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A Novel Entropy-based Equalization Performance

Measure and Relations to Lp-Norm Deconvolution
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Abstract— A crucial performance measure in the context of
the problem of deconvolution is the level of residual intersymbol
interference (ISI), a metric that is classically understood and
formulated in terms of an L2-norm perspective. In order to
enhance the scope of ISI quantification, we propose a novel
entropy-based performance measure, which is called Entropy-
based Intersymbol Interference (HISI). Interestingly, this metric
is related to an information-theoretic relationship between source
distribution and Lp-norms when the error entropy is used as
a basis for optimal filtering. The new metric is analytically
investigated and illustrated with some simulations.
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mance measure, Lp-norms, information-theoretic learning, en-
tropy.

I. INTRODUCTION - DECONVOLUTION AND

PERFORMANCE METRICS

The inverse problem known as deconvolution plays a central

role in modern signal processing theory. This is, at least in part,

a consequence of the occurrence of this problem in research

fields as diverse as astronomy, biomedicine, speech, seismic

and communications [1].

The origins of statistical deconvolution methods can be

traced to the seminal contributions of Norbert Wiener and

Andrey Kolmogorov, formalized in the first half of the last

century [1]. From these contributions, it became possible to

define in clear terms, in the context of stationary information

signals, optimal deconvolution conditions in terms of the

mean-squared error (MSE) or, in other words, from an L2-

norm perspective.

A number of important theoretical results associated with

the use of the L2-norm were obtained over the past decades

[2] - mainly under the aegis of the classical hypothesis of

Gaussianity - and these results naturally led to performance

measures that intrinsically rely upon quadratic entities, such

as the already mentioned MSE, the signal-to-noise ratio (SNR)

and the degree of intersymbol interference (ISI).

However, in the presence of sparse and uniformly-

distributed error signals, it was shown that the use of Lp-norms

distinct from the L2 can lead to certain improvements for

estimation and deconvolution problems [3], [4], [5]. Indeed,
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these promising results have contributed to encourage the

proposal of deconvolution criteria based on other Lp-norms.

Notwithstanding, when it comes to evaluate the performance

of Lp systems, the existing metrics, like MSE, SNR and ISI,

can be misleading due to their tacit assumption of L2-norm

optimality.

Having these facts in mind, we propose, in this work, a

novel deconvolution performance measure that is able to en-

compass the peculiarities of the Lp-norms without privileging

any of the compared Lp-terms. The derivation will be based

on points of contact [5] between Lp-norms and a metric

belonging to the framework of information theoretical learning

(ITL) [6]. Focusing on seismic deconvolution and channel

equalization problems, we also present some properties of the

new metric, as well as elements of comparison with quadratic

ISI measures.

The organization of the paper is as follows. A brief back-

ground on the main obtained results by employing the Lp-

norms is presented in Section II. In Section III, we present the

novel performance measure, and, in the following, in Section

IV, some properties concerning the new metric are explored.

In Section V, we conduct some simulation for the problem

of channel deconvolution and compare the new metric to the

conventional ISI. Finally, the conclusions and further research

interests are summarized in Section VI.

II. FUNDAMENTALS OF Lp-NORM DECONVOLUTION

The problem of deconvolution can be stated as follows.

Given an observed signal x(n) and a reference signal s(n−d) -

where d is a given delay -, as illustrated in Fig. 1, it is desired

to find a filter with parameter vector w that minimizes the

Lp-norm of the error signal, given by

‖e(n)‖p =

(

∑

n

|s(n− d)− y(n)|p

)1/p

(1)

Fig. 1. Deconvolution scheme.

Traditionally, the filter of interest is a finite impulse response

(FIR) filter, and preference for the L2-norm in (1) comes from

the historical fact that the resulting cost function is convex and

there is a closed-form solution for its global minimum [1].

However, it is already known, as outlined in Section I, that
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to consider alternative norms can be relevant in this kind of

estimation problem, especially when a priori knowledge about

the involved signals, such as the distribution of the additive

noise and the distribution of the input signal [3], [4], [5], is

available.

