
1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 3

Distributed Memory
Programming with
MPI

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap
 Writing your first MPI program.
 Using the common MPI functions.
 The Trapezoidal Rule in MPI.
 Collective communication.
 MPI derived datatypes.
 Performance evaluation of MPI programs.
 Parallel sorting.
 Safety in MPI programs.

C
hapter Subtitle

3

A distributed memory system

Copyright © 2010, Elsevier Inc. All rights Reserved

4

A shared memory system

Copyright © 2010, Elsevier Inc. All rights Reserved

5

Hello World!

Copyright © 2010, Elsevier Inc. All rights Reserved

(a classic)

6

Identifying MPI processes

 Common practice to identify processes by
nonnegative integer ranks.

 p processes are numbered 0, 1, 2, .. p-1

Copyright © 2010, Elsevier Inc. All rights Reserved

7

Our first MPI program

Copyright © 2010, Elsevier Inc. All rights Reserved

8

Compilation

Copyright © 2010, Elsevier Inc. All rights Reserved

mpicc -g -Wall -o mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name
(as opposed to default a.out)

produce
debugging
information

9

Execution

Copyright © 2010, Elsevier Inc. All rights Reserved

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes

10

Execution

Copyright © 2010, Elsevier Inc. All rights Reserved

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 !

11

MPI Programs
 Written in C.

 Has main.
 Uses stdio.h, string.h, etc.

 Need to add mpi.h header file.
 Identifiers defined by MPI start with

“MPI_”.
 First letter following underscore is

uppercase.
 For function names and MPI-defined types.
 Helps to avoid confusion.

Copyright © 2010, Elsevier Inc. All rights Reserved

12

MPI Components

 MPI_Init
 Tells MPI to do all the necessary setup.

 MPI_Finalize
 Tells MPI we’re done, so clean up anything

allocated for this program.

Copyright © 2010, Elsevier Inc. All rights Reserved

13

Basic Outline

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Communicators

 A collection of processes that can send
messages to each other.

 MPI_Init defines a communicator that
consists of all the processes created when
the program is started.

 Called MPI_COMM_WORLD.

Copyright © 2010, Elsevier Inc. All rights Reserved

15

Communicators

Copyright © 2010, Elsevier Inc. All rights Reserved

number of processes in the communicator

my rank
(the process making this call)

16

SPMD

 Single-Program Multiple-Data
 We compile one program.
 Process 0 does something different.

 Receives messages and prints them while the
other processes do the work.

 The if-else construct makes our program
SPMD.

Copyright © 2010, Elsevier Inc. All rights Reserved

17

Communication

Copyright © 2010, Elsevier Inc. All rights Reserved

18

Data types

Copyright © 2010, Elsevier Inc. All rights Reserved

19

Communication

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Message matching

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI_Send
src = q

MPI_Recv
dest = r

r

q

21

Receiving messages

 A receiver can get a message without
knowing:
 the amount of data in the message,
 the sender of the message,
 or the tag of the message.

Copyright © 2010, Elsevier Inc. All rights Reserved

22

status_p argument

Copyright © 2010, Elsevier Inc. All rights Reserved

MPI_SOURCE
MPI_TAG
MPI_ERROR

MPI_Status*

MPI_Status* status;

status.MPI_SOURCE
status.MPI_TAG

23

How much data am I receiving?

Copyright © 2010, Elsevier Inc. All rights Reserved

24

Issues with send and receive

 Exact behavior is determined by the MPI
implementation.

 MPI_Send may behave differently with
regard to buffer size, cutoffs and blocking.

 MPI_Recv always blocks until a matching
message is received.

 Know your implementation;
don’t make assumptions!

Copyright © 2010, Elsevier Inc. All rights Reserved

25

TRAPEZOIDAL RULE IN MPI

Copyright © 2010, Elsevier Inc. All rights Reserved

26

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved

27

The Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved

28

One trapezoid

Copyright © 2010, Elsevier Inc. All rights Reserved

29

Pseudo-code for a serial
program

Copyright © 2010, Elsevier Inc. All rights Reserved

30

Parallelizing the Trapezoidal Rule

1. Partition problem solution into tasks.
2. Identify communication channels between

tasks.
3. Aggregate tasks into composite tasks.
4. Map composite tasks to cores.

Copyright © 2010, Elsevier Inc. All rights Reserved

31

Parallel pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

32

Tasks and communications for
Trapezoidal Rule

Copyright © 2010, Elsevier Inc. All rights Reserved

33

First version (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

34

First version (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

35

First version (3)

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Dealing with I/O

Copyright © 2010, Elsevier Inc. All rights Reserved

Each process just
prints a message.

37

Running with 6 processes

Copyright © 2010, Elsevier Inc. All rights Reserved

unpredictable output

38

Input

 Most MPI implementations only allow
process 0 in MPI_COMM_WORLD access
to stdin.

