
uma breve revisão sobre arquitetura de
computadores – parte 1
mcza020-13 – programação paralela

Emilio Francesquini
e.francesquini@ufabc.edu.br
20 de setembro de 2018

Centro de Matemática, Computação e Cognição
Universidade Federal do ABC

disclaimer

• Estes slides foram preparados para o curso de Programaçao
Paralela na UFABC.

• Estes slides são baseados naqueles produzidos por Peter
Pacheco como parte do livro An Introduction to Parallel
Programming disponíveis em:
https://www.cs.usfca.edu/~peter/ipp/

• Este material pode ser usado livremente desde que sejam
mantidos, além deste aviso, os créditos aos autores e
instituições.

1/24

https://www.cs.usfca.edu/~peter/ipp/

Fundamentos

hardware e software sequenciais

2/24

arquitetura de von neumann

registers

Interconnect

Address

Main memory

Contents

registers

ControlALU

CPU

3/24

memória principal

• É uma coleção de posições, cada uma capaz de armazenar tanto
instruções como dados

• Cada posição consiste de um endereço (usado para acessar
aquela posição) e seu conteúdo

4/24

unidade central de processamento cpu

• A CPU (Central Processing Unit) pode ser dividida em duas
partes

• Unidade de controle (Control Unit) – é responsável por decidir
quais instruções devem ser executadas. (O chefe)

• A Unidade Lógica e Aritimética - ALU (Arithmetic and Logic
Unit)– é responsável por, de fato, executar as instruções. (O
Trabalhador)

5/24

terminologia chave

• Registrador (Register) – Memória com altíssimo desempenho,
parte integrada à CPU

• Contador de Programa - PC (Program Counter) – Armazena o
endereço da próxima instrução a ser executada

• Processadores Intel usam o nome Instruction Pointer (IP)

• Barramento (Bus) – hardware que conecta a CPU à memória e
aos demais dispositivos.

6/24

7/24

8/24

o gargalo da arquitetura de von neumann

9/24

um processo do so

• Um processo do sistema operacional - SO (operating system) é
um programa que está sendo executado

• Componentes de um processo
• O programa em linguagem de máquina
• Regiões da memória
• Descritores dos recursos alocados pelo SO ao processo
• Informações de segurança
• Informações sobre o estado do processo

10/24

multitasking

• Multitasking cria a ilusão de que um processador simples, com
apenas um núcleo (core) de processamento, está rodando
múltiplos programas simultâneamente

• Cada processo se reveza no uso do processador (time slice)
• Quando o tempo alocado a um processo acaba ele é colocado
em uma fila e espera novamente pela sua vez. Nestes casos
dizemos que o processo está bloqueado (blocked)

• A entidade responsável por fazer este trabalho é o escalonador
(scheduler) do SO

11/24

threading

• Threads elementos que compõem um processo
• Threads permitem os programadores dividirem os seus
programas em tarefas virtualmente autônomas e independentes

• A ideia é de que quando um thread bloqueia por estar
esperando um recurso, outro thread estara esperando por sua
vez

• A intenção é promove uma utilização mais otimizada da CPU

12/24

um processo com duas threads

13/24

Modificações no Modelo de Von
Neumann

caching - o básico

• Cache – Uma coleção de posições de memória que pode ser
acessada pelo processador de maneira muito mais rápida que
outras posições de memória

• A cache de uma CPU é tipicamente localizada no mesmo chip ou
em uma memória que pode ser acessada muito rapidamente

• Alguns processadores como o Power8 tem até L4

14/24

princípio da localidade

• O princípio da localidade é uma heurística pela qual os
projetistas de hardware esperam que o acesso a uma posição de
memória seja seguido por acessos a posições em sua vizinhança

• Há dois tipos principais de localidade:
• Localidade Espacial Acessos ocorrerão em posições de memória
próximas.

• Localidade Temporal Acessos ocorrerão em um futuro próximo.

• As caches de um processador aproveitam-se desses dois casos

15/24

princípio da localidade

1 float z[1000];
2 …
3 sum = 0.0;
4 for (i = 0; i < 1000; i++)
5 sum += z[i];

16/24

níveis de cache

17/24

cache hit

18/24

cache miss

19/24

alguns dos problemas das caches

• Quando uma CPU escreve dados na cache, o valor daquele dado
pode ficar inconsistente, ou defasado (stale) em relação aos
dados na memória principal.

