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disclaimer

• Estes slides foram preparados para o curso de Programaçao
Paralela na UFABC.

• Estes slides são baseados naqueles produzidos por Peter
Pacheco como parte do livro An Introduction to Parallel
Programming disponíveis em:
https://www.cs.usfca.edu/~peter/ipp/

• Este material pode ser usado livremente desde que sejam
mantidos, além deste aviso, os créditos aos autores e
instituições.
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Fundamentos



hardware e software sequenciais
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arquitetura de von neumann

registers

Interconnect

Address

Main memory

Contents

registers

ControlALU

CPU
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memória principal

• É uma coleção de posições, cada uma capaz de armazenar tanto
instruções como dados

• Cada posição consiste de um endereço (usado para acessar
aquela posição) e seu conteúdo
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unidade central de processamento cpu

• A CPU (Central Processing Unit) pode ser dividida em duas
partes

• Unidade de controle (Control Unit) – é responsável por decidir
quais instruções devem ser executadas. (O chefe)

• A Unidade Lógica e Aritimética - ALU (Arithmetic and Logic
Unit)– é responsável por, de fato, executar as instruções. (O
Trabalhador)
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terminologia chave

• Registrador (Register) – Memória com altíssimo desempenho,
parte integrada à CPU

• Contador de Programa - PC (Program Counter) – Armazena o
endereço da próxima instrução a ser executada

• Processadores Intel usam o nome Instruction Pointer (IP)

• Barramento (Bus) – hardware que conecta a CPU à memória e
aos demais dispositivos.
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o gargalo da arquitetura de von neumann
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um processo do so

• Um processo do sistema operacional - SO (operating system) é
um programa que está sendo executado

• Componentes de um processo
• O programa em linguagem de máquina
• Regiões da memória
• Descritores dos recursos alocados pelo SO ao processo
• Informações de segurança
• Informações sobre o estado do processo
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multitasking

• Multitasking cria a ilusão de que um processador simples, com
apenas um núcleo (core) de processamento, está rodando
múltiplos programas simultâneamente

• Cada processo se reveza no uso do processador (time slice)
• Quando o tempo alocado a um processo acaba ele é colocado
em uma fila e espera novamente pela sua vez. Nestes casos
dizemos que o processo está bloqueado (blocked)

• A entidade responsável por fazer este trabalho é o escalonador
(scheduler) do SO
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threading

• Threads elementos que compõem um processo
• Threads permitem os programadores dividirem os seus
programas em tarefas virtualmente autônomas e independentes

• A ideia é de que quando um thread bloqueia por estar
esperando um recurso, outro thread estara esperando por sua
vez

• A intenção é promove uma utilização mais otimizada da CPU
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um processo com duas threads
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Modificações no Modelo de Von
Neumann



caching - o básico

• Cache – Uma coleção de posições de memória que pode ser
acessada pelo processador de maneira muito mais rápida que
outras posições de memória

• A cache de uma CPU é tipicamente localizada no mesmo chip ou
em uma memória que pode ser acessada muito rapidamente

• Alguns processadores como o Power8 tem até L4
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princípio da localidade

• O princípio da localidade é uma heurística pela qual os
projetistas de hardware esperam que o acesso a uma posição de
memória seja seguido por acessos a posições em sua vizinhança

• Há dois tipos principais de localidade:
• Localidade Espacial Acessos ocorrerão em posições de memória
próximas.

• Localidade Temporal Acessos ocorrerão em um futuro próximo.

• As caches de um processador aproveitam-se desses dois casos
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princípio da localidade

1 float z[1000];
2 …
3 sum = 0.0;
4 for (i = 0; i < 1000; i++)
5 sum += z[i];

16/24



níveis de cache
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cache hit
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cache miss
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alguns dos problemas das caches

• Quando uma CPU escreve dados na cache, o valor daquele dado
pode ficar inconsistente, ou defasado (stale) em relação aos
dados na memória principal.

• write-through os dados são escritos na cache e imediatamente
enviados para a memória principal

• write-back a cache controla os dados armazenados por ela
como sujos (dirty). Quando a linha de cache é substituída por
uma nova linha a linha suja é enviada para a memória principal.
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cache mappings

• Full associative, completamente associativa – uma nova linha
pode ser colocada em qualquer posição da cache.

