
Lower Bound of the Constant Modulus Criterion

for Multilevel Modulations

Denis G. Fantinato , Romis Attux (Advisor) , Celso de Sousa Jr.,

Aline Neves (Co-Advisor) , Ricardo Suyama , João M. T. Romano

Laboratory of Signal Processing for Communications (DSPCOM)

School of Electrical and Computer Engineering (FEEC)

State University of Campinas (Unicamp)

{denisgf,attux}@dca.fee.unicamp.br, celso_de_sousa_junior@yahoo.com.br,

{aline.neves,ricardo.suyama}@ufabc.edu.br, romano@dmo.fee.unicamp.br

Abstract – The recently proposed lower bound of the classical blind CM criterion was shown to be able to

work as an excellent blind equalizability index, which is a practical performance assessment metric in the context

of inverse problems. However, there still remains the need of complementary studies aiming to cover a wider

range of circumstances. Based on this, we present in this work an extension of the analysis of the lower bound by

considering scenarios with multilevel modulated signals. For an 8-PAM and a 16-QAM signal, the simulations

revealed the presence of a residual error offset, but even so, the validity of the index was preserved.
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1. Introduction

In digital communications systems, there exist

certain relevant applications that demands real-

time processing of a considerable amount of data,

among which we can cite, for example, modern

broadcasting services, like high-definition television

(HDTV). In such tasks, there is an ever increasing

challenge for larger data rates, implying in some re-

quirements for the receiver to deal with. It is a com-

mon requirement, for instance, that the employed

adaptive equalizers operate for baseband complex-

valued data with multilevel modulated signals, such

as 16-QAM, 64-QAM or even 128-QAM. More-

over, there may be no training sequence, causing

the signal processing task to be performed in a blind

mode.

A classical and well-established strategy used

to deal with the problem of blind equalization is

that based on the constant modulus (CM) criterion

[1], which, along with its associated algorithm, the

CMA, was an object of intense study for the last

three decades [2]. Particularly, in view of the con-

nections to Wiener theory [2] – a supervised formu-

lation based on a mean-squared error (MSE) mea-

sure –, it was possible to introduce a polynomial

formulation of the CM criterion [3], which brought

a novel perspective to the use of fourth-order statis-

tics in channel inversion. An interesting result de-

rived from this approach was a lower bound for the

CM cost function, which works as a measure for the

attainable performance in channel deconvolution or,

in other words, as a blind equalizability index. The

original proposal was developed in [4] and later ex-

tended to the idiosyncrasies of the complex domain

in [5], which allowed its application to a wider range

of scenarios. However, as we intend to show in

this work, another relevant step can be made if we

consider that the transmitted signal is modulated ac-

cording to constellations with relatively high order,

like 8-PAM, 16-QAM or 64-QAM. If the validity of

the lower bound is proved for such cases, in addi-

tion to its potential as an analytical tool, this mea-

sure – that reflects the residual MSE level for the

supervised case – can be successfully used as prac-

tical performance assessment index in aid, for ex-

ample, of equalization issues and of soft-demapping

schemes in the HDTV receivers.

2. Polynomial Formulation of the CM

Criterion

In order to recapitulate the concepts underlying the

definition of the lower bound, we will present a brief

derivation of the polynomial formulation of the CM

criterion in the following. For further clarification,

we recommend the reading of [5].

In its classical form, the CM cost function can be

expressed as the minimization of the following cost

function:

JCM (w) = E
[

(

|y(n)|2 −R2

)2
]

, (1)



where R2 = E
[

|s(n)|4
]

/E
[

|s(n)|2
]

, E[·] denotes

statistical expectation, w is the parameter vector of

a finite impulse response (FIR) equalizer with N co-

efficients, s(n) is the transmitted signal and y(n) is

the equalizer output signal. More specifically, the

equalizer output can be defined as y(n) = wHx(n),
in which x(n) = [x(n), x(n−1), . . . , x(n−N+1)]
is the equalizer input vector and (·)H denotes Her-

mitian transposition.

