UMA BREVE REVISAO SOBRE ARQUITETURA DE
COMPUTADORES — PARTE 1

MCzA020-13 - PROGRAMA(;AO PARALELA

Emilio Francesquini
efrancesquini@ufabc.edu.br

20 de setembro de 2018

Centro de Matematica, Computagdo e Cognigao
Universidade Federal do ABC

UFABC

- Estes slides foram preparados para o curso de Programacgao
Paralela na UFABC.

- Estes slides sao baseados naqueles produzidos por Peter
Pacheco como parte do livro An Introduction to Parallel
Programming disponiveis em:
https://www.cs.usfca.edu/~peter/ipp/

- Este material pode ser usado livremente desde que sejam
mantidos, além deste aviso, os créditos aos autores e
instituicoes.

1/24

https://www.cs.usfca.edu/~peter/ipp/

FUNDAMENTOS

HARDWARE E SOFTWARE SEQUENCIAIS

Programas

: Entrada

= B

Computadores executam
uma unica tarefa por vez

2/24

ARQUITETURA DE VON NEUMANN

CPU
ALU Control
registers registers
1 1
1 1
————— 4]
Interconnect
Address Contents
[[]
[[]
[[]
Main memory

3/24

MEMORIA PRINCIPAL

- £ uma colecao de posicoes, cada uma capaz de armazenar tanto
instrucoes como dados

- Cada posicao consiste de um enderego (usado para acessar
aquela posicdo) e seu conteddo

424

UNIDADE CENTRAL DE PROCESSAMENTO CPU

- A CPU (Central Processing Unit) pode ser dividida em duas
partes

- Unidade de controle (Control Unit) - é responsavel por decidir
quais instrucoes devem ser executadas. (O chefe)

- A Unidade Logica e Aritimética - ALU (Arithmetic and Logic
Unit)- é responsavel por, de fato, executar as instrucoes. (O
Trabalhador)

5/24

TERMINOLOGIA CHAVE

- Registrador (Register) - Memoria com altissimo desempenho,
parte integrada a CPU

- Contador de Programa - PC (Program Counter) - Armazena o
endereco da proxima instrucao a ser executada

- Processadores Intel usam o nome Instruction Pointer (IP)

- Barramento (Bus) - hardware que conecta a CPU & memoria e
aos demais dispositivos.

6/24

memoria

busca (fetch) / leitura (read)

7/24

memory

escrita (write) /
armazena (store)

8/24

O GARGALO DA ARQUITETURA DE VON NEUMANN

9/24

UM PROCESSO DO SO

- Um processo do sistema operacional - SO (operating system) é
um programa que esta sendo executado
- Componentes de um processo
- O programa em linguagem de maquina
- Regioes da memoria
- Descritores dos recursos alocados pelo SO ao processo
- Informacdes de seguranca
- Informacoes sobre o estado do processo

10/24

- Multitasking cria a ilusao de que um processador simples, com
apenas um nucleo (core) de processamento, esta rodando
multiplos programas simultaneamente

- Cada processo se reveza no uso do processador (time slice)

- Quando o tempo alocado a um processo acaba ele é colocado
em uma fila e espera novamente pela sua vez. Nestes casos
dizemos que o processo esta bloqueado (blocked)
- A entidade responsavel por fazer este trabalho é o escalonador
(scheduler) do SO

1/24

- Threads elementos que compoem um processo

- Threads permitem os programadores dividirem os seus
programas em tarefas virtualmente autdbnomas e independentes

- Aideia é de que quando um thread bloqueia por estar
esperando um recurso, outro thread estara esperando por sua
vez

- Aintencao é promove uma utilizacao mais otimizada da CPU

12/24

UM PROCESSO COM DUAS THREADS

the “master” thread

/ Thread
Process / \
/ Thread \
terminating a thread

starting a thread Is called joining
Is called forking

13/24

MODIFICAgf)ES NO MODELO DE VON
NEUMANN

CACHING - O BASICO

- Uma colecao de posicoes de memoria que pode ser
acessada pelo processador de maneira muito mais rapida que
outras posi¢oes de memoria

- A cache de uma CPU é tipicamente localizada no mesmo chip ou
em uma memoria que pode ser acessada muito rapidamente
- Alguns processadores como o Power8 tem até L4

go 100
60, 30 60 5

40 "

120
o 140

MPH km/h

14/24

PRINCIPIO DA LOCALIDADE

- O principio da localidade & uma heuristica pela qual os
projetistas de hardware esperam que 0 acesso a uma posicao de
memoria seja seguido por acessos a posicoes em sua vizinhanca

-+ Ha dois tipos principais de localidade:

- Localidade Espacial Acessos ocorrerao em posicoes de memaoria
proximas.

