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Abstract – The problem of optimal linear filtering and prediction has been so far typically formulated and studied in the context 

of real- or complex-valued signals. In this article, we provide an extension of this problem to the framework of finite (Galois) 

fields. Simulation results encompassing supervised and unsupervised prediction-based equalization are presented for a number 

of scenarios based on GF(2). 
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“Le savant n'étudie pas la nature parce que cela est 

utile; il l'étudie parce qu'il y prend plaisir et il y prend 

plaisir parce qu'elle est belle. Si la nature n'était pas 

belle, elle ne vaudrait pas la peine d'être connue, la 

vie ne vaudrait pas la peine d'être vécue”  

 

Henri Poincaré, “Science et méthode” 

 

1. Introduction 
 

The problems of optimal filtering, in a generic 

context, and, more specifically, of equalization and 

prediction are regarded as fundamental topics within 

the field of signal processing. These subjects have 

been deeply analyzed from several standpoints in the 

last decades, but, beyond any doubt, it remains 

imperative to highlight the analytical framework 

developed in the 1940s by Wiener and Kolmogorov 

[1][2], which encompasses both discrete- and 

continuous-time stationary stochastic signals. 

In simple terms, this framework may be 

understood, in the single-input single-output (SISO) 

discrete-time case, as providing the necessary means 

to find the optimal parameters of a filter that attempts 

to approximate a desired signal d(n) from a set of 

samples of the input signal x(n). These signals are 

assumed to be real-valued and, when the filtering 

structure is assumed to be a finite impulse response 

(FIR) filter, the ensuing optimization task can be 

solved in closed form, thereby yielding the so-called 

Wiener solution [2]. 

The two aforementioned particular problems, those 

of equalization (or deconvolution) and prediction, can 

be straightforwardly formulated within this 

framework. In the case of equalization, the transmitted 

signal s(n) suffers a distortion, e.g., by means of a 

finite impulse response (FIR) channel h with L real-

valued coefficients, thus giving rise to the signal x(n). 

This signal – x(n) – is expressed as the convolution 

between the channel impulse response and s(n). 

Hence, from a filtering standpoint, the objective is to 

recover, with maximum precision, the original signal 

s(n) from the samples of x(n). Usually, in a supervised 

approach, this is achieved using the structure 

presented in Figure 1 [2]. 

 

 
 

Figure 1. Filtering Setup - Equalization 

  

In Figure 1, y(n) is the filter output signal i.e. an 

estimate of s(n), d(n) is the desired signal – the role of 

which will be played by s(n) in this case
1
 – and e(n) is 

the error signal, generated as: 

 

e(n) = d(n) - y(n).              (1) 

 

For the prediction problem, a similar line of 

reasoning is pursued. Now, the objective is to estimate 

from x(n) and its delayed versions the value of a 

future signal sample, e.g., x(n+1). Such process can 

be defined within the Wiener filtering framework in 

terms of the structure illustrated in Figure 2. 

 

 

                                                 
1
 A more rigorous definition requires that the desired signal 

be s(n) or a delayed version thereof, but the issue of 

choosing the equalization delay will not be dealt with here. 



 
 

Figure 2. Prediction Setup 

 

In this case, y(n) is the predictor output – an estimate 

of x(n+1) generated by a linear combination of 

delayed samples, and Eq. (1) holds for d(n) = x(n+1). 

Classically, the equalization and prediction 

structures are considered to be linear filters. The most 

usual option is for FIR structures, but, in some cases, 

the use of infinite impulse response (IIR) devices is 

either attractive or necessary [3]. For the more general 

IIR case, the filter output can be written as: 
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where M is the number of coefficients aj in the 

feedforward part and N is the number of coefficients 

bk in the feedback part. To obtain the input-output 

relationship of a FIR filter, it suffices to consider all 

coefficients of the feedback part as being null. 

Within the Wiener-Kolmogorov theory, the optimal 

parameters aj and bk are chosen so as to minimize the 

second moment of the error signal e(n), which is also 

referred to as mean-squared error (MSE). As 

mentioned earlier, for the FIR case, the optimal 

solution can be obtained in closed form. This is done 

by solving a linear system of equations that usually 

bears the names of Norbert Wiener and Eberhard 

Hopf [3]. 

These and other strategies that form the core of 

modern optimal filtering theory were developed under 

the aegis of the assumption that all signal samples and 

system parameters are real or complex numbers. This 

certainly is enough for many practical applications, 

but there remained a clear gap insofar as extensions to 

inherently discrete sources and distortions are 

concerned. Interest in sources of this kind can be 

justified in theoretical terms – e.g. in terms of 

building a more complete view of the potentialities 

inherent to the very idea of filtering and of 

establishing connections with the vast corpus of 

coding theory – and also in practical terms – in view, 

for instance, of the existence of enormous binary and 

genomic databases, as well as of inherently discrete 

problems related to bio-inspired information systems 

based, for instance, on the use of molecules [4]. 

