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Abstract—This work, which is intended to be a celebration to 

the 35 years of the constant modulus criterion and to the impact 

it had in the development of our research group, presents both 

tutorial elements and a discussion of published and unpublished 

results that, hopefully, will generate new reflections and 

perspectives on this important topic. 
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I.  INTRODUCTION 

 
“To see a world in a grain of sand...”, William Blake 

 

This work is dedicated to Dominique Godard. 

 
The problem of single-input / single-output (SISO) linear 

channel equalization can be stated as follows: a signal ���� is 
transmitted by means of a communication channel with 
impulse response ℎ���. It is received as a distorted (and also 
possibly noisy) version	����. A filter, called equalizer, is used 
to compensate for the aforementioned distortions in order to 
recover an estimate of ���� (up to delay and scaling 
modifications). 

Considering that the equalizer is a linear filter, there 
remains the task of adapting its free parameters. This is usually 
done by defining a criterion and optimizing an associated cost 
function. If the criterion includes information about samples of 
the desired signal (or other “strong” priors), it is said to be 
supervised. If it is solely based on more general statistical 
information, it is termed unsupervised or blind. 

In this work, we discuss that which is probably the most 
studied blind approach: the constant modulus criterion, which 
was effectively proposed 35 years ago and still remains a 
challenging and prominent research topic. The work is a 
“strange” creature, in that it is neither exactly a tutorial nor a 
report of novel results, but a mixture of both, in a personal (and 
sentimental) view on a technique that has been of great 
importance in the shaping of us all as researchers and of our 
group. We planned it to be a tribute to the pioneer Dominique 
Godard and an invitation to all interested researchers to take 
part in the search for a deeper understanding of blind methods. 

The work is structured as follows. In Section II, Godard’s 
original proposal is recapitulated. In Section III, some remarks 
about the constant modulus cost are presented: the indicative 
curves of the null gradient, the polynomial formulation and a 
novel initialization heuristic. Section IV provides further 
investigation concerning Ding’s minima. Some extensions are 

described in Section V. Finally, the conclusions of the work are 
summarized in Section VI. 

II. THE CONSTANT MODULUS CRITERION 

The constant modulus criterion first appeared in a paper by 
Dominique Godard, called “Self-Recovering Equalization and 
Carrier Tracking in Two-Dimensional Data Communication 
Systems”, published in 1980 [1]. A central point of the 
proposal is to have the removal of intersymbol interference 
(ISI) (and noise) independently of the data constellation and of 
phase recovery. This explains the generic cost function below: 

     �	�
� = 	� ��	 	− 	 |����|	���	, (1) 

where 
 is the equalizer parameter vector, ���� is the 
equalizer output and �[∙] is the statistical expectation operator. 

Notice that �	�⋅� is a sort of dispersion metric, and that it 
focuses exclusively on the modulus of the equalizer output ����. The value of �	 is shown to be: 

								�	 	= �[|����|�	]	�[|����|	] 		. (2) 

When �	 = 	2, one obtains the constant modulus (CM) 
criterion, being the name associated with the work of Treichler 
and Agee [2]. For constant amplitude modulation schemes, like 
the PSK modulation, the calculation of �� is trivial. 

Using the stochastic gradient, the constant modulus 
algorithm (CMA) is obtained from the steepest descent 
approach (henceforth we will consider only real-valued signals 
and systems): 

					
�� + 1� 	= 	
��� 	+ 	 [��	–	�����]����"��� (3) 

where "��� is the input vector and 
��� is the equalizer 
parameter vector at the n-th iteration. 

In his original work, Godard showed that the criterion was 
consistent in that it had only zero-forcing solutions for the case 
of a doubly-infinite structure (i.e. in a condition of perfect 
inversion). Later, due to the work of Ding, Li, Johnson, Regalia 
and others, the properties of the CM criterion for the case of 
finite equalizers were studied in depth [3-6]. 