 Process 0 must read the data (scanf) and
send to the other processes.

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Function for reading user input

Copyright © 2010, Elsevier Inc. All rights Reserved

40

COLLECTIVE
COMMUNICATION

Copyright © 2010, Elsevier Inc. All rights Reserved

41

Tree-structured communication
1. In the first phase:

(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and
7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in the received values.
(c) Processes 2 and 6 send their new values to
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest
value.

Copyright © 2010, Elsevier Inc. All rights Reserved

42

A tree-structured global sum

Copyright © 2010, Elsevier Inc. All rights Reserved

43

An alternative tree-structured
global sum

Copyright © 2010, Elsevier Inc. All rights Reserved

44

MPI_Reduce

Copyright © 2010, Elsevier Inc. All rights Reserved

45

Predefined reduction operators
in MPI

Copyright © 2010, Elsevier Inc. All rights Reserved

46

Collective vs. Point-to-Point
Communications
 All the processes in the communicator

must call the same collective function.

 For example, a program that attempts to
match a call to MPI_Reduce on one
process with a call to MPI_Recv on
another process is erroneous, and, in all
likelihood, the program will hang or crash.

Copyright © 2010, Elsevier Inc. All rights Reserved

47

Collective vs. Point-to-Point
Communications
 The arguments passed by each process to

an MPI collective communication must be
“compatible.”

 For example, if one process passes in 0 as
the dest_process and another passes in 1,
then the outcome of a call to MPI_Reduce
is erroneous, and, once again, the
program is likely to hang or crash.

Copyright © 2010, Elsevier Inc. All rights Reserved

48

Collective vs. Point-to-Point
Communications
 The output_data_p argument is only used

on dest_process.

 However, all of the processes still need to
pass in an actual argument corresponding
to output_data_p, even if it’s just NULL.

Copyright © 2010, Elsevier Inc. All rights Reserved

49

Collective vs. Point-to-Point
Communications
 Point-to-point communications are

matched on the basis of tags and
communicators.

 Collective communications don’t use tags.
 They’re matched solely on the basis of the

communicator and the order in which
they’re called.

Copyright © 2010, Elsevier Inc. All rights Reserved

50

Example (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

Multiple calls to MPI_Reduce

51

Example (2)

 Suppose that each process calls
MPI_Reduce with operator MPI_SUM, and
destination process 0.

 At first glance, it might seem that after the
two calls to MPI_Reduce, the value of b
will be 3, and the value of d will be 6.

Copyright © 2010, Elsevier Inc. All rights Reserved

52

Example (3)

 However, the names of the memory
locations are irrelevant to the matching of
the calls to MPI_Reduce.

 The order of the calls will determine the
matching so the value stored in b will be
1+2+1 = 4, and the value stored in d will
be 2+1+2 = 5.

Copyright © 2010, Elsevier Inc. All rights Reserved

53

MPI_Allreduce

 Useful in a situation in which all of the
processes need the result of a global sum
in order to complete some larger
computation.

Copyright © 2010, Elsevier Inc. All rights Reserved

54Copyright © 2010, Elsevier Inc. All rights Reserved

A global sum followed
by distribution of the
result.

55Copyright © 2010, Elsevier Inc. All rights Reserved

A butterfly-structured global sum.

56

Broadcast

 Data belonging to a single process is sent
to all of the processes in the
communicator.

Copyright © 2010, Elsevier Inc. All rights Reserved

57Copyright © 2010, Elsevier Inc. All rights Reserved

A tree-structured broadcast.

58

A version of Get_input that uses
MPI_Bcast

Copyright © 2010, Elsevier Inc. All rights Reserved

59

Data distributions

Copyright © 2010, Elsevier Inc. All rights Reserved

Compute a vector sum.

60

Serial implementation of vector
addition

Copyright © 2010, Elsevier Inc. All rights Reserved

61

Different partitions of a 12-
component vector among 3
processes

Copyright © 2010, Elsevier Inc. All rights Reserved

62

Partitioning options

 Block partitioning
 Assign blocks of consecutive components to

each process.
 Cyclic partitioning

 Assign components in a round robin fashion.
 Block-cyclic partitioning

 Use a cyclic distribution of blocks of
components.

Copyright © 2010, Elsevier Inc. All rights Reserved

63

Parallel implementation of
vector addition

Copyright © 2010, Elsevier Inc. All rights Reserved

64

Scatter

 MPI_Scatter can be used in a function that
reads in an entire vector on process 0 but
only sends the needed components to
each of the other processes.

Copyright © 2010, Elsevier Inc. All rights Reserved

65

Reading and distributing a vector

Copyright © 2010, Elsevier Inc. All rights Reserved

66

Gather

 Collect all of the components of the vector
onto process 0, and then process 0 can
process all of the components.