Considering now the modified output signal de-

fined as υc(n) = |y(n)|2, the polynomial formula-

tion will take shape if we expand the second mem-

ber, so that |y(n)|2 = y(n)y∗(n), where (·)∗ de-

notes complex conjugation. For a better understand-

ing, we assume, for instance, a two-tap complex

equalizer, which prompt us to express

υc(n) =
[

|w0|
2 w∗

0
w1 w0w

∗

1
|w1|

2
]

×









|x(n)|2

x(n)x∗(n−1)
x∗(n)x(n−1)
|x(n−1)|2









= θH
c ξ(n) ,

(2)

where θc is the polynomial filter parameter vector -

which depends on w - and ξ(n) is the input vector

in the Volterra domain [6]. In a similar manner, Eq.

(2) could be extended to a generic N -tap complex

equalizer.

By supposing R2 = 1 and using the modified

output signal υc(n) in Eq. (1), we have

JCM (θc) = E
[

|υc(n)− 1|2
]

, (3)

which is the polynomial formulation of the CM cost.

Allowing now a modification with respect to the

original CM cost, the next step is to admit a re-

laxation of the constraints regarding the influence

of the values of w on θc and make the polyno-

mial filter parameters completely “free”. Thus, the

new unconstrained polynomial filter, hereinafter de-

noted simply as θ, will have as output the signal

υ(n) = θHξ(n). Moreover, if we consider the auto-

correlation matrix Rξ and the cross-correlation vec-

tor pξ for d(n) = R2 = 1 – in the Volterra domain

– to be defined as

Rξ = E
[

ξ(n)ξH(n)
]

; pξ = E [ξ(n)] , (4)

it is possible to express the unconstrained cost func-

tion for the polynomial formulation as follows:

JLB(θ) =E
[

|υ(n)− 1|2
]

=1− θHpξ − pH
ξ θ + θHRξθ.

(5)

This function has some important intrinsic charac-

teristics, as presented in the next section.

3. The Blind Equalizability Index

A closer look at Eq. (5) reveals that the uncon-

strained case directly corresponds to a nonlinear -

since ξ(n) is in the Volterra domain - Wiener fil-

tering problem, but the dependence with respect to

the free parameters θ remains linear. This allows

us to obtain a closed-form solution that minimizes

JLB(θ) as a consequence of the Wiener-Hopf equa-

tions [2]:

θo = R−1

ξ pξ. (6)

The minimum MSE value can be straightforwardly

obtained from Wiener filtering theory [2]:

JLB(θo) = 1− pH
ξ R−1

ξ pξ. (7)

Since we abandoned the original constraints, it is

expected that JLB(θo) lead to a MSE value lower

than or equal to that attained in the constrained case

(3), which is an exact representation of the original

cost JCM (w). Based on this, we can state that

JCM (w) ≥ JLB(θo). (8)

Thereby, JLB(θo) can be understood as a lower

bound to the CM cost.

As previous works indicated [3, 4, 5], insofar as

the connections between CM and Wiener solutions

are concerned, JLB(θo) evokes the notion of a blind

equalizability index, since it is related to the attain-

able MSE level, given a certain channel.

In face of recent requirements for greater data

rates, it is important to analyze the behavior of the

CM lower bound and its associated equalizability

index over a broad range of scenarios, including

those characterized by multilevel modulated signals.

In the next section, we present results for 8-PAM

and 16-QAM signals.

4. Simulation Results

In the simulations, we proceeded similarly to [5] for

the analysis of the blind equalizability index. To

do so, we compared the performance of JLB(θo)



to those of the optimal CM and (supervised) Wiener

solutions (taking into account the equalization de-

lay). For simulation effects, we estimate the mini-

mum value of the CM cost function by initializing

the CMA (µ = 0.0008) at the best Wiener solution

(in terms of the equalization delay).

Firstly, in a scenario with real-valued param-

eters, the channel transfer function is given by

H(z) = 1 + αz−1 (normalized to have unit norm),

where α varies from 0 to 3, and the equalizer is a

two-tap filter. The source is composed of 50000 in-

dependent and identically distributed (i.i.d.) 8-PAM

samples and there is no additive noise. The obtained

values for JLB(θo) and the minimum value of the

CM and Wiener costs are illustrated in Fig. 1.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

M
in

im
u

m
 C

o
s
t 

V
a

lu
e

s

α

Lower Bound
J

LB
(θ

o
)

Minimum
J

CM
(w)

Minimum
J

Wiener
(w)

Figure 1. Minimum Cost Values - 8-PAM and

first-order channel.

