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Abstract – This article introduces a blind equalization methodology based on a cascade of two-tap finite impulse 
response filters globally optimal with respect to the constant modulus (CM) criterion. It is shown that a 
formulation of the CM cost function in terms of a mean squared error (MSE) metric and of Volterra-like 
constraints allow the optimization process to be carried out, when two parameters are to be adapted, with the aid 
of a one-dimensional search process that suits quite well an exhaustive framework. The proposal will be 
compared to a similar cascade of two-tap Wiener solutions and also with conventional Wiener filters.     
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This work is dedicated to those who have been part of 
the first 15 years of existence of the Laboratory of 
Signal Processing for Communications (DSPCOM). 
 
“Vous avez confirmé dans ces lieux pleins d’ennui 
Ce que Newton connut sans sortir de chez lui” 

Voltaire 
 
1. Introduction 
 
The constant modulus algorithm (CMA) - the 
origin of which is associated with the classical 
works of [1] and [2] – is arguably the most 
thoroughly analyzed member of the class of 
Bussgang algorithms. This interest can be 
justified in theoretical terms – in view, for 
instance, of points of contact with kurtosis-based 
unsupervised methods [3] – and also from the 
standpoint of practical applicability. 
 
The CMA is a stochastic version of the steepest 
descent method when the latter is applied to the 
task of minimizing the following cost function 
[4]: 
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where E[.] denotes statistical expectation, R2 = 

]|)([|]|)([| 24 nsEnsE , y(n) is the equalizer 
output and s(n) is the transmitted sequence. 
Assuming that the equalizer is a finite impulse 
response (FIR) filter, the algorithm update 
expression is: 
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where µ is the step-size and * denotes complex 
conjugation. 
 
The CM cost function typically possesses global 
and local minima, as well as saddle points and a 
local maximum [4][5]. Therefore, depending on 
the chosen initial condition, the CMA may 
converge towards local minima, which means 
that the potential performance achievable by the 
filtering structure will not be actualized. 
 
In this work, we propose a method to 
constructively build a blind equalizer as a 
cascade of two-tap filters that are globally 
optimized using a one-dimensional line search 
procedure in the context of a formulation of the 
CM cost function proposed in [6]. The idea of 
the method is to present an unsupervised design 
framework for which there would be a guarantee 
of optimality with respect to the obtained 
solution without the need for resorting to 
multidimensional exhaustive search. The method 
will be compared with an analogous cascade of 
two-tap equalizers and a conventional structure 
optimized in accordance with the Wiener 
criterion. 
 
2. Formulation of the CM Criterion 
Using Quadratic Constraints  
 
Consider that the transmitted signal is composed  



of binary (+1 / -1) samples and that all systems to 
be dealt with are composed exclusively of real-
valued parameters. In this case, if a two-tap 
equalizer is employed, it is possible to rewrite the 
term |y(n)|2 in (1) as: 
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This can be seen as the output of a Volterra filter 
with input vector ξξξξ(n) = [x2(n) x(n)x(n-1) x2(n-
1)]T and parameter vector θθθθ = [θ0 θ1 θ2]

T = [w0
2 

2w0w1 w1
2]T. If this is the case, one may 

reinterpret (1) as a mean squared error (MSE) 
criterion with a constant reference signal: R2 = 1. 
This is the starting point of a formulation of the 
CM criterion in terms of an MSE cost function 
subject to Volterra-like constraints. This idea is 
outlined in [7], but took a definite shape in [6]. 
Later, works like [8] and [9] analyzed the effects 
of relaxing the aforementioned constraints, 
which led to a lower bound for the CM cost 
function. 
 
To summarize this discussion, for the two-tap 
case, the CM criterion can be written as: 
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where υ(n) = θθθθTξξξξ(n). Using the method of 
Lagrange multipliers, the optimal solution is 
shown to be that satisfying: 

 
∇JMSE(θθθθ) = λ∇JCST(θθθθ) 

 
JCST(θθθθ) = 0 

(5) 

 
where JCST(θθθθ) =  θ1

2 - 4θ0θ2 and λ is the Lagrange 
multiplier. Equation (4) and the essential results 
of Wiener filtering theory [10] show that the 
optimal parameter vector will have the form: 

 
θθθθ = [R - λC]-1p (6) 

 
being R = E[ξξξξ(n)ξξξξT(n)], p = R2E[ξξξξ(n)] and 
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Although it is possible to use this solution and 
the constraint to find a polynomial expression for 

the possible values of λ, this rather laborious 
course will not be followed here. Rather, a line 
search procedure will be used to obtain the 
values of λ that allow the condition JCST(θθθθ) = 0 to 
hold. This is interesting, as the two-dimensional 
task of finding the global minimum of the CM 
cost function becomes a one-dimensional search 
problem, which can be solved by brute force 
methods in a more economical way. The analysis 
of the global character of the obtained solutions 
(which will include minima and saddle points) 
will be done by directly estimating the value of 
JMSE(θθθθ) using the received data x(n). 
 