In this work, we present a personal perspective of the CM 
criterion, which will comprise views regarding the CM cost 
function developed by the research group, like the curves 
associated with the null gradients and the polynomial 
formulation (including a novel initialization heuristic), an 
original appreciation of Ding minima and, finally, an overview 
of some CM extensions along its 35 years of existence.   
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III. THE CM COST FUNCTION: SOME REMARKS 

If one consider real-valued signals and systems and binary 
(+1/-1) independent and identically distributed (i.i.d.) signals, 
the CM cost function becomes: 

�#$ = � �1	–	��������			 
																																		= 	1	– 2�[�����] 	+ 	�[�%���]. (4) 

Taking the gradient of (4) and equaling it to the null vector, one 
obtains: 

          &
	 = 	�[�'���"���] (5) 

where & = E["���"���)] is the autocorrelation matrix of the 
signal vector "���. Let us now recall the form of the Wiener-
Hopf equations: 

           &
	 = 	* (6) 

where *	 = 	�["���+���]. It can be seen that the role of the 
Bussgang estimator [7] is to use, in a certain sense, the 
correlation between �'��� and "��� as a substitute for the 
cross-correlation between ��� − +�, being + an equalization 
delay, and "���. There are two points here worthy of attention: ���� can, potentially, approximate the transmitted signal at any 
delay, which means that the CM criterion will tend to 
accommodate itself to the structure of the channel [8]. Another 
point is that the fact that ���� depends on 
 creates an 
equation of third order that is difficult to treat. Let us try to 
analyze it in more detail for a “simple” – but non-trivial – case, 
that of a two-tap equalizer. 

Firstly, it can be shown that (4) becomes: 

�#$�
� 	= 	1	– 2E[,-������ + 2,-,.������� − 1� 
																						+,.����� − 1�] + E[,-%�%��� 
																						+4,-',.�'������ − 1� 
																						+6,-�,.���������� − 1� 
																						+4,-,.'�����'�� − 1� + ,.%�%�� − 1�]	. 

(7) 

The equations for the gradient are: 

1�#$1,- = �[−4,-����� 		− 	4,.������� − 1� 
																							+	4,-'�%��� 	+ 	12,-�,.�'������ − 1� 
																							+	12,-,.���������� − 1� 
																							+	4,.'�����'�� − 1�] = 0 

(8) 

 and 

1�#$1,. = �[−4,.���� − 1� − 4,-������� − 1� 
																		+4,.'�%�� − 1� 	+ 12,-,.������'�� − 1�	 
																		+	12,-�,.��������� − 1� 
																		+4,-'�'������ − 1�] = 0. 

(9) 

This system of equations is quite tricky, and we will not 
attempt to solve it directly. However, it is possible to use both 
equations to eliminate either the term ,-' or the term	,.', 
creating a second-order equation on the respective variable, 
which can be solved using Bhaskara’s formula. Figure 1 shows 
both equations as curves and their intersection generates all the 
minima, the saddle points and the maximum at the origin. 

 
Fig. 1.   Contours of the CM Cost Function and both Curves that Generate a 

Null Gradient 

Perhaps an additional substitution could lead to formulas 
for generating the values of ,- and ,., but it would probably 
bring little insight regarding the nature of these solutions due to 
its complexity. The symmetry of these curves, anticipated in 
the structure of (8) and (9), seems to reveal this nature more 
elegantly albeit in a less formal way. 

 

A. Polynomial Formulation of the CM Criterion and the 

Derived Lower Bound 

In [9], a polynomial formulation of the CM criterion was 
proposed. It is based in considering, in (4), υ��� 	= 	 ����� 	=	,-������ + 2,-,.������� − 1� +	,.����� − 1�, which 
generates a constrained problem based on the cost function: 

�#$ 	= 	� �1 − υ������ 	 .	 (10) 

If the constraint regarding the weights is relaxed, it is possible 
to modify υ(n) so that it becomes: 

υ3��� 	= 	4-����� + 4.������� − 1� 
																													+4����� − 1�	.	 (11) 

The solution to the problem becomes then analytical, a Wiener 
solution with &5 	= 	�["3���"3���)] and *3 	= 	�["3���], 
where 

"3��� = [����� ������� − 1� ���� − 1�	])	.	 (12) 

This means that �#$ ≥ 	1–*3)&37.*3, being equality reached, 
for sure, when perfect channel inversion is possible, i.e., it is 
possible to have �#$ = 0. 

The lower bound 1–*3)&37.*3  is an interesting result, as it 
seems to work as a sort of blind estimator of “invertibility” of 
the channel (or the mixing system, if a MIMO case is 
considered). By performing estimates exclusively over the 
received signal, the index 1–*3)&37.*3  provides the user with a 
notion of the performance an unsupervised algorithm will 
attain in the case of interest, independently of any a priori 
choice of the equalization delay [9]. 