In view of these facts, analogously to what has been done in

[5], the impact of adopting alternative norms will be evaluated

for two cases: seismic deconvolution and channel equalization.

These two problems are related by the characteristics of the

involved signals, as represented in Tab. I. For the seismic de-

convolution case, the earth reflectivity, in general, is assumed

to be white and sparse. On the other side, the transmitted

message in channel equalization is assumed to be white, and

the message is composed of symbols belonging to a finite

alphabet.

TABLE I

SIGNALS INVOLVED IN THE SEISMIC DECONVOLUTION AND THE

CHANNEL EQUALIZATION PROBLEMS.

Signal Seismic deconvolution Channel equalization

s(n) earth’s reflectivity transmitted message

impulse response impulse response
h(n) of the of the

seismic wavelet communication channel

x(n) seismic trace received message

The main results obtained for these two problems can be

summarized by illustrating the cases where the norms L1, L2

and L∞ are employed. To do so, two different source models

will be considered: a sparse signal and a signal with discrete

uniform distribution, both in a noiseless scenario and for a

generic channel with transfer function H(z) = 1+h1z
−1. We

make use of a two-tap filter W (z) = w0+w1z
−1 or, in vector

notation, w = [w0 w1]
T for performing deconvolution.

In this context, we adopt a signal s(n) given by a single

impulse with amplitude equal to one as a representative sparse

signal and, as for the signal with discrete uniform distribution,

it is assumed to be a {+1/-1} independent and identically

distributed (i.i.d.) Bernoulli random variable. For both cases,

we present the optimum filter according to each criterion in

Section II, calculated as in [5].

For the sparse signal case, the best filter is that capable of

producing the sparsest signal. In order to identify the suitable

norm, we illustrate the combined channel-equalizer impulse

response c = h ∗ w, where ∗ denotes convolution, for the

sparse signal in Fig. 2. We can see that the L1-norm is the

one with less resulting non-zero taps for c, which culminates

in a sparser signal at filter output. For the second case, the

uniformly-distributed signal, the best filter is that capable of

producing the signal with less states. Now, to select the best

filter, we present the probability density function (PDF) of the

output signal for the uniformly-distributed signal in Fig. 3. It

is clear that, for this case, the L∞-norm provides the most

desirable solution.

Interestingly, the best solutions in each case are identical

with respect to the value of the filter coefficients, i.e. w =
[1 −h1]

T , which is obtained with the L1-norm for the sparse

TABLE II

FILTERS FOR DIFFERENT SIGNALS, OPTIMIZED FOR DIFFERENT NORMS.

Norm Sparse Uniform

L1 [1 − h1]
[

1 −h1

1+|h1|

]

L2

[

1+h2

1

1+h2

1
+h4

1

−h1

1+h2

1
+h4

1

] [

1+h2

1

1+h2

1
+h4

1

−h1

1+h2

1
+h4

1

]

L∞

[

1+|h1|

1+|h1|+h2

1

−h1

1+|h1|+h2

1

]

[1 − h1]

(a) L1 (b) L2 (c) L∞

Fig. 2. Combined response for the sparse source.

(a) L1 (b) L2

(c) L∞

Fig. 3. PDF of the output of the filters for the uniform signal.

signal and with the L∞-norm for the uniformly-distributed

signal. It is important to remark that, for both cases, the

definition of “best” here can be seen from the conceptual point

of view of the error entropy [5]. In that sense, the output with

less uncertainty / entropy is the one most similar to the source.

This will be crucial in the development of a performance

measure when dealing with Lp-norms, as will be seen in the

next section.