- Localidade Temporal Acessos ocorrerao em um futuro proximo.

- As caches de um processador aproveitam-se desses dois casos

15/24

PRINCIPIO DA LOCALIDADE

. float z[1000];
3 sum = 0.0;

.« for (i = 0; 1 < 1000; i++)
5 sum += z[1];

16/24

NIVEIS DE CACHE

smallest & fastest

IS,

L |

‘ L3 57
L—/ largest & slowest

17/24

CACHE HIT

L

L1 X sum

L2 y z total

L3 A[] radius r1 center

18/24

main
L1 y sum memory

L2 r1 z total

L3 A[] radius center

19/24

ALGUNS DOS PROBLEMAS DAS CACHES

- Quando uma CPU escreve dados na cache, o valor daquele dado
pode ficar inconsistente, ou defasado (stale) em relacdo aos
dados na memoria principal.

- write-through os dados sao escritos na cache e imediatamente
enviados para a memoria principal

- write-back a cache controla os dados armazenados por ela
como sujos (dirty). Quando a linha de cache é substituida por
uma nova linha a linha suja é enviada para a memaria principal.

20/24

CACHE MAPPINGS

- Full associative, completamente associativa - uma nova linha
pode ser colocada em qualquer posicao da cache.

- Direct mapped, mapeamento direto — cada linha da cache tem
uma posicao Unica onde ela pode ser colocada.

- n-way set associative, associativa de n vias — cada linha da
cache pode ser colocada em n diferentes posicoes na cache.

21/24

N-WAY SET ASSOCIATIVE

- Quando mais de uma linha na mamaria pode ser mapeada para
diversas posicoes diferentes, acaba aparecendo a necessidade
de definir uma politica de substituicao (replacement
policy/eviction policy para decidir qual das linhas precisa ser
substituida (replaced/evicted)

% é

VNte
N~

22/24

EXEMPLO

Cache Location

Memory Index Fully Assoc Direct Mapped 2-way

0 0,1,2,0r3 0 Oort
1 0,1,2,0r3 1 2o0r3
2 0,1,2,0r3 2 Oor1
3 0,1,2,0r3 3 20r3
4 0,1,2,0r3 0 Oor
5 0,1,2,0r3 1 2o0r3
6 0,1,2,0r3 2 Oor1
7 0,1,2,0r3 3 20r3
8 0,1,2,0r3 0 Oor1
9 0,1,2,0r3 1 20r3
10 0,1,2,0r3 2 Oori
11 0,1,2,0r3 3 2o0r3
12 0,1,2,0r3 0 Oort
13 0,1,2,0r3 1 2o0r3
14 0,1,2,0r3 2 Oor1
15 0,1,2,0r3 3 20r3

Associacoes de uma memoria de 16 linhas a uma cache de 4 linhas. i

CACHES E PROGRAMAS

double A[MAXI[MAX], x[MAX1, y[MAXJ;
/x Initialize A and x, assign y = 0 %/

/x First pair of loops =/
for (i = 0; i < MAX; i++)
for (j = 0; J < MAX; j++)
y[id += ALiI0JIxx[J];

/x Assign y = 0 %/
/* Second pair of loops =/

for (j = 0; J < MAX; j++)
for (i = 0; i < MAX; i++)

y[il += ALi10J1xx[J]; Cache Line Elements of A
0 ALOJL0] A[O0J[1] A[OI[2] A[LO]L3]
1 AC1JL0] A[L1I[1] A[L11C2] A[L1]C3]
2 AL2100] AC2][1] AC2][2] A[2][3]
3 AL3100] A[31[1] A[C3][2] A[31[3]

2424

| Virtual memory (1)

| = If we run a very large program or a
program that accesses very large data
sets, all of the instructions and data may
not fit into main memory.