Yeredor, Gutch, Gruber and Theis [5] took the 

initial steps in the direction of extending key signal 

processing methods to encompass the peculiarities of 

entities defined in accordance with the formalism of 

finite fields. Their efforts were essential to 

establishing the bases of a blind source separation 

(BSS) theory applicable to Galois fields. They also 

proposed algorithms for solving the BSS problem via 

ICA, being this repertoire later enlarged by the 

contribution of Silva et al. [6]. These contributions, 

nonetheless, were restricted to spatial filtering, i.e., 

instantaneous mixtures of sources.  

Having this in view, we propose, in this work, to 

formulate the optimal filtering problem – in the 

particular case of equalization and prediction – in the 

context of finite fields, attempting thus to deal with 

the temporal aspects (convolutive mixtures) of this 

novel branch of information processing. The proposed 

framework will be tested considering GF(2) for 

several distinct scenarios, and its performance will be 

evaluated establishing, whenever possible, parallels 

with the canonical theory for real-valued variables. 

The rest of this article is organized as follows: in 

Section 2, we describe the problems of performing 

equalization and prediction over finite fields; in 

Section 3, the evaluation metrics used, together with 

an exhaustive search, to find the optimal equalizers 

and predictors are presented; in Section 4, we present 

the results of simulations and the corresponding 

performance analysis; finally, in Section 5, we discuss 

the main results, some key issues and future 

perspectives. 

 

2. Finite Fields: Equalization and 

Prediction 
  

Although the efficient theoretical approach to the 

problem of ICA over Galois fields established by 

Gutch et al. [5] encourages extensions to temporal 

filtering, the classical framework outlined in Section I 

is not suitable for handling finite fields. Nevertheless, 

we will present in the following possible ways to 

circumvent these difficulties, thus establishing viable 

formulations of linear equalization and prediction 

over a Galois field.  

Considering d(n) as a sequence of symbols 

associated with a finite field that, in this case, will be 

GF(2), it is possible to consider it as a sequence of 

bits i.e. a Boolean sequence. Under the canonical 

GF(2) operations, Eq. (1) can be rewritten as: 
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where }{  is the modulo-2 sum (equivalent to the 

logical operation XOR). Analogously, the general 

linear filter described in Eq. (2) can be reformulated 

in terms of the GF(2) sum and product operations: 
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where the operator }{  corresponds to the product 

(which leads to the same results, for “0” and “1”, 

obtained with the “conventional” product). Also, it is 

important to emphasize that the summation symbols 

correspond to the modulo-2 operation and that x(n), 

ak, bk and y(n) assume binary values (“0” and “1”). 



Similar considerations are valid for the distortion 

caused by channel. 

Having thus defined the general linear filtering 

structure and the error signal for GF(2), we are ready 

to address the two problems of interest, equalization 

and prediction. The remaining steps are to build an 

evaluation metric based on the error signal and to 

propose a suitable optimization approach. 

 

3. Evaluation Metrics 
 
Whenever one deals with finite fields, all signal 

samples can be modeled in terms of a discrete 

probability distribution, the parameters of which can 

be estimated using a frequency-based methodology. In 

our case, the samples of the signal e(n) can be 

considered as a discrete random variable (RV) with 

two possible values, “0” and “1”. Hence, the 

probability of e(n) being equal to zero can be 

estimated as: 

 

Pe(0) = 
n
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where N0(
.
) is the number of times in which e(n) is 

equal to zero for a total number of samples equal to n. 

As the aim of optimal filtering is, intuitively, to reach 

an error signal as close to zero as possible, one may 

consider Pe(0) as an evaluation metric to be 

maximized.   

This metric is reasonable if an ideal solution is 

reachable, but, if this is not the case, it can be 

misleading. For instance, if one deals with blind 

equalization based on linear prediction, the error 

signal will never be a sequence of zeros (see Fig. 2); 

instead, it will ideally be equal to s(n) [7]. 

Consequently, if the probability that s(n) be equal to 

zero is, say, 0.3, by maximizing the metric shown in 

Eq. (5), one will not actually be able to equalize the 

channel, as a signal with residual intersymbol 

interference will have a frequency of zeros closer to 

0.5 (i.e. higher) in view of the “central limit theorem” 

for GF(2) mixtures [5].   

To overcome this issue, we resort to an 

information-theoretic criterion – the minimization of 

the entropy of the error signal: 
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With these two evaluation metrics, it is possible to test 

these ideas for different kinds of scenarios. 