• Direct mapped, mapeamento direto – cada linha da cache tem
uma posição única onde ela pode ser colocada.

• n-way set associative, associativa de n vias – cada linha da
cache pode ser colocada em n diferentes posições na cache.
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n-way set associative

• Quando mais de uma linha na mamória pode ser mapeada para
diversas posições diferentes, acaba aparecendo a necessidade
de definir uma política de substituição (replacement
policy/eviction policy para decidir qual das linhas precisa ser
substituida (replaced/evicted)
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exemplo

Cache Location

Memory Index Fully Assoc Direct Mapped 2-way

0 0, 1, 2, or 3 0 0 or 1
1 0, 1, 2, or 3 1 2 or 3
2 0, 1, 2, or 3 2 0 or 1
3 0, 1, 2, or 3 3 2 or 3
4 0, 1, 2, or 3 0 0 or 1
5 0, 1, 2, or 3 1 2 or 3
6 0, 1, 2, or 3 2 0 or 1
7 0, 1, 2, or 3 3 2 or 3
8 0, 1, 2, or 3 0 0 or 1
9 0, 1, 2, or 3 1 2 or 3
10 0, 1, 2, or 3 2 0 or 1
11 0, 1, 2, or 3 3 2 or 3
12 0, 1, 2, or 3 0 0 or 1
13 0, 1, 2, or 3 1 2 or 3
14 0, 1, 2, or 3 2 0 or 1
15 0, 1, 2, or 3 3 2 or 3

Associações de uma memória de 16 linhas a uma cache de 4 linhas.
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caches e programas

double A[MAX][MAX], x[MAX], y[MAX];
. . .
/∗ Initialize A and x, assign y = 0 ∗/
. . .
/∗ First pair of loops ∗/
for (i = 0; i < MAX; i++)

for (j = 0; j < MAX; j++)
y[i] += A[i][j]∗x[j];

. . .
/∗ Assign y = 0 ∗/
. . .
/∗ Second pair of loops ∗/
for (j = 0; j < MAX; j++)

for (i = 0; i < MAX; i++)
y[i] += A[i][j]∗x[j]; Cache Line Elements of A

0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

3 A[3][0] A[3][1] A[3][2] A[3][3]

24/24



28

Virtual memory (1)

◼ If we run a very large program or a 

program that accesses very large data 

sets, all of the instructions and data may 

not fit into main memory.

◼ Virtual memory functions as a cache for 

secondary storage.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Virtual memory (2)

◼ It exploits the principle of spatial and 

temporal locality.

◼ It only keeps the active parts of running 

programs in main memory.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Virtual memory (3)

◼ Swap space - those parts that are idle are 

kept in a block of secondary storage.

◼ Pages – blocks of data and instructions.

◼ Usually these are relatively large.

◼ Most systems have a fixed page 

size that currently ranges from 

4 to 16 kilobytes.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Virtual memory (4)

Copyright © 2010, Elsevier Inc. All rights Reserved

program A

program B

program C

main memory
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Virtual page numbers

◼ When a program is compiled its pages are 

assigned virtual page numbers.

◼ When the program is run, a table is 

created that maps the virtual page 

numbers to physical addresses.

◼ A page table is used to translate the 

virtual address into a physical address.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Page table

Copyright © 2010, Elsevier Inc. All rights Reserved

Table 2.2: Virtual Address Divided into 

Virtual Page Number and Byte Offset
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Translation-lookaside buffer (TLB)

◼ Using a page table has the potential to 

significantly increase each program’s 

overall run-time.

◼ A special address translation cache in the 

processor.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Translation-lookaside buffer (2)

◼ It caches a small number of entries 

(typically 16–512) from the page table in 

very fast memory.

◼ Page fault – attempting to access a valid 

physical address for a page in the page 

table but the page is only stored on disk.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Instruction Level Parallelism (ILP)

◼ Attempts to improve processor 

performance by having multiple processor 

components or functional units 

simultaneously executing instructions.

Copyright © 2010, Elsevier Inc. All rights Reserved



37

Instruction Level Parallelism (2)

◼ Pipelining - functional units are arranged 

in stages.

