
XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

Blind Deconvolution of Correlated Sources Based

on Second-Order Statistics
Denis G. Fantinato, Romis Attux, Aline Neves, R. Suyama and J.M.T. Romano

Abstract— The blind deconvolution of signals composed of
statistically dependent samples is an important practical problem
whose understanding still requires the clarification of many
theoretical points. In this work, we present an analysis of
this problem that includes two well-established methods - the
canonical constant modulus algorithm (CMA) and a correntropy-
based method - and two novel strategies that explore the temporal
profile of the signal of interest. These techniques are compared
in a number of representative scenarios, where it will be possible
to form a clearer view of their potentialities and also of some
peculiarities of the problem itself.

Keywords— Blind deconvolution, correlated sources, corren-
tropy, constant modulus criterion.

I. INTRODUCTION

The task of blind deconvolution (or equalization) has re-

ceived a great deal of attention in the last decades [1]-[4]. From

the perspective of digital communications, this interest can be

justified by the fact that the operation of blind equalizers does

not depend on the use of a reference signal, which is beneficial

in terms of the achievable transmission rate.

Several methods and fundamental theoretical results helped

establish the field of unsupervised signal processing [1], in

which we highlight the constant modulus (CM) criterion [2].

The CM approach has been the object of several investigations

in the context of a transmitted signal composed of mutually

independent sources, but, in spite of efforts like [3][4], its

behavior for non-independent sources still demands significant

clarification. It should be mentioned that sources of the latter

kind are practically important in view of the potential appli-

cation of different types of codes before signal transmission

or of the use of the CMA for handling analog discrete-time

signal processing (e.g. in audio-related scenarios).

Having in mind the peculiarities of blind deconvolution of

non-independent signals, in [5], a method was proposed that

takes into account the time structure of the source of interest.

This is achieved by making use of a metric belonging to the

field of information theoretic learning (ITL): the correntropy.

As the name indicates, the metric is an attempt to generalize

the concept of correlation towards the inclusion of a richer

palette of statistical properties of the signal of interest.

The use of correntropy in blind deconvolution was a sig-

nificant step in the direction of a better understanding of
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the problem under non-independent signals, but there remain

plenty of unanswered questions regarding the behavior of

classical approaches within this formulation. Some of these

questions were addressed in [6], which presents elements

of comparison between the CM algorithm (CMA) and the

correntropy-based method. In this work, however, a further

step is taken with the aid of two novel criteria that, aside from

their intrinsic relevance, serve as bridges to relate the CMA

to the ITL solution. These are a modification of the Multiuser

CMA (MU-CMA) [7] and a criterion based on the restoration

of the source correlation profile. The associated algorithms will

serve as comparative performance tools, which will bring to

the fore the crucial trade-off between reachable performance

and complexity.

This paper is organized as follows. A brief definition of

the CM criterion and the correntropy-based method [5] are

presented in Section II. In Section III, we present the mod-

ified version of the MU-CMA, followed by the definition of

the source correlation profile restoration criterion in Section

IV. The connections between the presented algorithms are

explored in Section V. For a better understanding, an error

surface analysis for a correlated and an uncorrelated case is

shown in Section VI. In Section VII, a performance analysis

is conducted for two representative scenarios. Finally, the con-

clusions and the possibilities for further work are summarized

in Section VIII.

II. BLIND EQUALIZATION CRITERIA

In this section, we will discuss in more detail the two criteria

that will serve as examples of blind strategies: the CM criterion

and the correntropy-based criterion [5].

A. Constant Modulus Criterion

The CM criterion is based on the idea of penalizing devi-

ations of a quadratic version of y(n) from a fixed constant

R2. It can be defined by means of the minimization of a cost

function, as follows:

min
w

JCM (w)) = min
w

E
[

(

|y(n)|2 −R2

)2
]

, (1)

where E[·] denotes statistical expectation, w is the finite

impulse response (FIR) equalizer coefficient vector, y(n) is

the equalizer output signal, R2 = E
[

|s(n)|4
]

/E
[

|s(n)|2
]

and

s(n) is the transmitted signal. It is important to remark that this

proposal was made under the assumption that the transmitted

signal is composed of independent and identically distributed

(i.i.d.) samples, i.e., non-dependent sources. When dealing

with dependent data, previous efforts [3][4] revealed that, in
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certain scenarios, the CM cost function gives rise to global

optima that are inadequate in terms of channel inversion.