• write-through os dados são escritos na cache e imediatamente
enviados para a memória principal

• write-back a cache controla os dados armazenados por ela
como sujos (dirty). Quando a linha de cache é substituída por
uma nova linha a linha suja é enviada para a memória principal.

20/24

cache mappings

• Full associative, completamente associativa – uma nova linha
pode ser colocada em qualquer posição da cache.

• Direct mapped, mapeamento direto – cada linha da cache tem
uma posição única onde ela pode ser colocada.

• n-way set associative, associativa de n vias – cada linha da
cache pode ser colocada em n diferentes posições na cache.

21/24

n-way set associative

• Quando mais de uma linha na mamória pode ser mapeada para
diversas posições diferentes, acaba aparecendo a necessidade
de definir uma política de substituição (replacement
policy/eviction policy para decidir qual das linhas precisa ser
substituida (replaced/evicted)

22/24

exemplo

Cache Location

Memory Index Fully Assoc Direct Mapped 2-way

0 0, 1, 2, or 3 0 0 or 1
1 0, 1, 2, or 3 1 2 or 3
2 0, 1, 2, or 3 2 0 or 1
3 0, 1, 2, or 3 3 2 or 3
4 0, 1, 2, or 3 0 0 or 1
5 0, 1, 2, or 3 1 2 or 3
6 0, 1, 2, or 3 2 0 or 1
7 0, 1, 2, or 3 3 2 or 3
8 0, 1, 2, or 3 0 0 or 1
9 0, 1, 2, or 3 1 2 or 3
10 0, 1, 2, or 3 2 0 or 1
11 0, 1, 2, or 3 3 2 or 3
12 0, 1, 2, or 3 0 0 or 1
13 0, 1, 2, or 3 1 2 or 3
14 0, 1, 2, or 3 2 0 or 1
15 0, 1, 2, or 3 3 2 or 3

Associações de uma memória de 16 linhas a uma cache de 4 linhas.
23/24

caches e programas

double A[MAX][MAX], x[MAX], y[MAX];
. . .
/∗ Initialize A and x, assign y = 0 ∗/
. . .
/∗ First pair of loops ∗/
for (i = 0; i < MAX; i++)

for (j = 0; j < MAX; j++)
y[i] += A[i][j]∗x[j];

. . .
/∗ Assign y = 0 ∗/
. . .
/∗ Second pair of loops ∗/
for (j = 0; j < MAX; j++)

for (i = 0; i < MAX; i++)
y[i] += A[i][j]∗x[j]; Cache Line Elements of A

0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

3 A[3][0] A[3][1] A[3][2] A[3][3]

24/24

28

Virtual memory (1)

◼ If we run a very large program or a

program that accesses very large data

sets, all of the instructions and data may

not fit into main memory.

◼ Virtual memory functions as a cache for

secondary storage.

Copyright © 2010, Elsevier Inc. All rights Reserved

29

Virtual memory (2)

◼ It exploits the principle of spatial and

temporal locality.

◼ It only keeps the active parts of running

programs in main memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

30

Virtual memory (3)

◼ Swap space - those parts that are idle are

kept in a block of secondary storage.

◼ Pages – blocks of data and instructions.

◼ Usually these are relatively large.

◼ Most systems have a fixed page

size that currently ranges from

4 to 16 kilobytes.

Copyright © 2010, Elsevier Inc. All rights Reserved

31

Virtual memory (4)

Copyright © 2010, Elsevier Inc. All rights Reserved

program A

program B

program C

main memory

32

Virtual page numbers

◼ When a program is compiled its pages are

assigned virtual page numbers.

◼ When the program is run, a table is

created that maps the virtual page

numbers to physical addresses.

◼ A page table is used to translate the

virtual address into a physical address.

Copyright © 2010, Elsevier Inc. All rights Reserved

33

Page table

Copyright © 2010, Elsevier Inc. All rights Reserved

Table 2.2: Virtual Address Divided into

Virtual Page Number and Byte Offset

34

Translation-lookaside buffer (TLB)

◼ Using a page table has the potential to

significantly increase each program’s

overall run-time.

