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Distributed Memory 
Programming with
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Roadmap
 Writing your first MPI program.
 Using the common MPI functions.
 The Trapezoidal Rule in MPI.
 Collective communication.
 MPI derived datatypes.
 Performance evaluation of MPI programs.
 Parallel sorting.
 Safety in MPI programs.
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A distributed memory system
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A shared memory system
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Hello World! 
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(a classic)
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Identifying MPI processes

 Common practice to identify processes by 
nonnegative integer ranks.

 p processes are numbered 0, 1, 2, .. p-1
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Our first MPI program

Copyright © 2010, Elsevier Inc. All rights Reserved



8

Compilation
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mpicc  -g  -Wall  -o  mpi_hello  mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name
(as opposed to default a.out)

produce
debugging 
information
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Execution
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mpiexec  -n  <number of processes>   <executable>

mpiexec  -n  1  ./mpi_hello

mpiexec  -n  4  ./mpi_hello

run with 1 process

run with 4 processes
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Execution
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mpiexec  -n  1  ./mpi_hello

mpiexec  -n  4  ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 !
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MPI Programs
 Written in C.

 Has main.
 Uses stdio.h, string.h, etc.

 Need to add mpi.h header file.
 Identifiers defined by MPI start with 

“MPI_”.
 First letter following underscore is 

uppercase.
 For function names and MPI-defined types.
 Helps to avoid confusion.
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MPI Components

 MPI_Init
 Tells MPI to do all the necessary setup.

 MPI_Finalize
 Tells MPI we’re done, so clean up anything 

allocated for this program.
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Basic Outline
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Communicators 

 A collection of processes that can send 
messages to each other.

 MPI_Init defines a communicator that 
consists of all the processes created when 
the program is started.

 Called MPI_COMM_WORLD.
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Communicators
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number  of processes in the communicator

my rank 
(the process making this call)
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SPMD

 Single-Program Multiple-Data
 We compile one program.
 Process 0 does something different.

 Receives messages and prints them while the 
other processes do the work.

 The if-else construct makes our program 
SPMD.
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Communication
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Data types
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Communication
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Message matching
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MPI_Send
src = q

MPI_Recv
dest  = r

r

q
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Receiving messages

 A receiver can get a message without 
knowing:
 the amount of data in the message,
 the sender of the message,
 or the tag of the message.
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status_p  argument
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MPI_SOURCE
MPI_TAG
MPI_ERROR

MPI_Status*

MPI_Status*  status;

status.MPI_SOURCE
status.MPI_TAG
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How much data am I receiving?
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Issues with send and receive

 Exact behavior is determined by the MPI 
implementation.

 MPI_Send may behave differently with 
regard to buffer size, cutoffs and blocking.

 MPI_Recv always blocks until a matching 
message is received.

 Know your implementation;
don’t make assumptions!
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TRAPEZOIDAL RULE IN MPI

Copyright © 2010, Elsevier Inc. All rights Reserved



26

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved



27

The Trapezoidal Rule
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One trapezoid
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Pseudo-code for a serial 
program
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Parallelizing the Trapezoidal Rule

1. Partition problem solution into tasks.
2. Identify communication channels between 

tasks.
3. Aggregate tasks into composite tasks.
4. Map composite tasks to cores.
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Parallel pseudo-code
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Tasks and communications for 
Trapezoidal Rule
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First version (1)
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First version (2)
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First version (3)
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Dealing with I/O
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Each process just
prints a message.
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Running with 6 processes
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unpredictable output
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Input 

 Most MPI implementations only allow 
process 0 in MPI_COMM_WORLD access 
to stdin.

 Process 0 must read the data (scanf) and 
send to the other processes.
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Function for reading user input

Copyright © 2010, Elsevier Inc. All rights Reserved



40

COLLECTIVE 
COMMUNICATION
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Tree-structured communication
1. In the first phase: 

(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and 
7 sends to 6. 
(b) Processes 0, 2, 4, and 6 add in the received values. 
(c) Processes 2 and 6 send their new values to 
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their 
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest 
value.
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A tree-structured global sum
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An alternative tree-structured 
global sum
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MPI_Reduce
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Predefined reduction operators 
in MPI
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Collective vs. Point-to-Point 
Communications
 All the processes in the communicator 

must call the same collective function. 

 For example, a program that attempts to 
match a call to MPI_Reduce on one 
process with a call to MPI_Recv on 
another process is erroneous, and, in all 
likelihood, the program will hang or crash.
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Collective vs. Point-to-Point 
Communications
 The arguments passed by each process to 

an MPI collective communication must be 
“compatible.”