This formulation also allows a beautiful geometrical 
interpretation concerning any search process over the CM cost 
function: it is as if the algorithm were performing a search over 
a Wiener-like solution having to obey a constraint that relates 4-, 4. and 4�. We may use, for instance, 
 4.� = 44-4�, resulting in the surfaces shown in Figure 2. In a 
certain sense, this is a sort of attainable set [3] associated with 
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Fig. 2.   Domain of Attainable Solutions 

 

the CM for the two-tap case. Any version of the constant 
modulus algorithm will aim to reach the minimum of a 
paraboloid, but it will not be allowed to leave this surface. 
 

B. A Novel Initialization Heuristic 

The unconstrained Wiener solution for the polynomial filter 
is a useful tool to initialize the CMA, as shown in [9]. Here we 
propose a new initialization heuristic based thereon, and we 
shall compare it to the center-spike method, to a random 
initialization and to the heuristic proposed in [9], here referred 
to as Crossed Terms Heuristic (CTH). We will only consider 
the two-tap linear equalizer case for the sake of simplicity. 

Firstly, let us keep in mind that, in this scenario, 4- = ,-�, 4. = 2,-,. and 4� = ,.�. Our idea is to use �84��4.� to 
define whether ,- and ,. have equal or different signs (,- 
will be assumed positive without loss of generality) and to 
create the following solutions: 

             ,-,. = 94-,											,.,. = �84��4.�94� 
 

       ,-,� = 94-,												,.,� = :;�9:<	
														,-,' = |4.|294� , 								,.,' = �84��4.�94�	

(13) 

Finally, the initial solution will be an average of the three 
vectors. 

In Table I, we have the global convergence rate and the 
average CM cost obtained for all four methods, considering the 
channel with transfer function =�>� 	= 	1 + ?>7. + @>7�, 
being ?	and @ varied from 0 to 2, in steps of 0.041. It can be 
seen that, in terms of the global convergence rate, the classical 
center-spike method performs poorer than all considered 
methods. On the other hand, the CTH and the average of the 
three vectors perform similarly, almost reaching 95% of the 
global convergence rate, with a slight advantage for the CTH. 

TABLE I.  GLOBAL CONVERGENCE RATE AND AVERAGE CM COST. 

Initialization Conv. Rate Avg. CM Cost 

Center-Spike 31.99% 0.4599 

Random 39.61% 0.4558 

CTH 94.63% 0.4044 

3 Vectors Avg. 93.88% 0.4046 

In terms of the average CM cost, we observe that the higher 
the global convergence rate, the lower the CM cost. Indeed, it 
is clear that there is a reduction of the average CM cost from 
the center-spike and random methods to the CTH and the 3 
vectors average methods.  

IV. DING MINIMA REVISITED 

In the process of consolidating the analysis of the CMA, it 
was necessary to pass from the original analysis in the 
combined space performed by Godard [1] to an analysis in the 
parameter space. In the parameter space, Ding et al. [3] made 
an important analytical contribution in showing that for an all-
pole channel, the CM criterion, aside from the global optimum 
(perfect inversion), would have “shallow” local minima, unable 
to reduce any intersymbol interference. 

In some circles, this led to the belief that local minima in 
blind criteria were necessarily a drawback, even with the 
clarifying work of Johnson et al. [5]. To us, it soon becomes 
clear that this was not true: indeed, the Wiener solution is 
unique for a given equalization delay, but, for different delays, 
different degrees of performance are achieved [10]. The local 
minima of the CMA, for FIR channels, are often close to 
Wiener solutions associated with different delays, which can 
hardly be considered a drawback. 

Another point is that there are two original results of our 
group that put Ding minima under a new light: they occur in 
the Wiener criterion if the delay is a degree of freedom and the 
polynomial formulation exposed above guarantees, for all-pole 
channels, perfect initialization, making their effect null. Both 
points will now be looked at in more detail. 

