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Abstract — The problem of optimal prediction was developeedominantly under the aegis of the assumption
that all signal samples and system parameters ghmmiteal or complex numbers. In this work, we mfewan
extension of this problem to the framework of Eni{Galois) fields through use of the classical atehant
framework defined by stochastic models - AR, MA &RIMA. Simulation results in the context of predictio
based equalization are presented for a numberobsios based cBF(2).
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1. Introduction

The origins of adaptive filtering theory can bectrd to the seminal contributions of Norbert Wiener
and Andrey Kolmogorov, formalized in the first haif the last century [1][2]. From these
contributions, it became possible to define inicteams what is meant by optimal filter in the c®xit

of stationary information signals. In the last falecades, however, a new research branch sprang,
entitled as unsupervised signal processing, beiragacterized, in simple terms, by an approach to
identification and inverse problems based esséntial the explicit or implicit use of higher-order
statistics.

In view of the nature of the problems that werekledt using filtering methods, the field was
developed predominantly under the aegis of thenagan that all signal samples and system
parameters should be real or complex numbers.cEntainly suffices for many practical applications,
but, as is indicated by the parallel developmertoafing theory, there remained a clear gap inssar
extensions to inherently discrete sources and rtisiomodels are concerned. Presently, interest in
sources of this type can be justified in theorétieems — e.g. in terms of building a more complete
view of the potentialities inherent to the veryadef filtering — and also in practical terms — neti
for instance, the existence of enormous binary gedomic databases, as well as of inherently
discrete problems related to bio-inspired compufgjg

Yeredor, Gutch, Gruber and Theis [4] took the ahitsteps in the direction of extending
unsupervised signal methods to encompass the pdtiad of the formalism of finite or Galois fields
being this repertoire later enlarged by the contitin of Silva et al. [5]. These works, nonetheless
were restricted to spatial filtering. In view ofigifact, the objective of this work is to formulates
optimal filtering problem — focusing on the task mkdiction, in the context of finite fields, thus
emphasizing the temporal aspects of this noveldrafiinformation processing.

2. Optimal Prediction: Predictors and Prediction-Error Filters

The prediction problem is, in simple terms, thaesfimating, from a signa{n) and delayed versions
thereof, the value of a future signal sample, bke+1). Such process can be defined within the
optimal filtering framework in terms of the desigha suitable predictor, as illustrated in Fig. 1.

The predictor output ig(n) — an estimate ok(n+1) generated as the outcome of a mapping
applied to the set of delayed samples. The needsiimating the future values of the time series in
guestion can be importamer se but, in this work, it will be a path towards parhing the
deconvolution of a signal of interest. This is asantial step whenever information signals are
corrupted by a process of superposition of timepasy which can be translated as an operation of
convolution between these signals and a linear-timariant system. The key to performing blind
deconvolution is to use a prediction error filt®EF) in the role of inverse filter or blind equaliz
Such approach is based on the property that arlpredictor designed in accordance with the second-
order Wiener / Kolmogorov framework yields an outptror e(n) that can be significantly “white”.



Assuming that the signal of interesin) is a transmitted signal composed of independewt a
identically distributed (i.i.d.) - hence uncorrgdt/ white - samples, it is intuitive to expectttha
white prediction error signa&(n) — see Fig. 1 - might be a reliable estimate(iof.

In view of the difficulties arising from the needrfadapting blind equalization paradigms to
inverse problems defined over Galois fields, treaidf dealing with optimal prediction become very
attractive. This point, which was raised in a pnitiary work written by us [6], will be further
investigated later on.
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Figure 1. Prediction Setup

3. Prediction Models over Galois Fields

A proper analysis of the ideas outlined in the fmes section will require from us the adaptation of
classical prediction models to the idiosyncrasie&alois fields. Finite fields with a number of
elements are commonly denoted@gq). An illustrative example of Galois field GF(2): the set of
numbers {0,1} with the “usual” product operationdatihe exclusive-OR (XOR) operation, in analogy
to conventional summation

Mathematically, it is perfectly possible to devekystem models in harmony with the features of
inherently finite / discrete sources and the opematselected to form the field. In view of thistait
becomes possible, for instance, to define an opfittexr for GF(g). Convolution can be duly adapted
and the error signal can be defined, without sigaift modifications, as the difference betwelém)
andy(n) within the field:

gn) = d(n) 0 y(n) (1)

where y(n) is the inverse element gfn) with respect to the sum i.g(n) O y(n) =0. To distinguish

the operations, we shall henceforth use the syr@db denote addition over the finite field, while
the traditional symbol ‘+’ will denote the usuainsu

Proceeding with the extension procedure, to desdtile filter structure, we will appeal to a
classical and graceful approach of Stochastic Modeie representation of a stochastic process by a
model was first performed by Yule, in 1927. There three kinds of models that lead to a stochastic
stationary signal: the autoregressive (AR), the impaverage (MA) and the mixed autoregressive-
moving-average (ARMA). The three models are th&erfistructures that we shall analyze in the
context of finite fields. Then it is necessary &fide a criterion to determine the coefficientstiod
filter, in an optimal sense.

The adoption of Wiener's criterion cannot be carimn to filtering overGF(g) because the
product between the variable realization (f(q)) and the associated probability (R) is not
established. To replace this absence, a differatgrion must be chosen, thus we propose the
minimization of the entropy of the error:

H(©=- > p.)log[p. ()] )

IOGF(q)

The maximum entropy distribution of a random vaeativer GF(q) is the uniform distribution.
There is a property, analogous to the central lith#orem inR, that states that the sum of
independent random variables oW&F(q) results in a distribution that is “more uniform]] If we
assume thad(n) is i.i.d. and non-uniform we can infer that tlmeolutional sum effect of the channel
leads to a “uniformization”. Then we conjecture ttte filter that obtains a minimal entropy
configuration in its output is capable to remove thannel effect and recover the original siggral.



4. Results

Considering initially the models of a stochastiogass, i.e., the AR, MA and ARMA models, we first
generate a sourc#n) i.i.d. overGF(2) and apply to it a linear combination or convaduati according
to the models. We wish to recover the best estimft&n) at the output of the stochastic model.
Indeed, it is always possible to completely recdkieroriginal source. Since the solutions possiddi
also belong to a finite field, we can exhaustivedarch for the best one. The resulting coefficiefts
the model that minimizes the entropy are givenah.Tl, in which we use a vector notation for Zhe
transform [6].

Table 1. Results — Stochastic Models.

Stochastic Convolution Coefficients Minimum
Model w b Entropy [bits]
1
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Figure 2. Entropy — ARMA model.

The minimum entropy indicated in Tab. 1 is relatedhe entropy of the model output. Since the
source is totally recovered, the respective vakighe entropy of(n), which was chosen to be
different from the worst case, i.e., with maximuntrepy.

In order to analyze the soundness of the metrimatir, we take the ARMA case — last one
described in Tab. 1 - and present, in Fig. 2, tdaesof the measured entropy of the output sifpral
all possible model coefficients/(@@andb ranging from [0 0 0] to [1 1 1]). For the sakesahplicity, the
three-bit combination is shown in terms of the gglént decimal. It is clear that there is a single
optimal solution=#6 —[1 1 0] andb = #3 — [0 1 1]).

5. Conclusion

In this work, we proposed an extension to the gnobbf optimal prediction to signals and systems
over Galois fields through use of the classical AR and ARMA models. The obtained results
show the viability of obtaining the zero forcingnetition in all cases, which motivate us for further
research efforts, including the extension to thebfam of convolutive mixtures. It would be also
interesting to consider, for noisy and underdeteetlicases, possible connections with coding theory.
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