 For example, if one process passes in 0 as 
the dest_process and another passes in 1, 
then the outcome of a call to MPI_Reduce 
is erroneous, and, once again, the 
program is likely to hang or crash.
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Collective vs. Point-to-Point 
Communications
 The output_data_p argument is only used 

on dest_process. 

 However, all of the processes still need to 
pass in an actual argument corresponding 
to output_data_p, even if it’s just NULL.
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Collective vs. Point-to-Point 
Communications
 Point-to-point communications are 

matched on the basis of tags and 
communicators. 

 Collective communications don’t use tags. 
 They’re matched solely on the basis of the 

communicator and the order in which 
they’re called.
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Example (1)
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Multiple calls to MPI_Reduce
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Example (2)

 Suppose that each process calls 
MPI_Reduce with operator MPI_SUM, and 
destination process 0. 

 At first glance, it might seem that after the 
two calls to MPI_Reduce, the value of b 
will be 3, and the value of d will be 6. 
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Example (3)

 However, the names of the memory 
locations are irrelevant to the matching of 
the calls to MPI_Reduce. 

 The order of the calls will determine the 
matching so the value stored in b will be 
1+2+1 = 4, and the value stored in d will 
be 2+1+2 = 5.
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MPI_Allreduce

 Useful in a situation in which all of the 
processes need the result of a global sum 
in order to complete some larger 
computation.
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A global sum followed
by distribution of the
result.
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A butterfly-structured global sum.
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Broadcast

 Data belonging to a single process is sent 
to all of the processes in the 
communicator.
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A tree-structured broadcast.



58

A version of Get_input that uses 
MPI_Bcast
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Data distributions
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Compute a vector sum.
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Serial implementation of vector 
addition
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Different partitions of a 12-
component vector among 3 
processes
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Partitioning options

 Block partitioning
 Assign blocks of consecutive components to 

each process.
 Cyclic partitioning

 Assign components in a round robin fashion.
 Block-cyclic partitioning

 Use a cyclic distribution of blocks of 
components.
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Parallel implementation of 
vector addition
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Scatter

 MPI_Scatter can be used in a function that 
reads in an entire vector on process 0 but 
only sends the needed components to 
each of the other processes.
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Reading and distributing a vector
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Gather

 Collect all of the components of the vector 
onto process 0, and then process 0 can 
process all of the components.

Copyright © 2010, Elsevier Inc. All rights Reserved



67

Print a distributed vector (1)
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Print a distributed vector (2)
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Allgather

 Concatenates the contents of each 
process’ send_buf_p and stores this in 
each process’ recv_buf_p. 

 As usual, recv_count is the amount of data 
being received from each process.
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Matrix-vector multiplication
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i-th component of y
Dot product of the ith
row of A with x.
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Matrix-vector multiplication
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Multiply a matrix by a vector
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Serial pseudo-code
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C style arrays
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stored  as
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Serial matrix-vector 
multiplication
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An MPI matrix-vector 
multiplication function (1)
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An MPI matrix-vector 
multiplication function (2)
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MPI DERIVED DATATYPES

Copyright © 2010, Elsevier Inc. All rights Reserved



78

Derived datatypes
 Used to represent any collection of data items in 

memory by storing both the types of the items 
and their relative locations in memory.

 The idea is that if a function that sends data 
knows this information about a collection of data 
items, it can collect the items from memory 
before they are sent.

 Similarly, a function that receives data can 
distribute the items into their correct destinations 
in memory when they’re received.
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Derived datatypes

 Formally, consists of a sequence of basic 
MPI data types together with a 
displacement for each of the data types.

 Trapezoidal Rule example:
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MPI_Type create_struct

 Builds a derived datatype that consists of 
individual elements that have different 
basic types.
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MPI_Get_address

 Returns the address of the memory 
location referenced by location_p.

 The special type MPI_Aint is an integer 
type that is big enough to store an address 
on the system.
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MPI_Type_commit

 Allows the MPI implementation to optimize 
its internal representation of the datatype 
for use in communication functions.
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MPI_Type_free

 When we’re finished with our new type, 
this frees any additional storage used.
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Get input function with a derived 
datatype (1)
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Get input function with a derived 
datatype (2)
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Get input function with a derived 
datatype (3)
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PERFORMANCE EVALUATION
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Elapsed parallel time

 Returns the number of seconds that have 
elapsed since some time in the past.
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Elapsed serial time

 In this case, you don’t need to link in the 
MPI libraries.