= Virtual memory functions as a cache for
secondary storage.

| Virtual memory (2)

‘ m It exploits the principle of spatial and
temporal locality.

= It only keeps the active parts of running
programs in main memory.

| Virtual memory (3)

| = Swap space - those parts that are idle are
kept in a block of secondary storage.

m Pages — blocks of data and instructions.
= Usually these are relatively large.

= Most systems have a fixed page “
size that currently ranges from R

4 to 16 kilobytes.

| Virtual memory (4)

‘ program A main memory

u

program B

J7

| Virtual page numbers

| = When a program is compiled its pages are
assigned virtual page numbers.

= When the program is run, a table is
created that maps the virtual page
numbers to physical addresses.

= A page table is used to translate the
virtual address into a physical address.

| Page table

Virtual Address
Virtual Page Number Byte Offset
31|30 131211)10}---|11]0
1101111 01011

Table 2.2: Virtual Address Divided into
Virtual Page Number and Byte Offset

| Translation-lookaside buffer (TLB)

‘ » Using a page table has the potential to
significantly increase each program’s
overall run-time.

= A special address translation cache in the
processor.

| Translation-lookaside buffer (2)

| = It caches a small number of entries
(typically 16-512) from the page table in
very fast memory.

= Page fault — attempting to access a valid
physical address for a page in the page
table but the page is only stored on disk.

| Instruction Level Parallelism (ILP)

‘ = Attempts to improve processor
performance by having multiple processor
components or functional units
simultaneously executing instructions.

| Instruction Level Parallelism (2)

‘ = Pipelining - functional units are arranged
in stages.

= Multiple issue - multiple instructions can
be simultaneously initiated.

| Pipelining

| Pipelining example (1)

Time Operation Operand 1 | Operand 2 Result
1 Fetch operands 9.87 % 107 | 6.54 % 10°
2 Compare exponents || 9.87 x 107 | 6.54 x 10°
3 || Shift one operand || 9.87 x 10* | 0.654 x 10*
4 Add 9.87 % 107 | 0.654 % 107 | 10.524 x 107
5 Normalize result 9.87 % 107 | 0.654 x 10% | 1.0524 x 10°
6 Round result 0.87 x 10" | 0.654 x 10" | 1.05 % 10°
7 || Store result 9.87 x 107 | 0.654 x 107 | 1.05 x 10°

Add the floating point numbers
9.87x10%and 6.54x103

Pipelining example (2)

float x[1000], y[1000], z[1000];

for (i = 0; 1 = 1000; i++)
1] = x[1] + y[i]:

= Assume each operation
takes one nanosecond
(10° seconds).

= This for loop takes about
7000 nanoseconds.

Pipelining (3)

= Divide the floating point adder into 7
separate pieces of hardware or functional
units.

= First unit fetches two operands, second
unit compares exponents, etc.

= Output of one functional unit is input to the
next.

| Pipelining (4)

[Time [Fetch | Compare [Shift [Add | Normalize [Round [Store |

0 0

1 1 0

2 2 1 0

3 3 2 1 0

4 4 3 2 1 0

5 5 4 3 2 1 0

6 6 5 4 3 2 1 0
999 || 999 998 997 | 996 995 994 | 993
1000 999 998 | 997 996 995 994
1001 999 | 998 997 996 | 995
1002 999 998 997 | 996
1003 999 998 | 997
1004 999 | 998
1005 999

Table 2.3: Pipelined Addition.
Numbers in the table are subscripts of operands/results.

| Pipelining (5)

= One floating point addition still takes
7 nanoseconds.

= But 1000 floating point additio \A
now takes 1006 nanosecogg%s! *

A

| Multiple Issue (1)

| = Multiple issue processors replicate
functional units and try to simultaneously
execute different instructions in a
program.

for (1 =0;1<1000; i++)
z[i] = x[i] + ylif;

] Z[3] z[4]
z[1] z[2]

adder #1 adder #2

| Multiple Issue (2)

| » Static multiple issue - functional units are
scheduled at compile time.