B. Correntropy-based Criterion

The generalized correlation function proposed in [5] is

an attractive concept, since it brings together two interest-

ing features: first, the possibility of taking into account the

time structure of signals and, second, the use of statistical

information in an extensive manner by encompassing methods

derived from ITL, e.g., the kernel estimators, which effec-

tively allows the use of higher-order statistics (HOS). This

correlation function or, simply, correntropy, can be defined as

Vy(m) = E [Kσ(y(n)− y(n−m))] or estimated through the

sample mean:

V̂y(m) =
1

N −m+ 1

N
∑

n=m

Kσ (y(n)− y(n−m)) , (2)

where Kσ(·) denotes a kernel function, σ is the kernel size, N
is the size of the data window used to estimate correntropy and

m is the lag being considered. As stated in [5], it is possible

to perform blind equalization for temporally-dependent data

by imposing a matching between source and equalizer output

correntropies, which gives shape to the following criterion:

min
w

Jcorr(w) = min
w

P
∑

m=1

(Vs(m)− Vy(m))
2
, (3)

where Vs(·) and Vy(·) are the correntropies of the source s(n)
and the equalizer output y(n), respectively, and P is the largest

considered lag.

Since the CM criterion, Eq. (1), does not explicitly promote

the recovery of the source correlation profile, the correntropy

criterion (3) presents advantages in non-i.i.d. scenarios. This

duality raised a possibility that will be investigated in this

work - to incorporate elements of the data sample dependence

profile to the CM criterion. This will be done in two ways,

the first of which is to modify the MU-CMA [7] algorithm,

originally proposed as a technique for performing multiuser

detection.

III. MODIFIED MU-CMA

Although originally proposed to perform space-time equal-

ization in the context of wireless communications [1], the MU-

CMA can be a model to create an algorithm capable of dealing

with signals composed of dependent samples. Basically, the

cost function of the novel method is composed of a canonical

“CM-like term” and a cross-correlation term, which penalizes

deviations from the source time signature, which must be

known a priori. Thus, the modified MU-CM criterion, here

denoted as MMU-CM, can be defined as:

min
w

JMMU-CM(w) =min
w

E
[

(

|y(n)|2 −R2

)2
]

+ ρ

P
∑

m=0

(Ry(m)−Rs(m))
2
,

(4)

where Ry(m) and Rs(m) are the autocorrelation functions of

the signals y(n) and s(n), respectively, and ρ is the weight

of the correlation term with respect to the CM term. The

adaptation of the equalizer coefficients can be done through the

use of a stochastic steepest descent approach, in which we will

consider an N -sample window, with N ≥ P , and real-valued

signals, resulting in the MMU-CM algorithm (MMU-CMA):

w(n+ 1) = w(n)− µ (∆CM + ρ∆R) , (5)

where

∆CM =
1

N

n+N−1
∑

i=n

(

|y(i)|2 −R2

)

x(i)y(i);

∆R =

P
∑

m=0

(Ry(m)−Rs(m))
1

N −m

×
n
∑

j=n−N+m+1

(x(j)y(j −m) + x(j −m)y(j)) ;

Ry(m) =
1

N −m

n
∑

k=n−N+m+1

y(k)y(k −m).

IV. CORRELATION RETRIEVAL CRITERION

A closer look at the criterion defined in (4) reveals that its

second term alone is able, in principle, to capture the entire

correlation profile of the signal of interest. Hence, we propose

a simplified criterion, which will be denoted as Correlation

Retrieval (CR):

min
w

JCR(w) = min
w

P
∑

m=0

(Ry(m)−Rs(m))
2
. (6)

This cost function has a striking similarity with the

correntropy-based approach [5], except for the fact that it

depends exclusively on second-order statistics to characterize

the temporal dependence of samples (though these statistics

are squared). Hence, it can serve as an interesting counterpoint

to correntropy-based solutions. In a manner similar to that

used for the MMU-CMA, the CR algorithm (CRA) can be

mathematically described as follows:

w(n+ 1) = w(n)− µ∆R, (7)

where the parameters are the same as those presented in (5).