 Returns time in microseconds elapsed 
from some point in the past.
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Elapsed serial time
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MPI_Barrier

 Ensures that no process will return from 
calling it until every process in the 
communicator has started calling it.
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MPI_Barrier
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Run-times of serial and parallel 
matrix-vector multiplication
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(Seconds)
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Speedup
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Efficiency
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Speedups of Parallel Matrix-
Vector Multiplication
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Efficiencies of Parallel Matrix-
Vector Multiplication
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Scalability

 A program is scalable if the problem size 
can be increased at a rate so that the 
efficiency doesn’t decrease as the number 
of processes increase.
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Scalability

 Programs that can maintain a constant 
efficiency without increasing the problem 
size are sometimes said to be strongly 
scalable.

 Programs that can maintain a constant 
efficiency if the problem size increases at 
the same rate as the number of processes 
are sometimes said to be weakly scalable.
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A PARALLEL SORTING 
ALGORITHM
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Sorting

 n keys and p = comm sz processes.
 n/p keys assigned to each process.
 No restrictions on which keys are assigned 

to which processes.
 When the algorithm terminates:

 The keys assigned to each process should be 
sorted in (say) increasing order.

 If 0 ≤ q < r < p, then each key assigned to 
process q should be less than or equal to 
every key assigned to process r.
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Serial bubble sort
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Odd-even transposition sort

 A sequence of phases.
 Even phases, compare swaps:

 Odd phases, compare swaps:
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Example
Start:  5, 9, 4, 3
Even phase:  compare-swap (5,9) and (4,3)

 getting the list  5, 9, 3, 4
Odd phase:  compare-swap (9,3)

getting the list  5, 3, 9, 4
Even phase:  compare-swap (5,3) and (9,4)

 getting the list  3, 5, 4, 9
Odd phase:  compare-swap (5,4)

getting the list  3, 4, 5, 9
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Serial odd-even transposition 
sort
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Communications among tasks in 
odd-even sort
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Tasks determining a[i] are labeled with a[i].
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Parallel odd-even transposition 
sort
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Pseudo-code
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Compute_partner
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Safety in MPI programs

 The MPI standard allows MPI_Send to 
behave in two different ways: 
 it can simply copy the message into an MPI 

managed buffer and return, 
 or it can block until the matching call to 

MPI_Recv starts.
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Safety in MPI programs

 Many implementations of MPI set a 
threshold at which the system switches 
from buffering to blocking. 

 Relatively small messages will be buffered 
by MPI_Send.

 Larger messages, will cause it to block.
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Safety in MPI programs

 If the MPI_Send executed by each 
process blocks, no process will be able to 
start executing a call to MPI_Recv, and the 
program will hang or deadlock.

 Each process is blocked waiting for an 
event that will never happen.
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(see pseudo-code)
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Safety in MPI programs

 A program that relies on MPI provided 
buffering is said to be unsafe. 

 Such a program may run without problems 
for various sets of input, but it may hang or 
crash with other sets.
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MPI_Ssend

 An alternative to MPI_Send defined by the 
MPI standard.

 The extra “s” stands for synchronous and 
MPI_Ssend is guaranteed to block until the 
matching receive starts.
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Restructuring communication
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MPI_Sendrecv

 An alternative to scheduling the 
communications ourselves. 

 Carries out a blocking send and a receive 
in a single call. 

 The dest and the source can be the same 
or different. 

 Especially useful because MPI schedules 
the communications so that the program 
won’t hang or crash.
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MPI_Sendrecv
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Safe communication with five 
processes
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Parallel odd-even transposition sort
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Run-times of parallel odd-even 
sort
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(times are in milliseconds)
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Concluding Remarks (1)

 MPI or the Message-Passing Interface is a 
library of functions that can be called from 
C, C++, or Fortran programs.

 A communicator is a collection of 
processes that can send messages to 
each other.

 Many parallel programs use the single-
program multiple data or SPMD approach.
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Concluding Remarks (2)

 Most serial programs are deterministic: if 
we run the same program with the same 
input we’ll get the same output. 

 Parallel programs often don’t possess this 
property.

 Collective communications involve all the 
processes in a communicator.
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Concluding Remarks (3)

 When we time parallel programs, we’re 
usually interested in elapsed time or “wall 
clock time”.

 Speedup is the ratio of the serial run-time 
to the parallel run-time.

 Efficiency is the speedup divided by the 
number of parallel processes.
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Concluding Remarks (4)

 If it’s possible to increase the problem size 
(n) so that the efficiency doesn’t decrease 
as p is increased, a parallel program is 
said to be scalable.

 An MPI program is unsafe if its correct 
behavior depends on the fact that 
MPI_Send is buffering its input.

Copyright © 2010, Elsevier Inc. All rights Reserved