= dynamic multiple issue — functional units
are scheduled at run-time.

N\

superscalar

| Speculation (1)

= In order to make use of multiple issue, the
system must find instructions that can be
executed simultaneously.

2 = In speculation, the compiler or
" the processor makes a guess
about an instruction, and then
executes the instruction on the
basis of the guess.

Speculation (2)

Z=X+Y;
if(z>0)

W=X;

Z will be

else
w=y;

)
If the system speculates incorrectly,
it must go back and recalculate w = y.

| Hardware multithreading (1)

| » There aren’t always good opportunities for
simultaneous execution of different
threads.
= Hardware multithreading provides a means
for systems to continue doing useful work
when the task being currently executed
has stalled.

s EX., the current task has to wait for data to be
loaded from memory.

| Hardware multithreading (2)

| = Fine-grained - the processor switches
between threads after each instruction,
skipping threads that are stalled.

= Pros: potential to avoid wasted machine time
due to stalls.

= Cons: a thread that’s ready to execute a long
sequence of instructions may have to wait to
execute every instruction.

| Hardware multithreading (3)

| m Coarse-grained - only switches threads
that are stalled waiting for a time-
consuming operation to complete.

= Pros: switching threads doesn’t need to be
nearly instantaneous.

= Cons: the processor can be idled on shorter
stalls, and thread switching will also cause
delays.

| Hardware multithreading (3)

‘ = Simultaneous multithreading (SMT) - a
variation on fine-grained multithreading.

= Allows multiple threads to make use of the
multiple functional units.

A programmer can write code to exploit.

PARALLEL HARDWARE

| Flynn’s Taxonomy

e\““a““
o NO" SISD
Single instruction stream
Single data stream

(SIMD)
Single instruction stream
Multiple data stream

MISD
Multiple instruction stream
Single data stream

(MIMD)
Multiple instruction stream
Multiple data stream

| sIMD

‘ = Parallelism achieved by dividing data
among the processors.

= Applies the same instruction to multiple
data items.

m Called data parallelism.

| SIMD example

control unit n data items

E— n ALUs
sl [l e [

ALU, ALU, ALU,

for (1=0;1<n;i++)
x[i] +=yli];

| sIMD

| = What if we don’t have as many ALUs as
data items?

= Divide the work and process iteratively.
m EX. m=4 ALUs and n =15 data items.

1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4 X[12] X[13] X[14]

| SIMD drawbacks

| = All ALUs are required to execute the same
instruction, or remain idle.

= |In classic design, they must also operate
synchronously.

= The ALUs have no instruction storage.

» Efficient for large data parallel problems,
but not other types of more complex
parallel problems.

| Vector processors (1)

| = Operate on arrays or vectors of data while
conventional CPU’s operate on individual
data elements or scalars.

= Vector registers.

= Capable of storing a vector of operands and
operating simultaneously on their contents.

| Vector processors (2)

‘ m Vectorized and pipelined functional units.

= The same operation is applied to each
element in the vector (or pairs of elements).

= Vector instructions.
= Operate on vectors rather than scalars.

| Vector processors (3)

| = Interleaved memory.

= Multiple “banks” of memory, which can be
accessed more or less independently.

= Distribute elements of a vector across multiple
banks, so reduce or eliminate delay in
loading/storing successive elements.

= Strided memory access and hardware
scatter/gather.

= The program accesses elements of a vector
located at fixed intervals.

| Vector processors - Pros

©)
©)

| s Fast.
= Easy to use.

= Vectorizing compilers are good at
identifying code to exploit.

= Compilers also can provide information
about code that cannot be vectorized.

(

= Helps the programmer re-evaluate code.
= High memory bandwidth.
= Uses every item in a cache line.

| Vector processors - Cons

| = They don’t handle irregular v
data structures as well as other = 7™\
parallel architectures.

= A very finite limit to their ability to handle
ever larger problems. (scalability)

| Graphics Processing Units (GPU)

‘ = Real time graphics application
programming interfaces or API's use
points, lines, and triangles to internally
represent the surface of an object.

@

| GPUs

| = A graphics processing pipeline converts
the internal representation into an array of
pixels that can be sent to a computer

screen. ./

= Several stages of this pipeline
(called shader functions) are
programmable.

