reflexive Banach space is WCG. Thus every Hilbert
space is WCG.
c0(I ) is WCG, for every set I .

Theorem
Every WCG Banach space has the c0-EP.
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Tommaso Russo at the 47th Winter School
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WLD Banach spaces

Definition
We say that a Banach space X is weakly Lindelöf determined
(WLD) if (BX∗ ,w∗) is a Corson compactum.

Remark
Recall that a compact space is metrizable if and only if it embeds
homeomorphically in Rω.

Definition
We say that a compact space K is a Corson compactum if there
exists a set I such that K embeds homeomorphically in

Σ(I ) = {f ∈ R I : supp(f ) is countable}.
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WLD Banach spaces

Proposition
Every WCG Banach space is WLD.

Theorem (Claudia–2019)

Every WLD Banach space has the c0-EP.
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Going beyond WLD spaces

Proposition (Claudia and Daniel–2014)

The space C [0, ω1] has the c0-EP.

Question
Is the space C [0, ω1] WLD?

Answer: No.

Question
What does the space C [0, ω1] have in common with the WLD
spaces?

Answer: If X = C [0, ω1] or X is WLD, then (BX∗ ,w∗) is
monolithic.
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Going beyond WLD spaces

Definition
We say that a compact and Hausdorff space K is monolithic if
every closed and separable subspace of K is metrizable.

Proposition
Every Corson compactum is monolithic. Therefore, if X is
WLD, then (BX∗ ,w∗) is monolithic.

(Claudia–2019) If X = C [0, ω1], then (BX∗ ,w∗) is monolithic.

Question
Let X be a Banach space. If (BX∗ ,w∗) is monolithic, then X has
the c0-EP?
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Going beyond WLD spaces

Theorem (Claudia–2019)

Let X be a Banach space. If (BX∗ ,w∗) is monolithic, then X has
the c0-EP.
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The amazing C (K ) world

Open Problem

Let K be a compact and Hausdorff space. When
(
BC(K)∗ ,w

∗) is
monolithic?

Remark

If
(
BC(K)∗ ,w

∗) is monolithic, then K is monolithic.

Definition
We say that a compact and Hausdorff space K has Property (M)
if every measure in M(K ) has separable support.
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The amazing C (K ) world

Proposition (Claudia–2019)

If K is a monolithic compact space with Property (M), then(
BC(K)∗ ,w

∗) is monolithic.

Corollary

If K is a monolithic compact space with Property (M), then C (K )
has the c0-EP.

Example

Every metrizable compact space has Property (M).
Every Eberlein compactum has Property (M).
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The amazing C (K ) world

Question
If K is a Corson compactum, then C (K ) has the c0-EP?
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The amazing C (K ) world

Theorem (Argyros, Mercourakis and Negrepontis–1988)

Assume MA + ¬CH. Every Corson compactum has Property (M).

Corollary

Assume MA + ¬CH. If K is a Corson compactum, then C (K ) has
the c0-EP.

Theorem (Argyros, Mercourakis and Negrepontis–1988)

Assume CH. There exists a Corson compactum without Property
(M).
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The amazing C (K ) world

Theorem (Claudia–2019)

If K is the Corson compact space built by Argyros, Mercourakis
and Negrepontis under CH, then C (K ) does not have the c0-EP.

Sketch of the proof:
C (K ) contains an isomorphic copy of `1(ω1).
(Claudia–2019) `1(ω1) does not have the c0-EP.
The c0-EP is hereditary for closed subspaces.

Corollary

The existence of a Corson compactum K such that C (K ) does not
have the c0-EP is independent from the axioms of ZFC .
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Scattered spaces

Proposition

Every scattered compact space has Property (M).

Corollary

If K is a monolithic scattered compact space, then C (K ) has the
c0-EP.

Open Problem

If K is a scattered compact space such that C (K ) has the c0-EP,
then K is monolithic?
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Scattered spaces

Theorem (Claudia–2019)

Let K be a scattered compact space with height at most ω + 1. If
C (K ) has the c0-EP, then K is monolithic.
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