The possibility of ensuring that global minima be 
obtained with a relatively parsimonious 
optimization method insinuates the possibility of 
building an equalizer as a cascade of two-tap 
equalizers that correspond to global CM optimal.  
The validity of this idea will be analyzed in the 
following, based on comparisons with Wiener 
solutions in both canonical and cascade forms. 
 
3. Results 
 
In order to find the global minima of the CM cost 
function, we must proceed, basically, according 
to three steps: first, it is necessary to estimate the 
correlation matrix R and the cross-correlation 
vector p in the Volterra domain; the second step 
corresponds to finding the desired value of λ, and 
the last step amounts to obtaining the constrained 
solution that leads to the optimal choice for w in 
terms of the CM cost. 
 
The above defined first step is straightforward, 
since R and p can be easily estimated using a 
sample mean. A more elaborate discussion is 
demanded by the procedure concerning the 
solution for the Lagrange multiplier λ. The 
approach followed in this work is based in a 
linear search over λ, in which θθθθ – in Eq. (6) – 
and its correspondent JCST(θθθθ) are calculated for 
each value of λ belonging to a chosen limited set 
of discrete values sorted in ascending order. 
Theoretically, there exist exactly four real values 
of λ that satisfy JCST(θθθθ) = 0 [4][6], however, the 
exhaustive linear search assumes only certain 
discrete values, which will probably cause 
JCST(θθθθ) never to be strictly identical to zero. 
Nonetheless, a sufficiently small threshold value 
can be defined. In view of this, the search for the 
desired λ is feasible by seeking the minima of the 
cost function  JCST

2(θθθθ). For a better visualization, 
we turn this problem into that of finding the 



maximum points in f(JCST(θθθθ)), in which f(k) = 
1/(1+k2). Fig. 1 shows the obtained f(JCST(θθθθ)) in 
function of λ, considering the BPSK signal 
transmitted over the channel with impulse 
response h1(n) = 1 + 0.6z-1.  

 
Figure 1: f(JCST(θθθθ)) and its maximum points. 

 
The maxima of f(JCST(θθθθ)) are obtained with a 
peak detector. The peaks are displayed as red 
plus signs in Fig. 1. Among these, the suitable 
parameter λ is the one associated with the 
minimum value of JMSE(θθθθ). Finally, the 
conversion from the Volterra domain θθθθ to the 

filter domain w can be expressed as 00 θ=w , 
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Interestingly, the same procedure can be 
iteratively performed to determine the next two-
tap filter of a cascade; however, the input x(n) 
will be the output signal of the previous filter. 
Rigorously, R and p do not need to be 
determined each iteration, since the knowledge 
of w allows an analytical update. However, we 
will not follow this approach in this work. 
 
From a communication system standpoint, the 
effect of a cascade can be interpreted as that of a 
single filter whose coefficients are given by the 
convolution of the cascade elements. This result 
is important, since, mathematically, a sufficient 
larger filter can be obtained by the combination 
of smaller ones. With this concept in mind, we 
proceed in analysis of the performance obtained 
by the cascaded filters accordingly to the 
presented approach. Firstly, we consider a 
maximum-phase channel h2(z) = 1 + 1.5z-1 and 
two cascaded FIR equalizers. We also analyze 
the results by comparing with a similar cascade 
of two-tap Wiener solutions – considering 
always the optimal source delay – and also with 
conventional Wiener filters. The Lagrange 

multiplier λ was varied from -10 to 10 in steps of 
0.001. The resulting filter coefficients w for the 
two cascaded filters according to the global CM 
solution and Wiener solution are presented in 
Tab. 1. 

 

 
Two-Tap CM Two-Tap Wiener 

Filter 1 Filter 2 Filter 1 Filter 2 
w0 0.2480 0.1326 -0.2707 -0.1269 
w1 -0.5214 -1.0219 0.5865 1.0159 

Table 1: Resulting coefficients for two-tap filters. 
 

The results are interestingly quite similar for both 
filters, except for the fact that the signs of w0 and 
w1 are exchanged, which is expected in view of 
the unsupervised character of the CM cost 
function. The concatenated effect of both filters 
is represented as the convolution between them, 
which results in the coefficients shown in Tab. 2. 

 
 2-tap CM 

Convolution 

2-tap 
Wiener 

Convolution 

Conventional 
3-tap Wiener 

Solution 
w0 0.0329 0.0344 0.3259 
w1 -0.3226 -0.3494 -0.0517 
w2 0.5328 0.5958 1.0981 

Table 2: Combined effect of the 2-tap filters and the 
conventional 3-tap Wiener solution. 