= Typically just a few lines of C code.

| GPUs

| = Shader functions are also implicitly
parallel, since they can be applied to
multiple elements in the graphics stream.

» GPU’s can often optimize performance by
using SIMD parallelism.

= The current generation of GPU’s use SIMD
parallelism.
= Although they are not pure SIMD systems.

| MIMD

| = Supports multiple simultaneous instruction
streams operating on multiple data
streams.

= Typically consist of a collection of fully
Independent processing units or cores,
each of which has its own control unit and
its own ALU.

| Shared Memory System (1)

| = A collection of autonomous processors is
connected to a memory system via an
interconnection network.

m Each processor can access each memory
location.

= The processors usually communicate
implicitly by accessing shared data
structures.

| Shared Memory System (2)

‘ = Most widely available shared memory
systems use one or more multicore
Processors.

» (multiple CPU’s or cores on a single chip)

| Shared Memory System

‘ CPU CPU CPU CPU

Interconnect

Memory

Figure 2.3

| UMA multicore system

Chip 1 Chip 2
| Core 1 ‘ | Core 2 | | Core 1 | | Core 2 |
| Interconnect |
Time to access all Memory
the memory locations
will be the same for Figure 2.5

all the cores.

| NUMA multicore system

‘ Chip 1 Chip 2

| Core 1 | | Core 2 | ‘ Core 1 | | Core 2 |
| Interconnect | | Interconnect |
Memory Memory

A memory location a core is directly
connected to can be accessed
faster than a memory location that
must be accessed through another
chip.

Figure 2.6

| Distributed Memory System

| m Clusters (most popular)
= A collection of commodity systems.

= Connected by a commaodity interconnection
network.

m Nodes of a cluster are individual
computations units joined by a
communication network.

a.k.ov. hybrid systems

| Distributed Memory System

CPU CPU CPU CPU

Memory Memory Memory Memory

Interconnect

Figure 2.4

| Interconnection networks

‘ m Affects performance of both distributed
and shared memory systems.

= Two categories:
= Shared memory interconnects
= Distributed memory interconnects

| Shared memory interconnects

| s Bus interconnect

= A collection of parallel communication wires
together with some hardware that controls
access to the bus.

= Communication wires are shared by the
devices that are connected to it.

= As the number of devices connected to the
bus increases, contention for use of the bus
increases, and performance decreases.

| Shared memory interconnects

| s Switched interconnect

= Uses switches to control the routing of data
among the connected devices.

s Crossbhar —

= Allows simultaneous communication among
different devices.

= Faster than buses.

= But the cost of the switches and links is relatively
high.

| Figure 2.7

[1]
(a) [12]

A crossbar switch connecting 4 processors @
(Pi) and 4 memory modules (M) @

i
!
& @

Configuration of internal switches in a i) G

crossbar ®
i
e
(c) Simultaneous memory accesses @ } ,T f 1 :
by the processors @ e
T
. | l l

| Distributed memory interconnects

| = TWo groups

= Direct interconnect

« Each switch is directly connected to a processor
memory pair, and the switches are connected to
each other.

= Indirect interconnect

« Switches may not be directly connected to a
processor.

| Direct interconnect

| \
R A= e

LSiE|
m@#&@

ring toroidal mesh

| Bisection width

| = A measure of “number of simultaneous
communications” or “connectivity”.

= How many simultaneous communications
can take place “across the divide” between
the halves?

| Two bisections of aring

(a) (b)

Figure 2.9

| A bisection of a toroidal mesh

-

o U = =

Figure 2.10

| Definitions

| s Bandwidth
= The rate at which a link can transmit data.

= Usually given in megabits or megabytes per
second.

» Bisection bandwidth
= A measure of network quality.

» Instead of counting the number of links joining
the halves, it sums the bandwidth of the links.

| Fully connected network

‘ = Each switch is directly connected to every
other switch.

bisection width = p?/4

Figure 2.11

| Hypercube

‘ = Highly connected direct interconnect.

= Built inductively:

= A one-dimensional hypercube is a fully-
connected system with two processors.

= A two-dimensional hypercube is built from two
one-dimensional hypercubes by joining
“corresponding” switches.