 

A. Ding Minima in the Wiener Criterion 

Let us consider the equalization of an AR(N) channel given 
by the following transfer function: 

=�z� = 11 + αz7C	= 1 − αz7C + α�z7�C − α'z7'C +⋯ (14) 

For this particular channel, the values of the autocorrelation E��� of the channel output ���� are given by  

E��� = F�−α�
G

1 − α� � = 0,N, 2N,…
0 otherwise  (15) 

Evaluating the Wiener solution for this AR(N) channel, one 
would observe that the inverse of the correlation matrix R can 
be computed as 

&7. =
RS
SS
T1 0 ⋯ 0 α0 1 − α� 0 ⋱ 0⋮ 0 ⋱ ⋮ ⋮0 ⋱ 0 0 1 − α� 0α 0 ⋯ 0 1WX

XX
Y
 (16) 

and the cross-correlation vectors * for the first N + 1 values of 
the equalization delay are given by 

*Z[- = [1 0 0 ⋯ 0]\ 

*Z[. = [0 1 0 ⋯ 0]\ 

⋮ 
*Z[C = [−α 0 ⋯ 0 1]\. 

(17) 

These vectors give rise to the following Wiener solutions: 
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Z[- = [1 0 0 ⋯ α]\ 
Z[. = [0 1 − α� 0 ⋯ 0]\ 

⋮ 

Z[C = [0 ⋯ 0 0 1 − α�]\ 

(18) 

The first solution is the ideal case. The solutions for 0 < d < N	 have a single intermediate non-zero coefficient 
and, consequently, do not reduce ISI. If the delay is further 
increased, the pattern of bad solutions will repeat itself, with 
different non-zero coefficients.  

So, we have just proved that undesirable minima are not 
exclusively found in the CM criterion, but also in the classical 
Wiener paradigm. It is remarkable that the latter has also 
revealed a new class of bad minima, derived from the interval 0 < d < N. 

Let us now visualize the relation between CM and Wiener 
“bad minima” in a simple AR(1) case, by posing α = 0.6, and 
a MA(1) equalizer. Figure 3 establishes a comparison between 
CM and Wiener local minima. In this rather simple case, there 
are only ideal and bad minima, both of which can be identified 
from the contours. As expected, it is shown that the bad Wiener 
minima are collinear with the CM local minima. It is still 
possible to prove that the magnitude of the non-zero element of 
the Wiener minima decays exponentially with the equalization 
delay. 

 
Fig. 3.   CM Surface and Wiener Local Minima 

 

B. Perfect Initialization 

We will appeal to the reader’s intuition to avoid 
unnecessary mathematical complications. If the channel is a 
stable and causal all-pole filter, this means that it can be 
inverted with a FIR filter. In this case, in the absence of noise 
(which is the standard hypothesis in this work), it will be 
possible to have �#$ = 0. This means that the lower bound 1–*3)&37.*3  presented in Section III-A will have to be null, 
and the derived relaxed solution will be, as a matter of fact, 
equivalent to the constrained solution. Therefore, by 
calculating the relaxed solution and using one of the vectors in 
(13), one will have a good estimate of the channel inverse in a 
blind fashion. Hence, the CMA will not be prone to local 
convergence in this particular case. Naturally, it will be 
necessary to have enough data to produce a good initial 
estimate, but, from a theoretical standpoint, Ding minima 
become innocuous within the CMA framework. Let us present 
an example analogous to the channel Ding used in his classical 
work [3]: 

=�>� = 11 + 0.6>7. (19) 

The signal is composed of i.i.d. binary samples (+1/-1). Using 
only 10 samples, one already obtains 4- = 1, 4. = 1.2 and 4� = 0.36, which is directly “decoded” – based on any vector 
of (13) – as 
 = [1 0.6]). 

V. SOME EXTENSIONS 

So far, we presented some of the CM criterion perspectives 
studied by our research group. However, since Godard’s 
proposal, there were several other remarkable CM-related 
efforts that are worth mentioning – many of them can be 
viewed as extensions of the CM criterion, as they are able to 
enlarge its scope and/or to improve its performance. For the 
sake of brevity, we will restrain ourselves to list a few of them, 
as follows. 

We start by the Least-Squares CMA (LS-CMA), an 
extension of the original CMA [11]. The main idea is to 
employ an optimization method capable of accelerating the 
convergence rate of the algorithm when dealing with highly-
dynamic environments. This is accomplished through the 
employment of the Gauss’ method [11], which uses 
information of the Jacobian for more precise steps in the 
adaptation process. Other variations of this methods include the 
Orthogonalized-CMA (O-CMA) [12] based on the 
orthogonalization of the observed signals in order to increase 
convergence speed; the QR-CMA [13], which also employs a 
data prewhitening step through the QR decomposition in order 
to simplify the CMA iteration and increase convergence speed; 
and  the Recursive Least-Squares CMA (RLS-CMA) [14], 
which explores an approximation of the CM cost function in 
order to enable the use of the RLS algorithm for the 
coefficients adaptation.  