◼ Multiple issue - multiple instructions can 

be simultaneously initiated.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pipelining

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pipelining example (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

Add the floating point numbers 
9.87×104 and 6.54×103
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Pipelining example (2)

◼ Assume each operation 

takes one nanosecond 

(10-9 seconds).

◼ This for loop takes about 

7000 nanoseconds.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pipelining (3)

◼ Divide the floating point adder into 7 

separate pieces of hardware or functional 

units.

◼ First unit fetches two operands, second 

unit compares exponents, etc.

◼ Output of one functional unit is input to the 

next.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Pipelining (4)

Copyright © 2010, Elsevier Inc. All rights Reserved

Table 2.3: Pipelined Addition. 

Numbers in the table are subscripts of operands/results.
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Pipelining (5)

◼ One floating point addition still takes 

7 nanoseconds.

◼ But 1000 floating point additions 

now takes 1006 nanoseconds!

Copyright © 2010, Elsevier Inc. All rights Reserved
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Multiple Issue (1)

◼ Multiple issue processors replicate 

functional units and try to simultaneously 

execute different instructions in a 

program.

Copyright © 2010, Elsevier Inc. All rights Reserved

adder #1 adder #2

z[1]

z[3]

z[2]

z[4]

for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];
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Multiple Issue (2)

◼ static multiple issue - functional units are 

scheduled at compile time.

◼ dynamic multiple issue – functional units 

are scheduled at run-time.

Copyright © 2010, Elsevier Inc. All rights Reserved

superscalar
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Speculation (1) 

◼ In order to make use of multiple issue, the 

system must find instructions that can be 

executed simultaneously.

Copyright © 2010, Elsevier Inc. All rights Reserved

◼ In speculation, the compiler or 

the processor makes a guess 

about an instruction, and then 

executes the instruction on the 

basis of the guess.
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Speculation (2) 

Copyright © 2010, Elsevier Inc. All rights Reserved

z = x + y ;

i f ( z > 0)

w = x ;

e l s e

w = y ;

Z will be 

positive

If the system speculates incorrectly,

it must go back and recalculate w = y.
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Hardware multithreading (1)

◼ There aren’t always good opportunities for 

simultaneous execution of different 

threads.

◼ Hardware multithreading provides a means 

for systems to continue doing useful work 

when the task being currently executed 

has stalled.

◼ Ex., the current task has to wait for data to be 

loaded from memory.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Hardware multithreading (2)

◼ Fine-grained - the processor switches 

between threads after each instruction, 

skipping threads that are stalled.

◼ Pros: potential to avoid wasted machine time 

due to stalls.

◼ Cons: a thread that’s ready to execute a long 

sequence of instructions may have to wait to 

execute every instruction.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Hardware multithreading (3)

◼ Coarse-grained - only switches threads 

that are stalled waiting for a time-

consuming operation to complete.

◼ Pros: switching threads doesn’t need to be 

nearly instantaneous.

◼ Cons: the processor can be idled on shorter 

stalls, and thread switching will also cause 

delays.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Hardware multithreading (3)

◼ Simultaneous multithreading (SMT) - a 

variation on fine-grained multithreading.

◼ Allows multiple threads to make use of the 

multiple functional units.

Copyright © 2010, Elsevier Inc. All rights Reserved
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PARALLEL HARDWARE

A programmer can write code to exploit.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Flynn’s Taxonomy

Copyright © 2010, Elsevier Inc. All rights Reserved

SISD

Single instruction stream

Single data stream

(SIMD)

Single instruction stream

Multiple data stream

MISD

Multiple instruction stream

Single data stream

(MIMD)

Multiple instruction stream

Multiple data stream
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SIMD

◼ Parallelism achieved by dividing data 

among the processors.

◼ Applies the same instruction to multiple 

data items.

◼ Called data parallelism.

Copyright © 2010, Elsevier Inc. All rights Reserved



55

SIMD example

Copyright © 2010, Elsevier Inc. All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)

x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs
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SIMD

◼ What if we don’t have as many ALUs as 

data items? 

◼ Divide the work and process iteratively.

◼ Ex. m = 4 ALUs   and   n = 15 data items.

Copyright © 2010, Elsevier Inc. All rights Reserved

Round3 ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]
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SIMD drawbacks

◼ All ALUs are required to execute the same 

instruction, or remain idle.