= Similarly a three-dimensional hypercube is
built from two two-dimensional hypercubes.

| Hypercubes

Figure 2.12

)}

(a) (b) (c)
one- two- three-dimensional

| Indirect interconnects

| = Simple examples of indirect networks:
= Crossbar
= Omega network

= Often shown with unidirectional links and a
collection of processors, each of which has
an outgoing and an incoming link, and a
switching network.

| A generic indirect network

-

Sl

CO—

L[]

Switching
Network

Figure 2.13

Crossbar interconnect for

distributed memory

- D
4 l ™\
;| I),), O O
] e e e\ O
L] U), 9 \
. | e e I O
|_| / ANy o/ .
\ [] I\ I I O
L] U),)

Figure 2.14

| An omega network

Figure 2.15 -

| A switch in an omega network

\
fam

—

Figure 2.16

| More definitions

= Any time data is transmitted, we’re
interested in how long it will take for the
data to reach its destination.

= Latency

= The time that elapses between the source’s
beginning to transmit the data and the
destination’s starting to receive the first byte.

s Bandwidth

= The rate at which the destination receives data
after it has started to receive the first byte.

Message transmission time=1+n/b

latency (seconds) \i

length of message (bytes)

bandwidth (bytes per second)

| Cache coherence

| = Programmers have no
control over caches
and when they get
updated.

Figure 2.17

A shared memory system with two cores
and two caches

| Core 0 | | Core 1 ‘

| Cache 0 | | Cache 1 ‘
Interconnect

1z] [»] |

Lol | [

| Cache coherence

| y0 privately owned by Core 0
yl and z1 privately owned by Core 1

x = 2; /* shared variable */

[Time || Core 0 | Core 1 |
0 y0 = x; yl = 3*x;
1 x = 7; Statement(s) not involving x
2 Statement(s) not involving x | z1 = 4*x;

y0 eventually ends up = 2

yl eventually ends up = 6
zl =777

| Snooping Cache Coherence

| s The cores share a bus..

= Any signal transmitted on the bus can be
“seen” by all cores connected to the bus.

= When core 0 updates the copy of x stored
in its cache it also broadcasts this
information across the bus.

m |f core 1 is “snooping” the bus, it will see
that x has been updated and it can mark
its copy of x as invalid.

| Directory Based Cache Coherence

| m Uses a data structure called a directory
that stores the status of each cache line.

= When a variable is updated, the directory
Is consulted, and the cache controllers of
the cores that have that variable’s cache
line in their caches are invalidated.

PARALLEL SOFTWARE

| The burden is on software

| = Hardware and compilers can keep up the
pace needed.

s From now on...

= In shared memory programs:
= Start a single process and fork threads.
= Threads carry out tasks.
= In distributed memory programs:
= Start multiple processes.
= Processes carry out tasks.

| SPMD — single program multiple data

| = A SPMD programs consists of a single
executable that can behave as if it were
multiple different programs through the use
of conditional branches.

if (I'm thread process 1)
do this;

else -
do that; Q

| Writing Parallel Programs

1. Divide the work among the | double x[n], y[n];
processes/threads
(a) so each process/thread
gets roughly the same for (1=0;1<n;it++)
amount of work . .
(b) and communication is x[i] += ylil;
minimized.

2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

| Shared Memory

| » Dynamic threads

= Master thread waits for work, forks new
threads, and when threads are done, they
terminate

s Efficient use of resources, but thread creation
and termination is time consuming.

s Static threads

= Pool of threads created and are allocated
work, but do not terminate until cleanup.