Following a different approach to increase the convergence 
speed, in [15][16] the authors present the Optimal Step-size 
CMA, or shortly, OS-CMA. This algorithm aims at a most 
effective choice for the step-size µ  in the CMA, which can 
greatly contribute to a fast convergence and, very conveniently, 
to avoid the convergence to local solutions in certain cases 
[16]. Basically, by adopting the minimization of a cost function 
in a single search direction, a third-order degree polynomial in 
function of µ  is obtained, whose roots can be extracted through 
procedures like the Cardano’s formula. The root capable of 
attaining the lowest value of the cost function will be the 
optimum step-size. Hence, a few iterations of the CMA with 
the optimum step-size can quickly lead the algorithm to a 
global solution.  

Other extensions tried to deal with the inherent phase 
ambiguity present in the CM cost function. In this sense, in 
[17], the authors proposed a Modified CMA (MCMA), based 
on the following cost function  

�$#$` = �[��ab����c� − �d���]+ �[�efb����c� − �g���] (20) 

The idea was to force the real and imaginary parts of the 
recovered signal to lie on a reduced four-point constellation, 
defined by constants �� and �e. This approach is very similar 
to other algorithms, such as the Reduced Constellation 
Algorithm (RCA) [18], and the Multimodulus Algorithm 
(MMA) [19].  

Some modifications of CMA and MMA were proposed in 
the literature for dealing with nonsquare constellations. For 
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instance, in [20] the authors propose the Radius Directed 
Equalization (RDE), which is based on the CM cost function, 
but considering several dispersion constants: the complex case, 
in this case, is divided into annular decision regions, and the 
dispersion constant is a function of the region of the complex 
plane in which the recovered sample is located. The same idea 
was also explored for the MMA [21]: the pair of constants �d 
and �g depends on the region in which the estimated symbol is 
located.  

A more recent development, devoted specially to the case 
of high-order constellations, was presented in [22], and jointly 
explores the ideas of RDE and MMA, named Regional 
Multimodulus Algorithm (RMA). The idea is to consider a 
partition of the complex plane into regions, each one 
containing 4 symbols (the constellation is viewed as a 
collection of 4-QAM constellations). Then, the adaptation rule 
will depend on which region the estimated symbol is located, 
and is performed as if the signal pertains to the 4-QAM 
constant modulus of the corresponding region.  

When dealing with non-Gaussian noise, such as impulsive 
noise, the CMA is known for losing its performance [23]. In 
that sense, the algorithm referred to as Fractional Lower-Order 
Statistics CMA (FLOS-CMA) propose the use of statistics 
different from the fourth- and second-order to aid the 
equalization process [23][24]. Indeed, the classic statistics 
combined to the impulsive behavior of the noise can culminate 
in larger disturbances in the optimization process, mainly 
observed in stochastic gradient-based algorithms. By adopting 
fractional lower-order statistics of the equalizer output – e.g., ‖����‖	, being 0 < � < 2 –, the FLOS-CMA, is able to 
overcome this difficulty and still guarantee a good 
performance. The value of p, in this case, is a fractional that 
will depend on the shape of the noise distribution (assumed to 
be an alpha-stable distribution) [23].  

Finally, an extension of the polynomial formulation 
(Section III-A) considers the method of Lagrange multipliers 
to obtain the analytical solutions of the CM criterion [25]. This 
approach is easily conducted for a two-tap equalizer, however, 
for larger filters, the Lagrangian formulation involves the 
solution of a non-linear system, which is possible to be 
achieved through the employment of an iterative algorithm. 

VI. CONCLUSIONS 

In this work, we discussed the foundations of the CM 
criterion and of the CMA, and presented a “personal” view on 
an arbitrary selection of published and novel (to the best of our 
knowledge) results. It is intended as a celebration of the 35 
years of Godard’s work and as a tribute to a research topic of 
the utmost relevance to the development of our research group. 
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