III. PROPOSAL - THE ENTROPY BASED INTERSYMBOL

INTERFERENCE

In Section I, we have mentioned that the possibility of

dealing with criteria based on norms alternative to the L2 can

lead to relevant performance improvements if the source signal

distribution is known. However, the classical performance

evaluation metrics, like SNR, MSE and ISI, are strongly

related to the L2 framework, since they have been proposed

under the assumption of the quadratic optimality. For example,

the usual performance evaluation measure in deconvolution is

the ISI, which makes use of a complete knowledge of the

channel:

ISIdB = 10 log
10

(

∑M
i=0

|ci|
2

)

−maxi |ci|
2

maxi |ci|2
, (2)

where c is assumed causal and M is the maximum length of

c. Basically, this measure is the ratio between the interference
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energy and the signal energy, which gravitates around the L2-

norm.

Hence, the use of different norms for error quantification

is not trivial in view of the difficulty of defining “unbiased”

evaluation metrics. In light of this, the present work gives a

step in that direction by seeking a measure able to properly

quantify the characteristics of a given problem. Interestingly,

the use of ideas and concepts belonging to the field of infor-

mation theoretical learning (ITL) [6] can contribute to this task

as they deal with statistical information in a more extensive

manner, being not restricted to the L2-norm. More specifically,

Shannon’s entropy measure deserves special attention within

this framework, since it is also able to establish points of

contact with different norms - as pointed out in [5] - when

applied to the error signal.

The combination of the above mentioned ideas culminates

in the proposal of the following equalization performance

measure, which will be called Entropy-based Intersymbol

Interference (HISI):

HISIdB = 10 log
10

H(α|c|)

= 10 log
10

(

−

M
∑

i=0

α|ci|log2 (α|ci|)

)

, (3)

where H(·) denotes Shannon’s entropy and α = 1/
∑

i |ci|
is a unit-norm correction term that allows the combined

response to be treated as probability distribution. A pos-

sible interpretation for this novel evaluation metric is that

it numerically translates the uncertainty associated with the

combined channel-equalizer impulse response. A desired result

in channel deconvolution is to keep the HISI as low as possible

in order to reduce the presence of interference components. In

the following, we will discuss some additional implications

concerning this measure.

IV. HISI APPLIED TO Lp-NORM DECONVOLUTION

In order to analyze a representative set of potentially practi-

cal situations, the HISI measure will be studied for two cases:

a case in which perfect deconvolution (i.e. a zero-forcing (ZF)

condition) is attainable and a case in which this is not possible.

A. Zero-Forcing Condition

Ideally, it is desired that the equalizer be able to perfectly

invert the convolutional effects posed by the unknown system.

In such case, the combined channel-equalizer impulse response

is given by ci = δ(i − τ), being δ(·) the Kronecker delta

function and τ a given delay. This condition is known as ZF

condition. In such case, the value for the measured HISI tends

towards −∞ - a direct consequence of the fact that entropy is

null when there is no uncertainty. The same singularity occurs

for the conventional (quadratic) ISI measure. It is important

to remark that both measures do not depend on a scale

factor imposed to the filter coefficients, as demonstrated in the

Appendix. With this in view, it is possible to state that, when

the ZF condition can be attained, the optimal solution leads

to the combined channel-equalizer impulse response given by

ci = δ(i − τ), which corresponds to the minimum ISI and

HISI values.

To illustrate this, we consider the scenario for which the

ZF condition is attainable, constituted by an all-pole channel

H(z) = 1/(1+0.6z−1) without additive noise and an inverse

FIR filter with two coefficients. In this case, the filter H(z)

can be perfectly inverted by the filter w = [1 0.6]T , which

provides the minimum ISI and HISI.

Therefore, it is also expected that the minimization of any

Lp-norm provide the same optimal solution. To verify this, we

present, in Fig. 4, the contour plots for the L1, L2 and L∞

norms. The source is considered, at first, a sparse signal and,

later, a signal with discrete uniform distribution. The samples

of the first signal s(n) are given by i.i.d. Bernoulli Gaussian

random variables with probability of zero equal to 0.95, and

the samples of the second signal are given by i.i.d. Bernoulli

{+1/-1} random variables.

In this case, Fig. 4 shows that all minima for the chosen

norms are exactly the same, i.e. w = [1 0.6]T , indicating that

the Lp-norm is a consistent criteria for cases with an attainable

ZF conditions.
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Fig. 4. Contour plots of the Lp norms for the sparse signal (top) and the
uniform signal (bottom). L1 (left), L2 (middle), L∞ (right).