The proposed MMU-CMA and CRA, in addition to being

closely related, establish points of contact with the CM and

correntropy-based criteria, as we will see in the next section.

V. POINTS OF CONTACT

The proposed MMU-CMA and CRA can provide a gradual

interconnection relating the other two mentioned methods in

terms of their cost functions, which will prove useful to clarify

their performance potential, as we present bellow.

We start by analyzing the CM (1), MMU-CM (4) and CR

(6) criteria. It is clear that their relationship mirrors their

origins: the first term of MMU-CM is naturally related to

the CM criterion, while the second term to the CR criteria.

However, if we compare the CM criterion to the CR (or,

alternatively, the second-term of MMU-CM), they seem to be

slightly different, but, to a certain degree, both of them make
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use of the second-order statistics with respect to the equalizer

output y(n). Taking a closer look, if we assume P=0 and

the instantaneous estimate Ry(0) ≈ y(n)y∗(n) = |y(n)|2 to

be employed in the CR criterion, the resulting cost function

is exactly the same as that of CM, except for the constants

R2 and Rs(0). This brief analysis prompts us to state that

these cost functions must be similar, albeit they will not have

coincident minima, because Rs(0) is, in general, not equal to

R2. In summary, we can see that the three aforementioned

cost functions are related by the following expression:

JMMU−CM (w) = JCM (w) + ρJCR(w) (8)

Considering that the optimal solutions of JCM and JCR will

not be coincident, the setting of the parameter ρ will be

crucial to the balance of MMU-CM. A possible choice for ρ
is 1/(2P+2), which equally weighs the JCM and JCR terms,

resulting in “intermediate solutions” for MMU-CM.

Interestingly, a useful relationship concerning the

correntropy-based cost function can also be derived. If

we consider a Gaussian kernel function, the second-order

Taylor series expansion around zero can be expressed as:

Vy(m) ≈ 1√
2πσ

(

1− 1

σ2

(

σ2
y(n) −Ry(m)

)

)

(9)

where σ2
y(n) is the variance of y(n), which was considered

here to be equal to σ2
y(n−m) for the sake of simplification.

The constant multiplicative term 1/(
√
2πσ) does not affect the

minimization problem given by Eq. (3), and, moreover, σ2
y(n)

is only an energy correction term that constrains the output

amplitude. Hence, it is possible to express Vy(m) ≈ −Ry(m)
and, analogously, Vs(m) ≈ −Rs(m). Using these approxima-

tions in Eq. (3), the resulting cost function is identical to that

of CR approach (or to the second term of Eq. (4)). Again, these

similarities indicate a relationship between the cost functions,

but their points of minima are not necessarily the same. This

will become clearer in next section.

VI. ERROR SURFACE ANALYSIS

In order to study the error surfaces, we assume the equalizer

to be a two-tap filter and two distinct scenarios, characterized

by signals with and without dependent samples.

A. Dependent Sources

In this scenario, the source is originally composed by

+1/−1 i.i.d. samples and its dependence is generated by

a maximum-phase precoder with transfer function P (z) =
1+1.5z−1. The channel is a minimum-phase system assumed

to be H(z) = 1+0.6z−1. The chosen parameters were ρ=10
for MMU-CM; P=3 for MMU-CM, CR and correntropy; and

a Gaussian kernel with σ=5. In all criteria, a batch approach

was used with N=40000.

In Fig. 1, we present the contours of the CM and the CR

cost functions, which reveals some similarities between them,

like shape and number of minima - denoted by a plus sign

“+” for the CM cost and by a “∗” for the CR cost -, which

is in consonance with the analysis exposed in Section V. As

expected, their minima do not coincide, since R2 6= Rs(0).

w
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w
1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
∗  J

CR

+  J
CM

CM Global
Minima

CR Global
Minimum

CR Global
Minimum

CR Local
Minimum

CR Local
Minimum

CM Local
Minima

Fig. 1. CM and CR cost function comparison for correlated sources.

w
0

w
1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
∗  J

CR

+  J
Correntropy

Global
Minima

Local
Minima

Fig. 2. CR and Correntropy-based cost function comparison for correlated
sources.