Copyright © 2010, Elsevier Inc. All rights Reserved

67

Print a distributed vector (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

68

Print a distributed vector (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

69

Allgather

 Concatenates the contents of each
process’ send_buf_p and stores this in
each process’ recv_buf_p.

 As usual, recv_count is the amount of data
being received from each process.

Copyright © 2010, Elsevier Inc. All rights Reserved

70

Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

i-th component of y
Dot product of the ith
row of A with x.

71

Matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

72

Multiply a matrix by a vector

Copyright © 2010, Elsevier Inc. All rights Reserved

Serial pseudo-code

73

C style arrays

Copyright © 2010, Elsevier Inc. All rights Reserved

stored as

74

Serial matrix-vector
multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

75

An MPI matrix-vector
multiplication function (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

76

An MPI matrix-vector
multiplication function (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

77

MPI DERIVED DATATYPES

Copyright © 2010, Elsevier Inc. All rights Reserved

78

Derived datatypes
 Used to represent any collection of data items in

memory by storing both the types of the items
and their relative locations in memory.

 The idea is that if a function that sends data
knows this information about a collection of data
items, it can collect the items from memory
before they are sent.

 Similarly, a function that receives data can
distribute the items into their correct destinations
in memory when they’re received.

Copyright © 2010, Elsevier Inc. All rights Reserved

79

Derived datatypes

 Formally, consists of a sequence of basic
MPI data types together with a
displacement for each of the data types.

 Trapezoidal Rule example:

Copyright © 2010, Elsevier Inc. All rights Reserved

80

MPI_Type create_struct

 Builds a derived datatype that consists of
individual elements that have different
basic types.

Copyright © 2010, Elsevier Inc. All rights Reserved

81

MPI_Get_address

 Returns the address of the memory
location referenced by location_p.

 The special type MPI_Aint is an integer
type that is big enough to store an address
on the system.

Copyright © 2010, Elsevier Inc. All rights Reserved

82

MPI_Type_commit

 Allows the MPI implementation to optimize
its internal representation of the datatype
for use in communication functions.

Copyright © 2010, Elsevier Inc. All rights Reserved

83

MPI_Type_free

 When we’re finished with our new type,
this frees any additional storage used.

Copyright © 2010, Elsevier Inc. All rights Reserved

84

Get input function with a derived
datatype (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

85

Get input function with a derived
datatype (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

86

Get input function with a derived
datatype (3)

Copyright © 2010, Elsevier Inc. All rights Reserved

87

PERFORMANCE EVALUATION

Copyright © 2010, Elsevier Inc. All rights Reserved

88

Elapsed parallel time

 Returns the number of seconds that have
elapsed since some time in the past.

Copyright © 2010, Elsevier Inc. All rights Reserved

89

Elapsed serial time

 In this case, you don’t need to link in the
MPI libraries.

 Returns time in microseconds elapsed
from some point in the past.

Copyright © 2010, Elsevier Inc. All rights Reserved

90

Elapsed serial time

Copyright © 2010, Elsevier Inc. All rights Reserved

91

MPI_Barrier

 Ensures that no process will return from
calling it until every process in the
communicator has started calling it.

Copyright © 2010, Elsevier Inc. All rights Reserved

92

MPI_Barrier

Copyright © 2010, Elsevier Inc. All rights Reserved

93

Run-times of serial and parallel
matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

(Seconds)

94

Speedup

Copyright © 2010, Elsevier Inc. All rights Reserved

95

Efficiency

Copyright © 2010, Elsevier Inc. All rights Reserved

96

Speedups of Parallel Matrix-
Vector Multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

97

Efficiencies of Parallel Matrix-
Vector Multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

98

Scalability

 A program is scalable if the problem size
can be increased at a rate so that the
efficiency doesn’t decrease as the number
of processes increase.

Copyright © 2010, Elsevier Inc. All rights Reserved

99

Scalability

 Programs that can maintain a constant
efficiency without increasing the problem
size are sometimes said to be strongly
scalable.

 Programs that can maintain a constant
efficiency if the problem size increases at
the same rate as the number of processes
are sometimes said to be weakly scalable.

Copyright © 2010, Elsevier Inc. All rights Reserved

100

A PARALLEL SORTING
ALGORITHM

Copyright © 2010, Elsevier Inc. All rights Reserved

101

Sorting

 n keys and p = comm sz processes.
 n/p keys assigned to each process.
 No restrictions on which keys are assigned

to which processes.
 When the algorithm terminates:

 The keys assigned to each process should be
sorted in (say) increasing order.

 If 0 ≤ q < r < p, then each key assigned to
process q should be less than or equal to
every key assigned to process r.