B. Non-Attainable Zero-Forcing Condition

In cases for which the ZF condition cannot be attained, the

combined channel-equalizer impulse response c is composed

of more than a single spike, and the differences between ISI

and HISI become more pronounced. A direct way to visualize

their behavior can be obtained if we observe the values of these

metrics by evaluating all possible solutions for the equalizer.

For a minimum-phase channel with impulse response H(z) =
1 + 0.6z−1, we adopt a two-tap equalizer of the type w =
[1 w1]

T (as the performance metrics are invariable to a scalar

factor in the filter coefficients), in which we vary w1 from −3
to 3. The normalized values for the ISI and HISI are presented

in Fig. 5. It is clear that the points of minima differ such

that the optimum filter coefficients that minimize the ISI and

HISI are wISI = [1 −0.4412]T and wHISI = [1 −0.6]T ,

respectively.
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Fig. 5. Normalized ISI/HISI for a varying filter.

The resulting combined channel-equalizer impulse response

for wISI and wHISI is exactly as in Figs. 2(b) and 2(a),

respectively. While the first solution reflects the optimality

of Wiener filters, the second one emphasizes the combined

response c that has the least number of impulses so that the

uncertainty or entropy of c can be minimized.

In this case, the optimal solutions for the filter associated

with each norm are all different. If we consider the same sce-

nario employed in the ZF case - except for the channel, which

is now an FIR minimum-phase filter H(z) = 1 + 0.6z−1, we

can see that the minima for L1, L2 and L∞ in the contour

plots in Fig. 6 are those of Tab. II and the desired solutions

between them are that exactly equal to wHISI = [1 −0.6]T

i.e. the optimal filter that minimizes the HISI.

It is possible to state that, given a second-order channel

of the form H(z) = 1 + h1z
−1 and a two-tap inverse FIR

model, the HISI will always provide an optimal solution for

the coefficients of the type wHISI = [1 −h1]
T , which is in

consonance with the best solutions pointed out for the Lp-

norm minimization presented in Section II.

In summary, the correspondence between the optimal solu-

tions for the inverse filter according to the minimization of

HISI and the minimization of the L∞-norm for uniformly

distributed signals and the L1-norm for sparse signals, for

both attainable and non-attainable ZF conditions, lead us to

conclude that the use of the L∞- and the L1-norm, considering

the specific scenario, reaches the core of the concept associated

with the minimization of channel uncertainty. Moreover, these

connections indicate that the HISI measure can serve as a

good equalization performance metric when the optimization

criterion is based on generic Lp-norms.

V. SIMULATION RESULTS

In order to test the effectiveness of the HISI as a perfor-

mance measure in the context of adaptive channel equaliza-

tion, we consider the two scenarios already exposed in this

work, those characterized by sparse and uniformly-distributed

sources. Furthermore, we will present elements of comparison

with the conventional ISI metric. In order to perform parameter
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Fig. 6. Contour plots of the Lp norms for the sparse signal (top) and the
uniform signal (bottom). L1 (left), L2 (middle), L∞ (right).

optimization under different norms, it will be necessary to em-

ploy adaptive algorithms, such as the sign-error LMS (Least-

Mean-Squared), the LMS, and the LMF (Least-Mean-Fourth),

for the minimization of the L1, L2 and L4 norms, respectively,

in which the last is considered as an approximation for the

L∞-norm. More details about these algorithms can be found

in [7].

For the first scenario, the source signal s(n) is generated by

an i.i.d. Bernoulli Gaussian random variable with probability

of zero equal to 0.95 and imposed to the minimum-phase

channel H(z) = 1 + 0.6z−1 (without additive noise). We

employ a two-tap filter initialized at zero. The chosen step-

sizes were µL1
=µLMS=0.001 and µL4

=2e−5, so that the

variance of their respective filter coefficients were similar after

convergence. The performance measures in terms of ISI and

HISI when training these filters are shown in Fig. 7, as an

average of 50 experiments.