◼ In classic design, they must also operate 

synchronously.

◼ The ALUs have no instruction storage.

◼ Efficient for large data parallel problems, 

but not other types of more complex 

parallel problems.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Vector processors (1)

◼ Operate on arrays or vectors of data while 

conventional CPU’s operate on individual 

data elements or scalars.

◼ Vector registers.

◼ Capable of storing a vector of operands and 

operating simultaneously on their contents.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Vector processors (2)

◼ Vectorized and pipelined functional units.

◼ The same operation is applied to each 

element in the vector (or pairs of elements).

◼ Vector instructions.

◼ Operate on vectors rather than scalars.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Vector processors (3)

◼ Interleaved memory.

◼ Multiple “banks” of memory, which can be 

accessed more or less independently.

◼ Distribute elements of a vector across multiple 

banks, so reduce or eliminate delay in 

loading/storing successive elements.

◼ Strided memory access and hardware 

scatter/gather.

◼ The program accesses elements of a vector 

located at fixed intervals.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Vector processors - Pros

◼ Fast.

◼ Easy to use.

◼ Vectorizing compilers are good at 

identifying code to exploit.

◼ Compilers also can provide information 

about code that cannot be vectorized.

◼ Helps the programmer re-evaluate code.

◼ High memory bandwidth.

◼ Uses every item in a cache line.

Copyright © 2010, Elsevier Inc. All rights Reserved



62

Vector processors - Cons

◼ They don’t handle irregular 

data structures as well as other 

parallel architectures.

◼ A very finite limit to their ability to handle 

ever larger problems. (scalability)

Copyright © 2010, Elsevier Inc. All rights Reserved
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Graphics Processing Units (GPU)

◼ Real time graphics application 

programming interfaces or API’s use 

points, lines, and triangles to internally 

represent the surface of an object.

Copyright © 2010, Elsevier Inc. All rights Reserved
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GPUs

◼ A graphics processing pipeline converts 

the internal representation into an array of 

pixels that can be sent to a computer 

screen.

◼ Several stages of this pipeline 

(called shader functions) are 

programmable.

◼ Typically just a few lines of C code.

Copyright © 2010, Elsevier Inc. All rights Reserved
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GPUs

◼ Shader functions are also implicitly 

parallel, since they can be applied to 

multiple elements in the graphics stream. 

◼ GPU’s can often optimize performance by 

using SIMD parallelism. 

◼ The current generation of GPU’s use SIMD 

parallelism.

◼ Although they are not pure SIMD systems.

Copyright © 2010, Elsevier Inc. All rights Reserved
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MIMD

◼ Supports multiple simultaneous instruction 

streams operating on multiple data 

streams. 

◼ Typically consist of a collection of fully 

independent processing units or cores, 

each of which has its own control unit and 

its own ALU.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Shared Memory System (1)

◼ A collection of autonomous processors is 

connected to a memory system via an 

interconnection network.

◼ Each processor can access each memory 

location. 

◼ The processors usually communicate 

implicitly by accessing shared data 

structures.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Shared Memory System (2)

◼ Most widely available shared memory 

systems use one or more multicore 

processors.

◼ (multiple CPU’s or cores on a single chip)

Copyright © 2010, Elsevier Inc. All rights Reserved
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Shared Memory System

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.3
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UMA multicore system

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.5

Time to access all

the memory locations

will be the same for

all the cores.
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NUMA multicore system

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.6
A memory location a core is directly 
connected to can be accessed 
faster than a memory location that 
must be accessed through another 
chip.
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Distributed Memory System

◼ Clusters (most popular)

◼ A collection of commodity systems.

◼ Connected by a commodity interconnection 

network.

◼ Nodes of a cluster are individual 

computations units joined by a 

communication network.

Copyright © 2010, Elsevier Inc. All rights Reserved

a.k.a. hybrid systems
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Distributed Memory System

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.4
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Interconnection networks

◼ Affects performance of both distributed 

and shared memory systems.

◼ Two categories:

◼ Shared memory interconnects

◼ Distributed memory interconnects

Copyright © 2010, Elsevier Inc. All rights Reserved
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Shared memory interconnects

◼ Bus interconnect

◼ A collection of parallel communication wires 

together with some hardware that controls 

access to the bus.