Copyright © 2010, Elsevier Inc. All rights Reserved

102

Serial bubble sort

Copyright © 2010, Elsevier Inc. All rights Reserved

103

Odd-even transposition sort

 A sequence of phases.
 Even phases, compare swaps:

 Odd phases, compare swaps:

Copyright © 2010, Elsevier Inc. All rights Reserved

104

Example
Start: 5, 9, 4, 3
Even phase: compare-swap (5,9) and (4,3)

 getting the list 5, 9, 3, 4
Odd phase: compare-swap (9,3)

getting the list 5, 3, 9, 4
Even phase: compare-swap (5,3) and (9,4)

 getting the list 3, 5, 4, 9
Odd phase: compare-swap (5,4)

getting the list 3, 4, 5, 9

Copyright © 2010, Elsevier Inc. All rights Reserved

105

Serial odd-even transposition
sort

Copyright © 2010, Elsevier Inc. All rights Reserved

106

Communications among tasks in
odd-even sort

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks determining a[i] are labeled with a[i].

107

Parallel odd-even transposition
sort

Copyright © 2010, Elsevier Inc. All rights Reserved

108

Pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

109

Compute_partner

Copyright © 2010, Elsevier Inc. All rights Reserved

110

Safety in MPI programs

 The MPI standard allows MPI_Send to
behave in two different ways:
 it can simply copy the message into an MPI

managed buffer and return,
 or it can block until the matching call to

MPI_Recv starts.

Copyright © 2010, Elsevier Inc. All rights Reserved

111

Safety in MPI programs

 Many implementations of MPI set a
threshold at which the system switches
from buffering to blocking.

 Relatively small messages will be buffered
by MPI_Send.

 Larger messages, will cause it to block.

Copyright © 2010, Elsevier Inc. All rights Reserved

112

Safety in MPI programs

 If the MPI_Send executed by each
process blocks, no process will be able to
start executing a call to MPI_Recv, and the
program will hang or deadlock.

 Each process is blocked waiting for an
event that will never happen.

Copyright © 2010, Elsevier Inc. All rights Reserved

(see pseudo-code)

113

Safety in MPI programs

 A program that relies on MPI provided
buffering is said to be unsafe.

 Such a program may run without problems
for various sets of input, but it may hang or
crash with other sets.

Copyright © 2010, Elsevier Inc. All rights Reserved

114

MPI_Ssend

 An alternative to MPI_Send defined by the
MPI standard.

 The extra “s” stands for synchronous and
MPI_Ssend is guaranteed to block until the
matching receive starts.

Copyright © 2010, Elsevier Inc. All rights Reserved

115

Restructuring communication

Copyright © 2010, Elsevier Inc. All rights Reserved

116

MPI_Sendrecv

 An alternative to scheduling the
communications ourselves.

 Carries out a blocking send and a receive
in a single call.

 The dest and the source can be the same
or different.

 Especially useful because MPI schedules
the communications so that the program
won’t hang or crash.

Copyright © 2010, Elsevier Inc. All rights Reserved

117

MPI_Sendrecv

Copyright © 2010, Elsevier Inc. All rights Reserved

118

Safe communication with five
processes

Copyright © 2010, Elsevier Inc. All rights Reserved

119

Parallel odd-even transposition sort

Copyright © 2010, Elsevier Inc. All rights Reserved

120

Run-times of parallel odd-even
sort

Copyright © 2010, Elsevier Inc. All rights Reserved

(times are in milliseconds)

121

Concluding Remarks (1)

 MPI or the Message-Passing Interface is a
library of functions that can be called from
C, C++, or Fortran programs.

 A communicator is a collection of
processes that can send messages to
each other.

 Many parallel programs use the single-
program multiple data or SPMD approach.

Copyright © 2010, Elsevier Inc. All rights Reserved

122

Concluding Remarks (2)

 Most serial programs are deterministic: if
we run the same program with the same
input we’ll get the same output.

 Parallel programs often don’t possess this
property.

 Collective communications involve all the
processes in a communicator.

Copyright © 2010, Elsevier Inc. All rights Reserved

123

Concluding Remarks (3)

 When we time parallel programs, we’re
usually interested in elapsed time or “wall
clock time”.

 Speedup is the ratio of the serial run-time
to the parallel run-time.

 Efficiency is the speedup divided by the
number of parallel processes.

Copyright © 2010, Elsevier Inc. All rights Reserved

124

Concluding Remarks (4)

 If it’s possible to increase the problem size
(n) so that the efficiency doesn’t decrease
as p is increased, a parallel program is
said to be scalable.

 An MPI program is unsafe if its correct
behavior depends on the fact that
MPI_Send is buffering its input.

Copyright © 2010, Elsevier Inc. All rights Reserved