◼ A special address translation cache in the

processor.

Copyright © 2010, Elsevier Inc. All rights Reserved

35

Translation-lookaside buffer (2)

◼ It caches a small number of entries

(typically 16–512) from the page table in

very fast memory.

◼ Page fault – attempting to access a valid

physical address for a page in the page

table but the page is only stored on disk.

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Instruction Level Parallelism (ILP)

◼ Attempts to improve processor

performance by having multiple processor

components or functional units

simultaneously executing instructions.

Copyright © 2010, Elsevier Inc. All rights Reserved

37

Instruction Level Parallelism (2)

◼ Pipelining - functional units are arranged

in stages.

◼ Multiple issue - multiple instructions can

be simultaneously initiated.

Copyright © 2010, Elsevier Inc. All rights Reserved

38

Pipelining

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Pipelining example (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

Add the floating point numbers
9.87×104 and 6.54×103

40

Pipelining example (2)

◼ Assume each operation

takes one nanosecond

(10-9 seconds).

◼ This for loop takes about

7000 nanoseconds.

Copyright © 2010, Elsevier Inc. All rights Reserved

41

Pipelining (3)

◼ Divide the floating point adder into 7

separate pieces of hardware or functional

units.

◼ First unit fetches two operands, second

unit compares exponents, etc.

◼ Output of one functional unit is input to the

next.

Copyright © 2010, Elsevier Inc. All rights Reserved

42

Pipelining (4)

Copyright © 2010, Elsevier Inc. All rights Reserved

Table 2.3: Pipelined Addition.

Numbers in the table are subscripts of operands/results.

43

Pipelining (5)

◼ One floating point addition still takes

7 nanoseconds.

◼ But 1000 floating point additions

now takes 1006 nanoseconds!

Copyright © 2010, Elsevier Inc. All rights Reserved

44

Multiple Issue (1)

◼ Multiple issue processors replicate

functional units and try to simultaneously

execute different instructions in a

program.

Copyright © 2010, Elsevier Inc. All rights Reserved

adder #1 adder #2

z[1]

z[3]

z[2]

z[4]

for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];

45

Multiple Issue (2)

◼ static multiple issue - functional units are

scheduled at compile time.

◼ dynamic multiple issue – functional units

are scheduled at run-time.

Copyright © 2010, Elsevier Inc. All rights Reserved

superscalar

46

Speculation (1)

◼ In order to make use of multiple issue, the

system must find instructions that can be

executed simultaneously.

Copyright © 2010, Elsevier Inc. All rights Reserved

◼ In speculation, the compiler or

the processor makes a guess

about an instruction, and then

executes the instruction on the

basis of the guess.

47

Speculation (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

z = x + y ;

i f (z > 0)

w = x ;

e l s e

w = y ;

Z will be

positive

If the system speculates incorrectly,

it must go back and recalculate w = y.

48

Hardware multithreading (1)

◼ There aren’t always good opportunities for

simultaneous execution of different

threads.

◼ Hardware multithreading provides a means

for systems to continue doing useful work

when the task being currently executed

has stalled.

◼ Ex., the current task has to wait for data to be

loaded from memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

49

Hardware multithreading (2)

◼ Fine-grained - the processor switches

between threads after each instruction,

skipping threads that are stalled.

◼ Pros: potential to avoid wasted machine time

due to stalls.

◼ Cons: a thread that’s ready to execute a long

sequence of instructions may have to wait to

execute every instruction.

Copyright © 2010, Elsevier Inc. All rights Reserved

50

Hardware multithreading (3)

◼ Coarse-grained - only switches threads

that are stalled waiting for a time-

consuming operation to complete.

◼ Pros: switching threads doesn’t need to be

nearly instantaneous.

◼ Cons: the processor can be idled on shorter

stalls, and thread switching will also cause

delays.

Copyright © 2010, Elsevier Inc. All rights Reserved

51

Hardware multithreading (3)

◼ Simultaneous multithreading (SMT) - a

variation on fine-grained multithreading.

◼ Allows multiple threads to make use of the

multiple functional units.