= Better performance, but potential waste of
system resources.

| Nondeterminism

printf ("Thread %d > my_val = %d\n",

my_rank , my_x) ;

N
(’/} Thread 0> my val=7

Thread 1> my_val =19

Thread 1> my_val =19
Thread 0> my val=7

Nondeterminism

my_val = Compute_val (my_rank) ;

x +=my_val;

[Tie |

Core 0

Core 1

0

Finish assignment to my_val

In call to Compute_val

Load x = 0 into register

Finish assignment to my_val

Load my val = 7 into register

Load x = 0 into register

Addmy_val = Ttox

Load my _val = 19 into register

Storex = 7

Add my_val tox

| | L b —

Start other work

Storex = 19

| Nondeterminism

| m Race condition
m Critical section

= Mutually exclusive

= Mutual exclusion lock (mutex, or simply
lock)

my_val = Compute_val (my_rank) ;
Lock(&add_my_val lock) ;
x += my_val ;

Unlock(&add_my_val lock) ;

| busy-waiting

my_val = Compute_val (my_rank) ;

if (my_rank ==1)
while (! ok_for_1); /* Busy—wait loop */
x +=my_val ; /* Critical section */

i1f (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

| message-passing
| char message [100] ;

my_rank = Get_rank () ;
if (my_rank ==1) {
sprintf (message , "Greetings from process 1") ;

Send (message , MSG_CHAR ,100,0);

telseif (my_rank == 0) {
Receive (message , MSG_CHAR , 100,1);

printf ("Process 0 > Received: %s\n" , message) ;

| Partitioned Global Address
‘ Space Languages

sharedintn=...;

shared doublex [n],y[n];

privatein ti, my_first_element , my_last_element ;
my_first_element =...;

my_last_element = ... ;

/ * Initialize x and y */

f or (i=my_first_element ;i <= my_last_element ; i++)
x[i]+=y[i];

| Input and Output

| = |n distributed memory programs, only
process 0 will access stdin. In shared
memory programs, only the master thread
or thread O will access stdin.

= In both distributed memory and shared
memory programs all the
processes/threads can access stdout and
stderr.

| Input and Output

| = However, because of the indeterminacy of
the order of output to stdout, in most cases
only a single process/thread will be used
for all output to stdout other than
debugging output.

= Debug output should always include the
rank or id of the process/thread that’'s
generating the output.

| Input and Output

| = Only a single process/thread will attempt to
access any single file other than stdin,
stdout, or stderr. So, for example, each
process/thread can open its own, private
file for reading or writing, but no two
processes/threads will open the same file.

PERFORMANCE

| Speedup

‘ = Number of cores =p &
= Serial run-time = T,

s Parallel run-tme =T

parallel

ed\)Q

63(Tparallel = Tserial / p

| Speedup of a parallel program

S = Tserial

T

parallel

| Efficiency of a parallel program

T

serial

serial

S Tparallel T

p p P 'Tparallel

| Speedups and efficiencies of a
| parallel program

p 1] 21 4 8 |16

S 10] 1.9 | 36 | 65 | 10.8
E=S/p|[1.0 005|090 | 0.81 | 0.68

| Speedups and efficiencies of
parallel program on different
problem sizes

| [p[[1] 2[4]38]16]
Half [S]10] 19] 3.1 | 48 | 62
E [10005 |0.78 | 0.60 | 039
Original | 5 | 1.0] 19 | 36 | 65 [108
E ([1.0 005|090 | 0.81 | 0.68
Double | S [10] 19 | 30 | 75 | 142
E [1.0 005|098 | 0.04 | 0.89

| Speedup

‘ 1 6 T T T T T T T
—»— Half size

14 || —+— Original g
—e— Double size

12+ b

Speedup

2 4 6 8 10 12 14 16
Processes

| Efficiency

=

09
0.8
0.7
0.6
0.5

Efficiency

041
03[
0.2

—»— Half size
0.1} | —+— Original
—e— Double size

2 4 6 8 10 12 14 16

Processes

| Effect of overhead

Tparallel = Tserial / P t Toverhead

| Amdahl’s Law

‘ = Unless virtually all of a serial program is
parallelized, the possible speedup is going
to be very limited — regardless of the

number of cores available.
=

| Example

| = We can parallelize 90% of a serial
program.

m Parallelization is “perfect” regardless of the
number of cores p we use.

m Ty = 20 seconds
= Runtime of parallelizable part is

0.9 x Tseriall p= 18/ P

| Example (cont.)

‘ = Runtime of “unparallelizable” part is

0.1 X Tegpig =2

= Overall parallel run-time is

T

=09xT

parallel —

seriaI/ p +0.1x Tserial =18/ p +2

| Example (cont.)

