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Abstract — This article introduces a blind equalization methlody based on a cascade of two-tap finite impulse
response filters globally optimal with respect t@ tconstant modulus (CM) criterion. It is shown tlaat
formulation of the CM cost function in terms of a anesquared error (MSE) metric and of Volterra-like
constraints allow the optimization process to heied out, when two parameters are to be adaptid,the aid

of a one-dimensional search process that suite quéll an exhaustive framework. The proposal wil b
compared to a similar cascade of two-tap Wienertgwls and also with conventional Wiener filters.
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This work is dedicated to those who have beengfart _ 2 *
the first 15 years of existence of the Laboratg);y 0 w(n+1)—w(n)—u0y(n)| —Rz)y(n)x ™ (2)
Signal Processing for Communications (DSPCOM). X
where | is the step-size anddenotes complex
“Vous avez confirmé dans ces lieux pleins d’ennui  Conjugation.
Ce que Newton connut sans sortir de chez lui”
Voltaire The CM cost function typically possesses global
and local minima, as well as saddle points and a
1. Introduction local maximum [4][5]. Therefore, depending on
the chosen initial condition, the CMA may
The constant modulus algorithm (CMA) - theconverge towards local minima, which means
origin of which is associated with the classicalhat the potential performance achievable by the
works of [1] and [2] — is arguably the mostfiltering structure will not be actualized.
thoroughly analyzed member of the class of
Bussgang algorithms. This interest can bW this work, we propose a method to
justified in theoretical terms — in view, forconstructively build a blind equalizer as a
instance, of points of contact with kurtosis-baseeascade of two-tap filters that are globally
unsupervised methods [3] — and also from theptimized using a one-dimensional line search
standpoint of practical applicability. procedure in the context of a formulation of the
CM cost function proposed in [6]. The idea of
The CMA is a stochastic version of the steepetiie method is to present an unsupervised design
descent method when the latter is applied to tfeamework for which there would be a guarantee
task of minimizing the following cost function of optimality with respect to the obtained
[4]: solution without the need for resorting to
multidimensional exhaustive search. The method
_ 2 2 will be compared with an analogous cascade of
Jou (W) = El( (I ~-Ry)°] (1) two-tap equlc;lizers and a convegntional structure
o _ optimized in accordance with the Wiener
where E[.] denotes statistical expectatioR, = ¢riterion.
Ell () [*1/Ell s(n)[?], y(n) is the equalizer
output ands(n) is the transmitted sequence2. Formulation of the CM Ciriterion

Assuming that the equalizer is a finite impulseUsing Quadratic Constraints
response (FIR) filter, the algorithm update

expression is: Consider that the transmitted signal is composed



of binary (+1 / -1) samples and that all systems the possible values of, this rather laborious
be dealt with are composed exclusively of reakourse will not be followed here. Rather, a line
valued parameters. In this case, if a two-tapearch procedure will be used to obtain the
equalizer is employed, it is possible to rewrite thvalues ofl that allow the conditiodcs(8) = 0 to

term |y(n) in (1) as: hold. This is interesting, as the two-dimensional
task of finding the global minimum of the CM
| y(n)|>= y?(n) = w;x?(n) cost function becomes a one-dimensional search

®3) problem, which can be solved by brute force
methods in a more economical way. The analysis
, %)rf the global character of the obtained solutions
o _ which will include minima and saddle points)
\1\’)']'[? mgut vecto;g‘(n) _tg(n)[é)((zl)xé(?z?;l) [ﬁ(n; will be done by directly estimating the value of
and parameter vectar = =Moo g sing the received dagn).
2wew; wWi?". If this is the case, one may use(9) using Ived datgn)

reinterpret (1) as a mean squared error (MSB)o hossipility of ensuring that global minima be
criterion with a constant reference sigridl:= 1. Jpiiined  with a relatively  parsimonious

This is_ th? stgrting point of a formulation of _theoptimization method insinuates the possibility of
CM criterion in terms of an MSE cost funCt'OnbuiIding an equalizer as a cascade of two-tap
subject to Volterra-like constr_ai_nts. This i_dea i\%,-qualizers that correspond to global CM optimal.
outlined in [7], but took a definite shape in [6].t,5 \aiidity of this idea will be analyzed in the
Later, works like [8] and [9] analyzed the effect§yoing, based on comparisons with Wiener

of relaxing the aforementioned constraintsyy wions in both canonical and cascade forms.
which led to a lower bound for the CM cost

function.

+ 2w, W X x(n—1) + w/x*(n-1)

3. Results

To summarize this discussion, for the two-ta

case. the CM criterion can be written as: ?n order to find the global minima of the CM cost

function, we must proceed, basically, according

_ _ ) to three steps: first, it is necessary to estirttage

min Jyse(8) =min E[(v(n) = R,)"] @) correlation matrixR and the cross-correlation
st. 62 =46,6, vectorp in the Volterra domain; the second step

corresponds to finding the desired valuel odnd

the last step amounts to obtaining the constrained

where u(n) = 8'&n). Using the method of . ) . .
Lagrange multipliers, the optimal solution iSsolutlon that leads to the optimal choice ¥oin

shown to be that satisfying: terms of the CM cost.