The figure shows that JLB(θo) still holds its

functionality as a lower bound for the CM cost.

However, due to the many points in signal’s con-

stellation, there exists a residual cost offset which

raises the curve of the lower bound (and also the

minimum CM cost). As a consequence, differently

from [3, 4, 5], there is a greater distance between the

minimum Wiener cost and JLB(θo). Nonetheless,

it is noticeable that there is a smoothed tendency of

JLB(θo) to follow the general shape of the other

costs, revealing that the idea of equalizability index

is preserved.

Assuming now a second-order channel with

transfer function H(z) = 1 + αz−1 + βz−2 (with

subsequent unit-power normalization), where α and

β vary from 0 to 2, we employ a three-tap equalizer.

The results, shown in Fig. 2, are a natural extension

of the previous case, holding the same observations.
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Figure 2. Minimum Cost Values - 8-PAM and

second-order channel.

For complex-valued systems and parameters, we

assume a complex channel of the type H(z) = 1 +
jαz−1, with α varying from 0 to 3, an i.i.d. 16-

QAM modulated source of 50000 samples without

noise and a two-tap complex equalizer. Fig. 3 shows

the obtained cost values and the CM lower bound for

this scenario.
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Figure 3. Minimum Cost Values - 16-QAM and

first-order complex channel.

In this case, we observe the same phenomenon

of the residual error offset in JLB(θo) and in the

minimum CM cost – their curves are shifted verti-

cally – which, as the presented figures suggests, is a

common characteristic when the modulation is built

from a multilevel constellation. Also, it is possible

to note that the minimum CM cost, instead of a sin-

gular peak, forms a kind of plateau – the reasons

underlying this change will be analyzed in the fu-

ture. Interestingly, the lower bound does not follow



this behavior, a consequence of its formulation as

a non-linear Wiener filter. In addition to that, it is

important to note that JLB(θo), despite the offset,

still carries a certain amount of information about

the channel equalizability.

As a last test, we keep the same scenario seen in

the previous case, but allow an extra degree of free-

dom for the real part in the complex first-order chan-

nel, i.e., we assume the transfer function H(z) =
1 + (α+ jβ) z−1, with α and β varying from 0 to

2. The result is shown in Fig. 4. It is possible to see

that the plateau in the minimum CM cost exists only

when the imaginary part is predominant in channel

H(z) and the lower bound JLB(θo) is, as the mini-

mum Wiener cost, independent of its presence.
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Figure 4. Minimum Cost Values - 16-QAM and

first-order complex channel with 2 varying pa-

rameters.

A common aspect of all cases is the presence

of an offset in the lower bound and in the mini-

mum CM cost as well and, also, that JLB(θo) fol-

lows the general behavior of the minimum Wiener

cost. Hence, the idea of a blind equalizability index

can still be employed for multilevel modulated sig-

nals. Moreover, this index can be improved if the

offset is set to zero, which can be made, for exam-

ple, through the use of the information in the figures

presented in this work. This, however, remains as a

future perspective.

5. Conclusions

In this work, we extended the analysis of the CM

lower bound and its interpretation as a blind equal-

izability index to multilevel modulated signals. In

spite of covering only the two specific cases of 8-

PAM and 16-QAM signals, some interesting con-

clusions could be obtained from the results. First,

there exists now a residual error offset in the mini-

mum CM cost and in the lower bound, which caused

some distancing from the minimum Wiener Cost.

Nevertheless, there is a certain consonance in the

behavior of the three analyzed minimum costs, con-

tributing positively to the validation of the index in

such cases.

As future works, we intend to perform more ex-

tensive simulations to signals with larger constel-

lations, like 64- and 128-QAM. Also, we wish to

study the plateau for the minimum CM cost in the

complex case.
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