However, surprisingly, the CM local minima positions are

next to CR global minima and vice versa. To understand this,

we should consider that other m lags of Ry(m) are used

and contribute to the development of the CR global minima,

which are able, in this case, to restore the source correlation

profile - which is generated by a maximum-phase system, in

contrast with the minimum-phase channel. It is also possible

to associate all the minima of both CM and CR cost functions

to the mean squared error (MSE) solutions for the non-trivial

delays of the transmitted signal. While the CM local minima

and the CR global minima are associated with the optimum

source delay, the CM global minima and the CR local minima

are associated with a sub-optimal source delay. For the MMU-

CR criteria, it suffices to say that the position of the global

minima will depend on ρ. If we consider ρ > 1/(2P+2),
the global minima will be located between the correspondent

global minima of CR and the local minima of CM.

To investigate the relationship between the CR and the
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correntropy-based criteria, we present the contours for their

cost functions in Fig. 2. The number of minima is the same

and, differently from the CM, their global minima are close,

but, on the other hand, their cost functions present a remark-

ably different shape, which shows us that the approximation

Vy(m) ≈ −Ry(m) is limited for the situation at hand, being

the higher-order even moments non-negligible in view of the

nongaussianity of the involved signals.

TABLE I

RESIDUAL ISI CONSIDERING GLOBAL CONVERGENCE.

ISI[dB]

Source CMA MMU-CMA CRA Correntropy

Precoded −1.5694 −9.2963 −10.0467 −10.0023

i.i.d. −10.2084 −10.2080 −0.1257 0.2378

These visual analyses cast additional light on the relation-

ship between the focused criteria, but in terms of performance,

not much can be straightforwardly inferred. To circumvent

this limitation, we show, in Tab. I the residual intersymbol

interference (ISI) of the two-tap filter when the algorithms

converge to their respective global minima. As expected, the

CMA is not able to recover the source correlation profile,

performing poorer, while the CRA and the correntropy-based

method achieve almost the same level of ISI. The MMU-CMA

presents a slight deviation in its global minima with respect to

the CRA due to the role of the chosen ρ, implying in a worse

performance.

B. Independent Sources

We now analyze the error surfaces for a scenario in which

the CM criterion is known to perform well: the case of i.i.d.

sources. Considering the same channel of the previous case

- without the use of a precoder -, we present the contours

of the CM and the CR cost functions in Fig. 3. Similarly to

the correlated case, the global minima of the CM are close

to the CR local minima; however, they are now in opposite

positions, i.e., the minima that most satisfactorily invert the

channel are the global minima of the CM. This implies that

the CR global minima are not the most adequate solutions

in this case. Another interesting point is the greater distance

between the CM local minima and the CR global minima.

As in the correlated case, both of the minima are associated

with MSE solutions for suboptimal delays, but, while the CM

implicitly aims at “more independent” output signals, the CR

tends to focus on “more dependent” ones, which results in

different reference delays and minima positions. This gives

rise to multiple local minima in the MMU-CM function, but

a more defined global minima for ρ = 1/(2P+2).
Regarding the correntropy-based cost function, it suffices

to say that its minima are very close to the correspondent

CR minima, in a similar way to Fig. 2. The ISI performances

associated with the two-tap global minima of the algorithms

are given in Tab. I. As expected, the CM global solution

presents the best performance of all.

VII. PERFORMANCE ANALYSIS

The study of two-dimensional filters in the previous section

is both simple and clarifying. Real-world tasks may, nonethe-
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less, be associated with more complex channels / equalizers,

which raises the question of how general are the conclusions

drawn so far in these challenging scenarios. In the following,

we will provide the reader with elements of the answer to this

question by analyzing two higher-dimensional cases.