 

4. Results 
 

First we will consider the problem of supervised 

equalization over GF(2). A source s(n) is generated 

with independent and identically distributed (i.i.d.) 

binary samples, with Ps(0) = p and Ps(1) = 1 – p. The 

signal is submitted to the effect of a FIR channel h 

with L taps. The resulting signal x(n) can be equalized 

with a FIR or an IIR filter.  

Let us first consider a FIR equalizer, which obeys 

Eq. (4) with bk = 0 for all k. Unfortunately, an 

equalizer of this kind is severely limited as the 

combination terms of x(n) always lead to a residual 

intersymbol interference element that cannot be 

eliminated. For example, for a channel h = 1 + z
-1

, or 

in vector notation, h = [1 1], a two-tap FIR filter can 

use the samples x(n) = s(n)  s(n-1) and x(n-1) = s(n-

1)  s(n-2). If the equalizer selects only either x(n) or 

x(n-1), there will be clearly no equalization. The same 

is valid if the equalizer combines both terms: s(n-2) 

will remain, causing a non-negligible degree of error. 

Indeed, for real-valued FIR equalizers, the residual 

interference also exists, although in tolerable values. 

Thus, satisfactory equalization over a Galois Field 

strongly demands general (IIR) filters.  

Given a probability p and a channel h, all possible 

solutions for an IIR filter of sufficient order were 

tested and the best according to the maximum 

probability error metric, estimated with Eq. (5), were 

chosen. The results are presented in Table 1. 

 

p 

Channel h Optimum Filter error 

a b a b (%) 

0.5 [1 0 0 1 1] - [1] [0 0 1 1] 0 

0.2 [1 1 0 0 1] - [1] [1 0 0 1] 0 

0.9 [1 1 0 1 1] - [1] [1 0 1 1] 0 

0.1 [1 1 0 1 1] - [1] [1 0 1 1] 0 

Table 1. Results - Supervised Equalization 

 

Remembering that the first coefficient b1 is a logical 

operation over y(n-1), it is possible to see that the 

channel inverse was always obtained, which allowed a 

perfect estimate of the transmitted signal to be 

reached. Notice that the performance, as expected, 

does not depend on the probability p. 

In order to analyze the soundness of the metric 

estimator shown in Eq. (5) for a perfect inversion case 

– the last one described in Table 1 – we present, in 

Fig. 3, the value of the relative frequency of zeros in 

the error signal for all possible equalizer denominator 

coefficients (ranging from [0 0 0 1] to [1 1 1 1]). For 

the sake of simplicity, the four-bit combination is 

shown in terms of the equivalent decimal. It is clear 

that there is a single optimal solution (#11 – [1 0 1 

1]), which is exactly the channel inverse. 

For the prediction problem, simulation results 

are presented in Table 2. In this case, we perform the 

prediction in order to use the prediction-error filter in 

the role of blind equalizer [7]. In this case, ideally, the 

prediction error should be identical to s(n). In Table 2, 

error (%) is relative frequency of ones in e(n) while 

error PEF(%) refers to the relative frequency of errors 

in the comparison between e(n) and s(n). Notice that, 

in all cases, error (%) is approximately equal to 

 1 – p and PEF(%) is null, which reveals that the 

prediction task was successfully fulfilled. In this case, 



as discussed in the end of Section 3, we had to use the 

entropy of the error signal in the role of filtering 

criterion. The associated cost function for all 12 

possible combinations (numerator ranging from [0 1] 

to [1 1] and denominator ranging from [0 0] to [1 1]) 

associated with the third case presented in Table 2 is 

shown in Fig. 4. Notice that the minimum value, as 

expected, is very close to the entropy for p = 0.1, 

which is 0.469 bits. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
(0

)

(b)
10  

Figure 3. Cost Function – Supervised Equalization 
 

p 

Channel h Optimum Filter error error 

a b a b (%) PEF(%) 

0.8 [1 1] - [1] [1] 0.189 0 

0.2 [1 1 1] - [1 0 1] [0 0 1] 0.823 0 

0.1 [1 0 1] - [0 1] [0 1] 0.899 0 

0.4 [1 0 1 1] - [0 1 1] [0 1 1] 0.620 0 

Table 2. Results - Prediction 
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5. Conclusions 
 

In this work, we proposed an extension to the 

problem of optimal linear filtering – specifically in the 

contexts of equalization and prediction – to signals 

and systems over Galois fields. The obtained results 

show the viability of this extension for a number of 

scenarios, thus encouraging further research efforts, 

which may include (i) a deeper analysis on the 

evaluation metrics and their validity, (ii) building 

general (ARMA) forecasting models for binary and 

genomic data and (iii) building extensions of the 

Karhunen-Loève transform. It would be also 

interesting to consider, for noisy and underdetermined 

cases, possible connections with coding theory. 
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