The above defined first step is straightforward,
5 sinceR andp can be easily estimated using a
(5) sample mean. A more elaborate discussion is
demanded by the procedure concerning the

2 _ solution for the Lagrange multiplied. The
whereJcs(8) = 0," - 4958, and A is the Lagrange gnnroach followed in this work is based in a

multiplier. Equation (4) and the essential resul : . :
of WFi)ener f?ltering t(ht)eory [10] show that thetl?near search oved, in which 8 — in Eq. (6) —
. , . ~and its corresponderks{(0) are calculated for
optimal parameter vector will have the form: . o
each value ofl belonging to a chosen limited set
of discrete values sorted in ascending order.
Theoretically, there exist exactly four real values

. _ a of A that satisfyJcs(0) = O [4][6], however, the
beingR = E[{N) &' (n)], p = RE[&n)] and exhaustive linear search assumes only certain

discrete values, which will probably cause

DJMSE(G) =A DJcs'[(e)

Jes(0) =0

0=[R-AC]p (6)

0 0 -2 Jcs(0) never to be strictly identical to zero.
C={0 1 O (7) Nonetheless, a sufficiently small threshold value
-2 0 O can be defined. In view of this, the search for the

desired] is feasible by seeking the minima of the

Although it is possible to use this solution an@0st function Jesr’(8). For a better visualization,
the constraint to find a polynomial expression fowe turn this problem into that of finding the



maximum points inf(Jcs(0)), in which f(k) = multiplier A was varied from -10 to 10 in steps of
1/(14A). Fig. 1 shows the obtaind@cs(6)) in  0.001. The resulting filter coefficients for the
function of A, considering the BPSK signaltwo cascaded filters according to the global CM
transmitted over the channel with impulséolution and Wiener solution are presented in
responsén(n) =1 + 0.6 Tab. 1.

Two-Tap CM Two-Tap Wiener

©

1 ‘N r\—/V‘—— Filter 1 Filter2  Filter 1 | Filter 2

/ Wo ‘ 0.2480 0.1326| -0.2707 -0.126
[ [F T -0.5214 | -1.0219] 05865  1.015
of Jyse(®) Table 1: Resulting coefficients for two-tap filters.
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The results are interestingly quite similar fortbot
filters, except for the fact that the signswgfand
w; are exchanged, which is expected in view of

0.41

0.2

| the unsupervised character of the CM cost
. L U o function. The concatenated effect of both filters
T is represented as the convolution between them,

Figure 1: f(Jes(®)) and its maximum points. which results in the coefficients shown in Tab. 2.

2-tap Conventional

The maxima off(Jcs(0)) are obtained with a 2-tap CM Wiener  3-tap Wiener
peak detector. The peaks are displayed as Convolution ' °\ tion  Solution

plus signs in Fig. 1. Among these, the suita 0.0329 0.0344 0.3259
parameter A is the one associated with t -0.3226 -0.3494 -0.0517
minimum  value of Jysg6). Finally, the 0.5328 0.5958 1.0981

conversion from the Volterra domai to the  Table 2: Combined effect of the 2-tap filters and the

filter domainw can be expressed ag = 18, , conventional 3-tap Wiener solution.
w, = sign(6,),/ 6, . In spite of their remaining close to each other,

both two-tap filter solutions significantly differ
Interestingly, the same procedure can biom the conventional three-tap Wiener solution.
iteratively performed to determine the next twoTo illustrate this point, we compare their
tap filter of a cascade; however, the inpt) performance in terms of MSE - always
will be the output signal of the previous filter.considering the optimal signal delay. Fig. 2
Rigorously, R and p do not need to be illustrates this case. It can be seen that the
determined each iteration, since the knowledgeddition of elements to the cascade causes an
of w allows an analytical update. However, weMSE reduction; however, the equivalent
will not follow this approach in this work. conventional Wiener filter solution shows a more

expressive improvement.
From a communication system standpoint, the
effect of a cascade can be interpreted as that oThe behavior of the cascaded filters can show
single filter whose coefficients are given by thdétself more clarifying if we consider a higher
convolution of the cascade elements. This resulumber of filters. With that in mind, we analyze
is important, since, mathematically, a sufficienthe channehs(z) = 0.1358 — 0.5566" +0.7412°
larger filter can be obtained by the combinatior0.347@&° + 0.044@* and 9 cascaded two-tap
of smaller ones. With this concept in mind, wdilters — equivalent up to a conventional 10-tap
proceed in analysis of the performance obtainditer. The resulting performances in terms of
by the cascaded filters accordingly to théISE are shown in Fig. 3. In this case, the filter
presented approach. Firstly, we consider @ascading effect becomes increasingly small and
maximum-phase channéh(z) = 1 + 1.5 and its associated MSE converges to a certain level,
two cascaded FIR equalizers. We also analyzehile the conventional Wiener filter shows clear
the results by comparing with a similar cascadsigns of being capable of reaching smaller MSE
of two-tap Wiener solutions — consideringevels.
always the optimal source delay — and also with
conventional Wiener filters. The Lagrange
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Although a more profound investigation is
important, this saturation is probably due to the
fact that the elements of the cascade, in view of
their limited amount of degrees of freedom,
cannot properly handle the process of optim
delay placement that the best Wiener soluti
incorporates in a natural way.

4. Conclusions