In first scenario, we consider the source generated

by a duobinary signal submitted to a linear precoder

P (z) = 1 + z−1 or, in vector notation, P (z) =
[1, 1]. The signal is distorted by the model of a

telephone channel [5] with vector notation H(z) =
[0.04,−0.05, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07].
White Gaussian noise is added to the distorted signal, being the

SNR equal to 25 dB. We employ a 21-tap equalizer initialized

with the center-spike method. The chosen parameters

are µCMA=1e−4, µMMU-CMA=6e−5, ρ=5, µCRA=8e−5,

µcorr=6e−3; for the MMU-CMA, CRA and correntropy,

P=3 and N=10, so that the variance of their respective

equalizer coefficients were similar after convergence. The

Gaussian kernel size is calculated in each iteration as the

standard deviation of the equalizer output σ = std(y). The

performances in terms of ISI are illustrated in Fig. 4 for an

average of 50 simulations. For this example, it is possible

to see that all algorithms seem to converge to suboptimal

solutions, given their elevated levels of ISI. However, CRA

and the correntropy-based method present better performance

and faster convergence, while the CMA is completely unable

to capture the correlation profile of the source. The MMU-

CMA probably converges to a minimum close to that of the

CMA, but there is a deviation caused by the choice of ρ.

For the second case, we consider an alternate mark inversion

(AMI) source drawn from the alphabet [−1, 0, 1], an IIR chan-

nel H(z) = 1/(1−0.5z−1) from [5] and an impulsive additive

noise to test the robustness of the algorithms against outliers.

The noise is generated according to the Gaussian mixture

model presented in [5], with ǫ=0.05, σ2
1 = 1000σ2

2 and

σ2 = 0.0114 (equivalent to a 20 dB SNR). The step-sizes were

µCMA=0.01, µMMU-CMA=1e−3, µCRA=5e−3, µcorr=0.08, and

the other parameters were ρ=15, P=4, N=10 and σ=std(y),
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with the exception of the correntropy-based method, whose

data window needed to be larger, with Ncorr=100, in order

to provide more adequate estimates. We considered a 3-

tap equalizer initialized with the center-spike method. Fig.

5 displays the ISI curves obtained for this case. Again, the

CMA and MMU-CMA presented a worse performance due to

suboptimal convergence, being the impulsive noise a likely

factor underlying this behavior. On the other hand, CRA

and the correntropy-based algorithm achieved a satisfactory

performance in inverting the channel. Interestingly, in terms of

convergence, the CRA is quite slow, which can be explained,

basically, by two main aspects. First, the presence of impulsive

noise degrades its performance, but the use of the data window

minimizes its effect. Second, the presence of poles in the

IIR channel represents additional difficulties for the CRA to

correct the source correlation profile only with second-order

statistics. In contrast, correntropy is able to deal satisfactorily

with these scenarios through the use of HOS and exhibits

fast convergence. However, a sufficiently large data window is

necessary to provide good estimates, enhancing the required

computational complexity. It should be said that, in spite of the

slower convergence, the CRA achieved the lowest ISI level.

VIII. CONCLUSIONS

In this work, in order to build a clearer view of the problem

of blind deconvolution of dependent sources (signals), we have

proposed two new unsupervised algorithms: the MMU-CMA

and the CRA. These methods are useful to establish points of

contact between the classical CMA and ITL methods like the

state-of-the-art correntropy-based algorithm. These points of

contact include equivalences and differences present in their

cost functions. It has been shown that the CM does not lead

to solutions capable of proper channel inversion when the

signal of interest is composed of dependent samples, whereas

the CRA and the correntropy-based algorithm can perform

well, since they consider the time structure of the signals. It

is also detailed that the opposite situation is founded when

the scenario is characterized by the existence of independent

sources. The MMU-CMA is a sort of middle-term solution

between the CMA and the CRA, since it is a combination of

both of them, but its performance will depend on the setting

of the parameter ρ.

The performances of these criteria were analyzed in terms of

ISI, which showed that the CRA can serve as an alternative to

the correntropy-based methods, since their solutions are rela-

tively close. However, the correntropy-based method presented

greater robustness and faster convergence to impulsive noise

and larger channels at the cost of the need for a larger data win-

dow and, therefore, a higher computational cost. The proposed

CRA remains an interesting option due to its simplicity and

satisfactory convergence to low ISI levels, even outperforming,

in some cases, the correntropy-based algorithm.

In the near future, we intend to seek more elements of

comparison between methods for practical scenarios. Another

possibility is to explore the connections with BSS methods.
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