Copyright © 2010, Elsevier Inc. All rights Reserved

52

PARALLEL HARDWARE

A programmer can write code to exploit.

Copyright © 2010, Elsevier Inc. All rights Reserved

53

Flynn’s Taxonomy

Copyright © 2010, Elsevier Inc. All rights Reserved

SISD

Single instruction stream

Single data stream

(SIMD)

Single instruction stream

Multiple data stream

MISD

Multiple instruction stream

Single data stream

(MIMD)

Multiple instruction stream

Multiple data stream

54

SIMD

◼ Parallelism achieved by dividing data

among the processors.

◼ Applies the same instruction to multiple

data items.

◼ Called data parallelism.

Copyright © 2010, Elsevier Inc. All rights Reserved

55

SIMD example

Copyright © 2010, Elsevier Inc. All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)

x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs

56

SIMD

◼ What if we don’t have as many ALUs as

data items?

◼ Divide the work and process iteratively.

◼ Ex. m = 4 ALUs and n = 15 data items.

Copyright © 2010, Elsevier Inc. All rights Reserved

Round3 ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]

57

SIMD drawbacks

◼ All ALUs are required to execute the same

instruction, or remain idle.

◼ In classic design, they must also operate

synchronously.

◼ The ALUs have no instruction storage.

◼ Efficient for large data parallel problems,

but not other types of more complex

parallel problems.

Copyright © 2010, Elsevier Inc. All rights Reserved

58

Vector processors (1)

◼ Operate on arrays or vectors of data while

conventional CPU’s operate on individual

data elements or scalars.

◼ Vector registers.

◼ Capable of storing a vector of operands and

operating simultaneously on their contents.

Copyright © 2010, Elsevier Inc. All rights Reserved

59

Vector processors (2)

◼ Vectorized and pipelined functional units.

◼ The same operation is applied to each

element in the vector (or pairs of elements).

◼ Vector instructions.

◼ Operate on vectors rather than scalars.

Copyright © 2010, Elsevier Inc. All rights Reserved

60

Vector processors (3)

◼ Interleaved memory.

◼ Multiple “banks” of memory, which can be

accessed more or less independently.

◼ Distribute elements of a vector across multiple

banks, so reduce or eliminate delay in

loading/storing successive elements.

◼ Strided memory access and hardware

scatter/gather.

◼ The program accesses elements of a vector

located at fixed intervals.

Copyright © 2010, Elsevier Inc. All rights Reserved

61

Vector processors - Pros

◼ Fast.

◼ Easy to use.

◼ Vectorizing compilers are good at

identifying code to exploit.

◼ Compilers also can provide information

about code that cannot be vectorized.

◼ Helps the programmer re-evaluate code.

◼ High memory bandwidth.

◼ Uses every item in a cache line.

Copyright © 2010, Elsevier Inc. All rights Reserved

62

Vector processors - Cons

◼ They don’t handle irregular

data structures as well as other

parallel architectures.

◼ A very finite limit to their ability to handle

ever larger problems. (scalability)

Copyright © 2010, Elsevier Inc. All rights Reserved

63

Graphics Processing Units (GPU)

◼ Real time graphics application

programming interfaces or API’s use

points, lines, and triangles to internally

represent the surface of an object.

Copyright © 2010, Elsevier Inc. All rights Reserved

64

GPUs

◼ A graphics processing pipeline converts

the internal representation into an array of

pixels that can be sent to a computer

screen.

◼ Several stages of this pipeline

(called shader functions) are

programmable.

◼ Typically just a few lines of C code.

Copyright © 2010, Elsevier Inc. All rights Reserved

65

GPUs

◼ Shader functions are also implicitly

parallel, since they can be applied to

multiple elements in the graphics stream.

◼ GPU’s can often optimize performance by

using SIMD parallelism.

◼ The current generation of GPU’s use SIMD

parallelism.

◼ Although they are not pure SIMD systems.

Copyright © 2010, Elsevier Inc. All rights Reserved

66

MIMD

◼ Supports multiple simultaneous instruction

streams operating on multiple data

streams.

◼ Typically consist of a collection of fully

independent processing units or cores,

each of which has its own control unit and

its own ALU.