With respect to ISI, the sign-error LMS (L1-norm) carries

a higher interference level, while LMS (L2-norm) seems to

be the optimum case, followed by the LMF (L4-norm). Now,

when considering the performance in respect to HISI, we see

that the sign-error LMS algorithm is the only one that attains

lower levels of HISI, which is in consonance with the desired

solution for sparse sources. The other methods converge to

positive values of HISI. It is important to remark that the HISI

= 0dB case is equivalent to a two-tap combined response

representative of a uniform probability distribution (i.e. same

amplitude), while, for ISI = 0dB, it corresponds to equal

energy (or quadratic) levels for signal and interference. Also,

it is clear that there is no direct correspondence between the

values for ISI and HISI, since the first one presents larger

variations while the second remains closer to zero. For this

reason, it is not strictly necessary to express the HISI in dB,

but we shall do so for a better comparison with ISI.

For the second scenario, we keep the same configuration

of the sparse case, except for the source signal s(n), which

now is composed of {+1/-1} i.i.d. samples. The step-size for

LMF is µL4
=0.002, while the others remain unchanged. Fig.
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Fig. 7. ISI and HISI performance for a sparse source.

8 shows the resulting ISI and HISI performances for this case.

We see that, again, the LMS algorithm converges to the

lowest ISI level and, now, the LMF presents the highest level

of residual ISI. In terms of HISI, on the other hand, the

LMF is the algorithm that is able to attain the lowest levels

of interference, agreeing with the desired solution for the

uniformly distributed source case. However, the residual HISI

interference after convergence is larger than that achieved with

the sign-error LMS in the sparse case, which can be explained

by the fact that the L4-norm is only an approximation of the

L∞-norm. The HISI, as a performance measure, was, in the

analyzed cases, capable of successfully extracting the filter

solution associated to the most suitable norm - given the

source signal distribution - and, consequently, to reduce the

uncertainty with respect to the combined response.
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Fig. 8. ISI and HISI performance for a uniformly distributed source.

VI. CONCLUSIONS

In this work, we have proposed a novel entropy-based

equalization performance measure, the HISI, which is suitable

to describe the problem of deconvolution when the use of

general Lp-norms is considered. We have shown that the

new measure is a promising solution from the standpoint

of successful problem characterization, by indicating that the

minimization of HISI coincides with the optimal solution of

the L∞-norm for uniformly distributed signals and with the

solution of L1-norm for sparse signals.

The HISI measure is associated, in essence, to the minimiza-

tion of the combined response channel-equalizer uncertainty;

thus, we can conclude that the use of the L∞- and the L1-

norm, considering specific scenarios, can sufficiently extract

from the received signal the mentioned uncertainty. As ex-

tensions of this initial effort, we highlight the possibility of

establishing points of contact between error entropy criterion

and HISI, given the connections between Shannon’s entropy

and the norms [5]. Also, we intend to provide a blind esti-

mation for HISI, as well as a blind algorithm based on this

metric.
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APPENDIX

We show bellow that the performance measures ISI and

HISI are invariant of a scale factor, say β, on the filter

coefficients w. It is possible to state that h ∗ (βw) = βc.

Based on this, we analyze the ISI metric,

ISI(βc) =

(

∑M
i=0

|βci|
2

)

−maxi |βci|
2

maxi |βci|2

=
|β|2

|β|2

(

∑M
i=0

|ci|
2

)

−maxi |ci|
2

maxi |ci|2
= ISI(c),

where we have suppressed the term 10 log
10

for the sake of

simplicity. In respect to the HISI, we should first determine

the unit-norm correction. Originally, α = 1/
∑

i |ci|, but with

a scale factor, it is possible to express:

1
∑

i |βci|
=

1

|β|
∑

i |ci|
=

α

|β|

Substituting in the HISI formula, Eq. (3), we obtain:

HISI(βc) = H(
α

|β|
|βc|) = H(α|c|) = HISI(c).