◼ Communication wires are shared by the 

devices that are connected to it.

◼ As the number of devices connected to the 

bus increases, contention for use of the bus 

increases, and performance decreases.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Shared memory interconnects

◼ Switched interconnect

◼ Uses switches to control the routing of data 

among the connected devices.

◼ Crossbar –

◼ Allows simultaneous communication among 

different devices.

◼ Faster than buses. 

◼ But the cost of the switches and links is relatively 

high.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Figure 2.7

(a) 

A crossbar switch connecting 4 processors 
(Pi) and 4 memory modules (Mj)

(b)

Configuration of internal switches in a 
crossbar 

(c) Simultaneous memory accesses 
by the processors
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Distributed memory interconnects

◼ Two groups

◼ Direct interconnect 

◼ Each switch is directly connected to a processor 

memory pair, and the switches are connected to 

each other.

◼ Indirect interconnect

◼ Switches may not be directly connected to a 

processor.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Direct interconnect

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.8

ring toroidal mesh
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Bisection width 

◼ A measure of “number of simultaneous 

communications” or “connectivity”.

◼ How many simultaneous communications 

can take place “across the divide” between 

the halves?

Copyright © 2010, Elsevier Inc. All rights Reserved
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Two bisections of a ring

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.9
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A bisection of a toroidal mesh

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.10
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Definitions  

◼ Bandwidth 

◼ The rate at which a link can transmit data.

◼ Usually given in megabits or megabytes per 

second.

◼ Bisection bandwidth

◼ A measure of network quality.

◼ Instead of counting the number of links joining 

the halves, it sums the bandwidth of the links.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Fully connected network

◼ Each switch is directly connected to every 

other switch.

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.11

bisection width = p2/4
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Hypercube

◼ Highly connected direct interconnect.

◼ Built inductively:

◼ A one-dimensional hypercube is a fully-

connected system with two processors. 

◼ A two-dimensional hypercube is built from two 

one-dimensional hypercubes by joining 

“corresponding” switches. 

◼ Similarly a three-dimensional hypercube is 

built from two two-dimensional hypercubes.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Hypercubes

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.12

one- three-dimensionaltwo-
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Indirect interconnects

◼ Simple examples of indirect networks:

◼ Crossbar

◼ Omega network

◼ Often shown with unidirectional links and a 

collection of processors, each of which has 

an outgoing and an incoming link, and a 

switching network.

Copyright © 2010, Elsevier Inc. All rights Reserved
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A generic indirect network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.13
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Crossbar interconnect for 

distributed memory

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.14
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An omega network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.15
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A switch in an omega network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.16
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More definitions

◼ Any time data is transmitted, we’re 

interested in how long it will take for the 

data to reach its destination.

◼ Latency

◼ The time that elapses between the source’s 

beginning to transmit the data and the 

destination’s starting to receive the first byte.

◼ Bandwidth

◼ The rate at which the destination receives data 

after it has started to receive the first byte.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Message transmission time = l + n / b

latency (seconds)

bandwidth (bytes per second)

length of message (bytes)
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Cache coherence

◼ Programmers have no 

control over caches 

and when they get 

updated.

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.17

A shared memory system with two cores 
and two caches
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Cache coherence

Copyright © 2010, Elsevier Inc. All rights Reserved

x = 2;  /* shared variable */

y0  privately owned by Core 0

y1 and z1 privately owned by Core 1

y0 eventually ends up = 2

y1 eventually ends up = 6

z1 = ???
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Snooping Cache Coherence

◼ The cores share a bus .

◼ Any signal transmitted on the bus can be 

“seen” by all cores connected to the bus.

◼ When core 0 updates the copy of x stored 

in its cache it also broadcasts this 

information across the bus.

◼ If core 1 is “snooping” the bus, it will see 

that x has been updated and it can mark 

its copy of x as invalid.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Directory Based Cache Coherence

◼ Uses a data structure called a directory

that stores the status of each cache line.

◼ When a variable is updated, the directory 

is consulted, and the cache controllers of 

the cores that have that variable’s cache 

line in their caches are invalidated.