Copyright © 2010, Elsevier Inc. All rights Reserved

67

Shared Memory System (1)

◼ A collection of autonomous processors is

connected to a memory system via an

interconnection network.

◼ Each processor can access each memory

location.

◼ The processors usually communicate

implicitly by accessing shared data

structures.

Copyright © 2010, Elsevier Inc. All rights Reserved

68

Shared Memory System (2)

◼ Most widely available shared memory

systems use one or more multicore

processors.

◼ (multiple CPU’s or cores on a single chip)

Copyright © 2010, Elsevier Inc. All rights Reserved

69

Shared Memory System

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.3

70

UMA multicore system

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.5

Time to access all

the memory locations

will be the same for

all the cores.

71

NUMA multicore system

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.6
A memory location a core is directly
connected to can be accessed
faster than a memory location that
must be accessed through another
chip.

72

Distributed Memory System

◼ Clusters (most popular)

◼ A collection of commodity systems.

◼ Connected by a commodity interconnection

network.

◼ Nodes of a cluster are individual

computations units joined by a

communication network.

Copyright © 2010, Elsevier Inc. All rights Reserved

a.k.a. hybrid systems

73

Distributed Memory System

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.4

74

Interconnection networks

◼ Affects performance of both distributed

and shared memory systems.

◼ Two categories:

◼ Shared memory interconnects

◼ Distributed memory interconnects

Copyright © 2010, Elsevier Inc. All rights Reserved

75

Shared memory interconnects

◼ Bus interconnect

◼ A collection of parallel communication wires

together with some hardware that controls

access to the bus.

◼ Communication wires are shared by the

devices that are connected to it.

◼ As the number of devices connected to the

bus increases, contention for use of the bus

increases, and performance decreases.

Copyright © 2010, Elsevier Inc. All rights Reserved

76

Shared memory interconnects

◼ Switched interconnect

◼ Uses switches to control the routing of data

among the connected devices.

◼ Crossbar –

◼ Allows simultaneous communication among

different devices.

◼ Faster than buses.

◼ But the cost of the switches and links is relatively

high.

Copyright © 2010, Elsevier Inc. All rights Reserved

77Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.7

(a)

A crossbar switch connecting 4 processors
(Pi) and 4 memory modules (Mj)

(b)

Configuration of internal switches in a
crossbar

(c) Simultaneous memory accesses
by the processors

78

Distributed memory interconnects

◼ Two groups

◼ Direct interconnect

◼ Each switch is directly connected to a processor

memory pair, and the switches are connected to

each other.

◼ Indirect interconnect

◼ Switches may not be directly connected to a

processor.

Copyright © 2010, Elsevier Inc. All rights Reserved

79

Direct interconnect

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.8

ring toroidal mesh

80

Bisection width

◼ A measure of “number of simultaneous

communications” or “connectivity”.

◼ How many simultaneous communications

can take place “across the divide” between

the halves?

Copyright © 2010, Elsevier Inc. All rights Reserved

81

Two bisections of a ring

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.9

82

A bisection of a toroidal mesh

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.10

83

Definitions

◼ Bandwidth

◼ The rate at which a link can transmit data.

◼ Usually given in megabits or megabytes per

second.

◼ Bisection bandwidth

◼ A measure of network quality.

◼ Instead of counting the number of links joining

the halves, it sums the bandwidth of the links.

Copyright © 2010, Elsevier Inc. All rights Reserved

84

Fully connected network

◼ Each switch is directly connected to every

other switch.

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.11

bisection width = p2/4

85

Hypercube

◼ Highly connected direct interconnect.

◼ Built inductively:

◼ A one-dimensional hypercube is a fully-

connected system with two processors.

◼ A two-dimensional hypercube is built from two

one-dimensional hypercubes by joining

“corresponding” switches.

◼ Similarly a three-dimensional hypercube is

built from two two-dimensional hypercubes.

Copyright © 2010, Elsevier Inc. All rights Reserved

86

Hypercubes

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.12

one- three-dimensionaltwo-

87

Indirect interconnects

◼ Simple examples of indirect networks:

◼ Crossbar

◼ Omega network

◼ Often shown with unidirectional links and a

collection of processors, each of which has

an outgoing and an incoming link, and a

switching network.