 
In spite of their remaining close to each other, 
both two-tap filter solutions significantly differ 
from the conventional three-tap Wiener solution. 
To illustrate this point, we compare their 
performance in terms of MSE - always 
considering the optimal signal delay. Fig. 2 
illustrates this case. It can be seen that the 
addition of elements to the cascade causes an 
MSE reduction; however, the equivalent 
conventional Wiener filter solution shows a more 
expressive improvement. 
 
The behavior of the cascaded filters can show 
itself more clarifying if we consider a higher 
number of filters. With that in mind, we analyze 
the channel h3(z) = 0.1358 – 0.5566z-1 +0.7412z-2 
-0.3470z-3 + 0.0440z-4 and 9 cascaded two-tap 
filters – equivalent up to a conventional 10-tap 
filter. The resulting performances in terms of 
MSE are shown in Fig. 3. In this case, the filter 
cascading effect becomes increasingly small and 
its associated MSE converges to a certain level, 
while the conventional Wiener filter shows clear 
signs of being capable of reaching smaller MSE 
levels. 



 
Figure 2: Performance of cascaded filters and equivalent 

conventional Wiener in terms of MSE for h2(n). 
 

 
Figure 3: Performance of cascaded filters and equivalent 

conventional Wiener in terms of MSE for h3(n). 
 
Although a more profound investigation is 
important, this saturation is probably due to the 
fact that the elements of the cascade, in view of 
their limited amount of degrees of freedom, 
cannot properly handle the process of optimal 
delay placement that the best Wiener solution 
incorporates in a natural way.  
 
4. Conclusions 
 
In this work, we proposed a blind methodology 
that reduces the problem of determining globally 
optimal two-tap FIR filters in terms of CM 
criterion to a one-dimensional search over a 
parameter λ. Moreover, we show that the task of 
blind equalization can be performed in terms of a 
cascade of two-tap equalizers. The results show 
that, the cascade is effective up to a certain level 
of MSE, being less effective than a “monolithic” 
Wiener filter in the long run. A deeper analysis, 
however, is required before more detailed 
conclusions be drawn. 
 

Acknowledgements 
 
The authors thank CAPES and CNPq for the 
financial support. Romis Attux would also like to 
pay homage to memory of Salomão Sampaio 
Madeiro (1981-2013), a brilliant and noble-
hearted young researcher who shall never be 
forgotten.       

 
References 
 
[1] D.N. Godard, Self-Recovering Equalization 

and Carrier Tracking in Two-Dimensional 
Data Communication Systems, IEEE Trans. 
on Comm., 28 (11): 1867-1875, 1980. 

[2] J. Treichler, B. Agee, New Approach to 
Multipath Correction of Constant Modulus 
Signals, IEEE Trans. Acoust., Speech and 
Signal Processing, 31(2): 459-472, 1983. 

[3] P.A. Regalia, On the Equivalence Between 
the Godard and Shalvi-Weinstein Schemes of 
Blind Equalization, Signal Processing, 73 (1-
2): 185–190, 1999. 

[4] J.M.T. Romano, R. Attux, C.C. Cavalcante, 
R. Suyama, Unsupervised Signal Processing: 
Channel Equalization and Source 
Separation, CRC Press, 2010. 

[5] Z. Ding, R.A. Kennedy, B.D.O. Anderson, 
C.R. Johnson, Jr., Ill-Convergence of Godard 
Blind Equalizers in Data Communication 
Systems, IEEE Trans. on Communications, 
39(9): 1313-1327, 1991. 

[6] R. Suyama, Sobre o Critério do Módulo 
Constante para Equalização Não-
Supervisionada e Suas Relações com a 
Teoria de Wiener, MSc. Dissertation, 
UNICAMP, 2003. 

[7] K. Dogançay, R. A. Kennedy, Least Squares 
Approach to Blind Channel Equalization, 
IEEE Transactions on Communications, 
47(11): 1678-1687, 1999. 

[8] C. de Sousa Jr., Análise de Estabilidade de 
Lyapunov de Algoritmos Adaptativos com 
Contribuições ao Estudo do Critério do 
Módulo Constante, Doctoral Thesis, 
UNICAMP, 2011. 

[9] D.G. Fantinato, C. de Souza Jr., R.R.F. Attux, 
R. Suyama, A. Neves, J.M.T. 
Romano, Definição de Equalizabilidade a 
Partir de um Limitante Inferior para o 
Critério do Módulo Constante. Anais do III 
Simpósio de Processamento de Sinais da 
UNICAMP, 2012. 

[10] S. Haykin, Adaptive Filter Theory, 3rd. ed., 
Prentice-Hall, 1996. 