Copyright © 2010, Elsevier Inc. All rights Reserved
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PARALLEL SOFTWARE

Copyright © 2010, Elsevier Inc. All rights Reserved
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The burden is on software

◼ Hardware and compilers can keep up the 

pace needed.

◼ From now on…

◼ In shared memory programs:

◼ Start a single process and fork threads.

◼ Threads carry out tasks.

◼ In distributed memory programs:

◼ Start multiple processes.

◼ Processes carry out tasks.

Copyright © 2010, Elsevier Inc. All rights Reserved
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SPMD – single program multiple data

◼ A SPMD programs consists of a single 

executable that can behave as if it were 

multiple different programs through the use 

of conditional branches.

Copyright © 2010, Elsevier Inc. All rights Reserved

if  (I’m thread process i)

do this;

else

do that;
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Writing Parallel Programs

Copyright © 2010, Elsevier Inc. All rights Reserved

double x[n], y[n];

…

for (i = 0; i < n; i++)

x[i] += y[i];

1. Divide the work among the

processes/threads

(a) so each process/thread

gets roughly the same 

amount of work

(b) and communication is

minimized.

2. Arrange for the processes/threads to synchronize.

3. Arrange for communication among processes/threads.
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Shared Memory

◼ Dynamic threads

◼ Master thread waits for work, forks new 

threads, and when threads are done, they 

terminate

◼ Efficient use of resources, but thread creation 

and termination is time consuming.

◼ Static threads

◼ Pool of threads created and are allocated 

work, but do not terminate until cleanup.

◼ Better performance, but potential waste of 

system resources.

Copyright © 2010, Elsevier Inc. All rights Reserved
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Nondeterminism

Copyright © 2010, Elsevier Inc. All rights Reserved

. . .

printf  ( "Thread %d > my_val = %d\n" , 

my_rank , my_x ) ;

. . .

Thread 0 > my_val = 7

Thread 1 > my_val = 19
Thread 1 > my_val = 19

Thread 0 > my_val = 7
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Nondeterminism
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my_val = Compute_val ( my_rank ) ;

x += my_val ;
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Nondeterminism

◼ Race condition

◼ Critical section

◼ Mutually exclusive

◼ Mutual exclusion lock (mutex, or simply 

lock)
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my_val = Compute_val ( my_rank ) ;

Lock(&add_my_val_lock ) ;

x += my_val ;

Unlock(&add_my_val_lock ) ;
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busy-waiting
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my_val = Compute_val ( my_rank ) ;

i f  ( my_rank == 1)

whi l e ( ! ok_for_1 ) ;  /* Busy−wait loop */

x += my_val ;  /* Critical section */

i f  ( my_rank == 0)

ok_for_1 = true ;  /* Let thread 1 update x */
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message-passing
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char message [ 1 0 0 ] ;

. . .

my_rank = Get_rank ( ) ;

i f  ( my_rank == 1) {

sprintf  ( message , "Greetings from process 1" ) ;

Send ( message , MSG_CHAR , 100 , 0 ) ;

} e l s e i f  ( my_rank == 0) {

Receive ( message , MSG_CHAR , 100 , 1 ) ;

printf  ( "Process 0 > Received: %s\n" , message ) ;

}
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Partitioned Global Address 

Space Languages
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shared i n t n = . . . ;

shared double x [ n ] , y [ n ] ;

private i n t i , my_first_element , my_last_element ;

my_first_element = . . . ;

my_last_element = . . . ;

/ * Initialize x and y  */

. . .

f  o r ( i = my_first_element ; i <= my_last_element ; i++)

x [ i ] += y [ i ] ;
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Input and Output

◼ In distributed memory programs, only 

process 0 will access stdin. In shared 

memory programs, only the master thread 

or thread 0 will access stdin.

◼ In both distributed memory and shared 

memory programs all the 

processes/threads can access stdout and 

stderr.
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Input and Output

◼ However, because of the indeterminacy of 

the order of output to stdout, in most cases 

only a single process/thread will be used 

for all output to stdout other than 

debugging output.