Copyright © 2010, Elsevier Inc. All rights Reserved

88

A generic indirect network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.13

89

Crossbar interconnect for

distributed memory

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.14

90

An omega network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.15

91

A switch in an omega network

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.16

92

More definitions

◼ Any time data is transmitted, we’re

interested in how long it will take for the

data to reach its destination.

◼ Latency

◼ The time that elapses between the source’s

beginning to transmit the data and the

destination’s starting to receive the first byte.

◼ Bandwidth

◼ The rate at which the destination receives data

after it has started to receive the first byte.

Copyright © 2010, Elsevier Inc. All rights Reserved

93Copyright © 2010, Elsevier Inc. All rights Reserved

Message transmission time = l + n / b

latency (seconds)

bandwidth (bytes per second)

length of message (bytes)

94

Cache coherence

◼ Programmers have no

control over caches

and when they get

updated.

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.17

A shared memory system with two cores
and two caches

95

Cache coherence

Copyright © 2010, Elsevier Inc. All rights Reserved

x = 2; /* shared variable */

y0 privately owned by Core 0

y1 and z1 privately owned by Core 1

y0 eventually ends up = 2

y1 eventually ends up = 6

z1 = ???

96

Snooping Cache Coherence

◼ The cores share a bus .

◼ Any signal transmitted on the bus can be

“seen” by all cores connected to the bus.

◼ When core 0 updates the copy of x stored

in its cache it also broadcasts this

information across the bus.

◼ If core 1 is “snooping” the bus, it will see

that x has been updated and it can mark

its copy of x as invalid.

Copyright © 2010, Elsevier Inc. All rights Reserved

97

Directory Based Cache Coherence

◼ Uses a data structure called a directory

that stores the status of each cache line.

◼ When a variable is updated, the directory

is consulted, and the cache controllers of

the cores that have that variable’s cache

line in their caches are invalidated.

Copyright © 2010, Elsevier Inc. All rights Reserved

98

PARALLEL SOFTWARE

Copyright © 2010, Elsevier Inc. All rights Reserved

99

The burden is on software

◼ Hardware and compilers can keep up the

pace needed.

◼ From now on…

◼ In shared memory programs:

◼ Start a single process and fork threads.

◼ Threads carry out tasks.

◼ In distributed memory programs:

◼ Start multiple processes.

◼ Processes carry out tasks.

Copyright © 2010, Elsevier Inc. All rights Reserved

100

SPMD – single program multiple data

◼ A SPMD programs consists of a single

executable that can behave as if it were

multiple different programs through the use

of conditional branches.

Copyright © 2010, Elsevier Inc. All rights Reserved

if (I’m thread process i)

do this;

else

do that;

101

Writing Parallel Programs

Copyright © 2010, Elsevier Inc. All rights Reserved

double x[n], y[n];

…

for (i = 0; i < n; i++)

x[i] += y[i];

1. Divide the work among the

processes/threads

(a) so each process/thread

gets roughly the same

amount of work

(b) and communication is

minimized.

2. Arrange for the processes/threads to synchronize.

3. Arrange for communication among processes/threads.

102

Shared Memory

◼ Dynamic threads

◼ Master thread waits for work, forks new

threads, and when threads are done, they

terminate

◼ Efficient use of resources, but thread creation

and termination is time consuming.

◼ Static threads

◼ Pool of threads created and are allocated

work, but do not terminate until cleanup.

◼ Better performance, but potential waste of

system resources.

Copyright © 2010, Elsevier Inc. All rights Reserved

103

Nondeterminism

Copyright © 2010, Elsevier Inc. All rights Reserved

. . .

printf ("Thread %d > my_val = %d\n" ,

my_rank , my_x) ;

. . .