‘ = Speed up

Tserial 20

S = 09X Toiy/P+01xToy 18/p+2

| scalability

| = In general, a problem is scalable if it can handle
ever increasing problem sizes.

= If we increase the number of processes/threads
and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

n If we keep the efficiency fixed by increasing the
problem size at the same rate as we increase
the number of processes/threads, the problem is
weakly scalable.

| Taking Timings

‘ = What is time?
= Start to finish?
= A program segment of interest?
m CPU time?
= Wall clock time?

Taking Timings

theoretical

double start, finish;///—-\f52;————-ﬁJnCﬁon

start = Get_current_time ();
/% Code that we want to Ti

#/

finish = Get_curvent_tim&();
printf("The elapsed time = %e seconds\n", finish—start);

MPI_Wtime omp_get_wtime

| Taking Timings

ouble start, finish;

start = Get_current_time ();
/% Code that we want to time =*/

finish = Get_current_time();
printf("The elapsed time = %e seconds\n", finish—start);

Taking Timings

shared double global_elapsed;
private double my_start, my_finish, my_elapsed;

/% Synchronize all processes/threads =/
Barrier():

my_start = Get_current_time();

/% Code that we want to time */

my_finish = Get_current_time ();
my_elapsed = my_finish — my_start;

/# Find the max across all processes/threads */
global_elapsed = Global_max(my_elapsed);
if (my_rank == 0)

printf("The elapsed time = %e seconds\n", global_elapsed);

|
A%

—

PARALLEL PROGRAM
DESIGN

| Foster’s methodology

| 1. Partitioning: divide the computation to be
performed and the data operated on by
the computation into small tasks.

The focus here should be on identifying
tasks that can be executed in parallel.

| Foster’s methodology

‘ 2. Communication: determine what
communication needs to be carried out
among the tasks identified in the previous
step.

| Foster’s methodology

| 3. Agglomeration or aggregation: combine
tasks and communications identified in
the first step into larger tasks.

For example, if task A must be executed
before task B can be executed, it may
make sense to aggregate them into a
single composite task.

| Foster’s methodology

| 4. Mapping: assign the composite tasks
identified in the previous step to
processes/threads.

This should be done so that
communication is minimized, and each
process/thread gets roughly the same
amount of work.

| Example - histogram

‘ = 1.3,2.9,0.4,0.3,1.3,4.4,1.7,04,3.2,0.3,4.9,2
4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

| Serial program - input

.

The number of measurements:
data_count

. An array of data_count floats: data
. The minimum value for the bin containing

the smallest values: min_meas

The maximum value for the bin containing
the largest values: max_meas

The number of bins: bin_count

| Serial program - output

‘ 1. bin_maxes : an array of bin_count floats

2. bin_counts : an array of bin_count ints

| First two stages of Foster’s

‘ Methodology

Find_bin sa 0

Increment
bin_counts

data[i-1]

datalil

datal[i+1]]| °°

\

/

* |bin_counts[b-1]++

bin_counts[b]++| °

| Alternative definition of tasks
‘ and communication

Find bin «.. |data[i—1]| | datalil |data[i+l]| |data[i+2]|

e -

* [loc_bin_cts[b-1] ++| |loc_bin_cts [b]l++ |

|loc bin_cts[b-1]++ |loc bin cts[b]++| see

N

|b1n counts[b-1]+= ||b1n counts[b]+= | .

| Adding the local arrays

yrYy

® @

| Concluding Remarks (1)

| = Serial systems

= The standard model of computer hardware
has been the von Neumann architecture.

s Parallel hardware
= Flynn’s taxonomy.
s Parallel software

= We focus on software for homogeneous MIMD
systems, consisting of a single program that
obtains parallelism by branching.

= SPMD programs.

| Concluding Remarks (2)

| = Input and Output

= We’ll write programs in which one process or
thread can access stdin, and all processes
can access stdout and stderr.

= However, because of nondeterminism, except
for debug output we’ll usually have a single
process or thread accessing stdout.

| Concluding Remarks (3)

‘ s Performance

= Speedup

= Efficiency

= Amdahl’s law
= Scalability

= Parallel Program Design
» Foster's methodology

	Fundamentos
	Modificações no Modelo de Von Neumann