◼ Debug output should always include the 

rank or id of the process/thread that’s 

generating the output.
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Input and Output

◼ Only a single process/thread will attempt to 

access any single file other than stdin, 

stdout, or stderr. So, for example, each 

process/thread can open its own, private 

file for reading or writing, but no two 

processes/threads will open the same file.
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PERFORMANCE
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Speedup 

◼ Number of cores = p

◼ Serial run-time = Tserial

◼ Parallel run-time = Tparallel
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Tparallel = Tserial / p
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Speedup of a parallel program
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Tserial 

Tparallel

S = 
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Efficiency of a parallel program
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E = 

Tserial 

TparallelS 

p 
= 

p 
= 

Tserial 

p  Tparallel
.
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Speedups and efficiencies of a 

parallel program

Copyright © 2010, Elsevier Inc. All rights Reserved



117

Speedups and efficiencies of 

parallel program on different 

problem sizes
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Speedup
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Efficiency
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Effect of overhead
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Tparallel = Tserial / p + Toverhead
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Amdahl’s Law

◼ Unless virtually all of a serial program is 

parallelized, the possible speedup is going 

to be very limited — regardless of the 

number of cores available.
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Example

◼ We can parallelize 90% of a serial 

program.

◼ Parallelization is “perfect” regardless of the 

number of cores p we use.

◼ Tserial = 20 seconds

◼ Runtime  of parallelizable part is  
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0.9 x Tserial / p = 18 / p
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Example (cont.)

◼ Runtime  of “unparallelizable” part is  

◼ Overall parallel run-time is
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0.1 x Tserial  = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2
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Example (cont.)

◼ Speed up
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0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =
18 / p + 2

20
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Scalability

◼ In general, a problem is scalable if it can handle 

ever increasing problem sizes.

◼ If we increase the number of processes/threads 

and keep the efficiency fixed without increasing 

problem size, the problem is strongly scalable.

◼ If we keep the efficiency fixed by increasing the 

problem size at the same rate as we increase 

the number of processes/threads, the problem is 

weakly scalable.
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Taking Timings

◼ What is time?

◼ Start to finish?

◼ A program segment of interest?

◼ CPU time?

◼ Wall clock time?
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Taking Timings
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theoretical 

function

MPI_Wtime omp_get_wtime
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Taking Timings
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Taking Timings
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PARALLEL PROGRAM

DESIGN
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Foster’s methodology

1. Partitioning: divide the computation to be 

performed and the data operated on by 

the computation into small tasks. 

The focus here should be on identifying 

tasks that can be executed in parallel.
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Foster’s methodology

2. Communication: determine what 

communication needs to be carried out 

among the tasks identified in the previous 

step.
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Foster’s methodology

3. Agglomeration or aggregation: combine 

tasks and communications identified in 

the first step into larger tasks. 

For example, if task A must be executed 

before task B can be executed, it may 

make sense to aggregate them into a 

single composite task.
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Foster’s methodology

4. Mapping: assign the composite tasks 

identified in the previous step to 

processes/threads.

This should be done so that 

communication is minimized, and each 

process/thread gets roughly the same 

amount of work.
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Example - histogram

◼ 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2

.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9
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Serial program - input

1. The number of measurements: 

data_count

2. An array of data_count floats: data

3. The minimum value for the bin containing 

the smallest values: min_meas

4. The maximum value for the bin containing 

the largest values: max_meas

5. The number of bins: bin_count

Copyright © 2010, Elsevier Inc. All rights Reserved



137

Serial program - output

1. bin_maxes : an array of bin_count floats

2. bin_counts : an array of bin_count ints
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First two stages of Foster’s 

Methodology
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Alternative definition of tasks 

and communication
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Adding the local arrays
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Concluding Remarks (1)

◼ Serial systems

◼ The standard model of computer hardware 

has been the von Neumann architecture.

◼ Parallel hardware

◼ Flynn’s taxonomy.

◼ Parallel software

◼ We focus on software for homogeneous MIMD 

systems, consisting of a single program that 

obtains parallelism by branching.

◼ SPMD programs.
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Concluding Remarks (2)

◼ Input and Output

◼ We’ll write programs in which one process or 

thread can access stdin, and all processes 

can access stdout and stderr. 

◼ However, because of nondeterminism, except 

for debug output we’ll usually have a single 

process or thread accessing stdout.
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Concluding Remarks (3)

◼ Performance

◼ Speedup

◼ Efficiency

◼ Amdahl’s law

◼ Scalability

◼ Parallel Program Design

◼ Foster’s methodology
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