Thread 0 > my_val = 7

Thread 1 > my_val = 19
Thread 1 > my_val = 19

Thread 0 > my_val = 7

104

Nondeterminism

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val (my_rank) ;

x += my_val ;

105

Nondeterminism

◼ Race condition

◼ Critical section

◼ Mutually exclusive

◼ Mutual exclusion lock (mutex, or simply

lock)

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val (my_rank) ;

Lock(&add_my_val_lock) ;

x += my_val ;

Unlock(&add_my_val_lock) ;

106

busy-waiting

Copyright © 2010, Elsevier Inc. All rights Reserved

my_val = Compute_val (my_rank) ;

i f (my_rank == 1)

whi l e (! ok_for_1) ; /* Busy−wait loop */

x += my_val ; /* Critical section */

i f (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

107

message-passing

Copyright © 2010, Elsevier Inc. All rights Reserved

char message [1 0 0] ;

. . .

my_rank = Get_rank () ;

i f (my_rank == 1) {

sprintf (message , "Greetings from process 1") ;

Send (message , MSG_CHAR , 100 , 0) ;

} e l s e i f (my_rank == 0) {

Receive (message , MSG_CHAR , 100 , 1) ;

printf ("Process 0 > Received: %s\n" , message) ;

}

108

Partitioned Global Address

Space Languages

Copyright © 2010, Elsevier Inc. All rights Reserved

shared i n t n = . . . ;

shared double x [n] , y [n] ;

private i n t i , my_first_element , my_last_element ;

my_first_element = . . . ;

my_last_element = . . . ;

/ * Initialize x and y */

. . .

f o r (i = my_first_element ; i <= my_last_element ; i++)

x [i] += y [i] ;

109

Input and Output

◼ In distributed memory programs, only

process 0 will access stdin. In shared

memory programs, only the master thread

or thread 0 will access stdin.

◼ In both distributed memory and shared

memory programs all the

processes/threads can access stdout and

stderr.

Copyright © 2010, Elsevier Inc. All rights Reserved

110

Input and Output

◼ However, because of the indeterminacy of

the order of output to stdout, in most cases

only a single process/thread will be used

for all output to stdout other than

debugging output.

◼ Debug output should always include the

rank or id of the process/thread that’s

generating the output.

Copyright © 2010, Elsevier Inc. All rights Reserved

111

Input and Output

◼ Only a single process/thread will attempt to

access any single file other than stdin,

stdout, or stderr. So, for example, each

process/thread can open its own, private

file for reading or writing, but no two

processes/threads will open the same file.

Copyright © 2010, Elsevier Inc. All rights Reserved

112

PERFORMANCE

Copyright © 2010, Elsevier Inc. All rights Reserved

113

Speedup

◼ Number of cores = p

◼ Serial run-time = Tserial

◼ Parallel run-time = Tparallel

Copyright © 2010, Elsevier Inc. All rights Reserved

Tparallel = Tserial / p

114

Speedup of a parallel program

Copyright © 2010, Elsevier Inc. All rights Reserved

Tserial

Tparallel

S =

115

Efficiency of a parallel program

Copyright © 2010, Elsevier Inc. All rights Reserved

E =

Tserial

TparallelS

p
=

p
=

Tserial

p Tparallel
.

116

Speedups and efficiencies of a

parallel program

Copyright © 2010, Elsevier Inc. All rights Reserved

117

Speedups and efficiencies of

parallel program on different

problem sizes

Copyright © 2010, Elsevier Inc. All rights Reserved

118

Speedup

Copyright © 2010, Elsevier Inc. All rights Reserved

119

Efficiency

Copyright © 2010, Elsevier Inc. All rights Reserved

120

Effect of overhead

Copyright © 2010, Elsevier Inc. All rights Reserved

Tparallel = Tserial / p + Toverhead

121

Amdahl’s Law

◼ Unless virtually all of a serial program is

parallelized, the possible speedup is going

to be very limited — regardless of the

number of cores available.

Copyright © 2010, Elsevier Inc. All rights Reserved

122

Example

◼ We can parallelize 90% of a serial

program.

◼ Parallelization is “perfect” regardless of the

number of cores p we use.

◼ Tserial = 20 seconds

◼ Runtime of parallelizable part is

Copyright © 2010, Elsevier Inc. All rights Reserved

0.9 x Tserial / p = 18 / p

123

Example (cont.)

◼ Runtime of “unparallelizable” part is

◼ Overall parallel run-time is

Copyright © 2010, Elsevier Inc. All rights Reserved

0.1 x Tserial = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2

124

Example (cont.)

◼ Speed up

Copyright © 2010, Elsevier Inc. All rights Reserved

0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =
18 / p + 2

20

125

Scalability

◼ In general, a problem is scalable if it can handle

ever increasing problem sizes.

◼ If we increase the number of processes/threads

and keep the efficiency fixed without increasing

problem size, the problem is strongly scalable.

◼ If we keep the efficiency fixed by increasing the

problem size at the same rate as we increase

the number of processes/threads, the problem is

weakly scalable.

Copyright © 2010, Elsevier Inc. All rights Reserved

126

Taking Timings

◼ What is time?

◼ Start to finish?

◼ A program segment of interest?

◼ CPU time?

◼ Wall clock time?

Copyright © 2010, Elsevier Inc. All rights Reserved

127

Taking Timings

Copyright © 2010, Elsevier Inc. All rights Reserved

theoretical

function

MPI_Wtime omp_get_wtime

128

Taking Timings

Copyright © 2010, Elsevier Inc. All rights Reserved

129

Taking Timings

Copyright © 2010, Elsevier Inc. All rights Reserved

130

PARALLEL PROGRAM

DESIGN

Copyright © 2010, Elsevier Inc. All rights Reserved

131

Foster’s methodology

1. Partitioning: divide the computation to be

performed and the data operated on by

the computation into small tasks.

The focus here should be on identifying

tasks that can be executed in parallel.

Copyright © 2010, Elsevier Inc. All rights Reserved

132

Foster’s methodology

2. Communication: determine what

communication needs to be carried out

among the tasks identified in the previous

step.

Copyright © 2010, Elsevier Inc. All rights Reserved

133

Foster’s methodology

3. Agglomeration or aggregation: combine

tasks and communications identified in

the first step into larger tasks.

For example, if task A must be executed

before task B can be executed, it may

make sense to aggregate them into a

single composite task.

Copyright © 2010, Elsevier Inc. All rights Reserved

134

Foster’s methodology

4. Mapping: assign the composite tasks

identified in the previous step to

processes/threads.

This should be done so that

communication is minimized, and each

process/thread gets roughly the same

amount of work.

Copyright © 2010, Elsevier Inc. All rights Reserved

135

Example - histogram

◼ 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2

.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

Copyright © 2010, Elsevier Inc. All rights Reserved

136

Serial program - input

1. The number of measurements:

data_count

2. An array of data_count floats: data

3. The minimum value for the bin containing

the smallest values: min_meas

4. The maximum value for the bin containing

the largest values: max_meas

5. The number of bins: bin_count

Copyright © 2010, Elsevier Inc. All rights Reserved

137

Serial program - output

1. bin_maxes : an array of bin_count floats

2. bin_counts : an array of bin_count ints

Copyright © 2010, Elsevier Inc. All rights Reserved

138

First two stages of Foster’s

Methodology

Copyright © 2010, Elsevier Inc. All rights Reserved

139

Alternative definition of tasks

and communication

Copyright © 2010, Elsevier Inc. All rights Reserved

140

Adding the local arrays

Copyright © 2010, Elsevier Inc. All rights Reserved

141

Concluding Remarks (1)

◼ Serial systems

◼ The standard model of computer hardware

has been the von Neumann architecture.

◼ Parallel hardware

◼ Flynn’s taxonomy.

◼ Parallel software

◼ We focus on software for homogeneous MIMD

systems, consisting of a single program that

obtains parallelism by branching.

◼ SPMD programs.

Copyright © 2010, Elsevier Inc. All rights Reserved

142

Concluding Remarks (2)

◼ Input and Output

◼ We’ll write programs in which one process or

thread can access stdin, and all processes

can access stdout and stderr.

◼ However, because of nondeterminism, except

for debug output we’ll usually have a single

process or thread accessing stdout.

Copyright © 2010, Elsevier Inc. All rights Reserved

143

Concluding Remarks (3)

◼ Performance

◼ Speedup

◼ Efficiency

◼ Amdahl’s law

◼ Scalability

◼ Parallel Program Design

◼ Foster’s methodology

Copyright © 2010, Elsevier Inc. All rights Reserved

	Fundamentos
	Modificações no Modelo de Von Neumann

