
1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 4

Shared Memory Programming
with Pthreads

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap
 Problems programming shared memory systems.
 Controlling access to a critical section.
 Thread synchronization.
 Programming with POSIX threads.
 Mutexes.
 Producer-consumer synchronization and

semaphores.
 Barriers and condition variables.
 Read-write locks.
 Thread safety.

C
hapter Subtitle

3

A Shared Memory System

Copyright © 2010, Elsevier Inc. All rights Reserved

4

Processes and Threads

 A process is an instance of a running (or
suspended) program.

 Threads are analogous to a “light-weight”
process.

 In a shared memory program a single
process may have multiple threads of
control.

Copyright © 2010, Elsevier Inc. All rights Reserved

5

POSIX®
 Threads

 Also known as Pthreads.
 A standard for Unix-like operating

systems.
 A library that can be linked with C

programs.
 Specifies an application programming

interface (API) for multi-threaded
programming.

Copyright © 2010, Elsevier Inc. All rights Reserved

6

Caveat

 The Pthreads API is only available on
POSIXR systems — Linux, MacOS X,
Solaris, HPUX, …

Copyright © 2010, Elsevier Inc. All rights Reserved

7

Hello World! (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

declares the various Pthreads
functions, constants, types, etc.

8

Hello World! (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

9

Hello World! (3)

Copyright © 2010, Elsevier Inc. All rights Reserved

10

Compiling a Pthread program

Copyright © 2010, Elsevier Inc. All rights Reserved

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

11

Running a Pthreads program

Copyright © 2010, Elsevier Inc. All rights Reserved

. / pth_hello <number of threads>

. / pth_hello 1

Hello from the main thread
Hello from thread 0 of 1

. / pth_hello 4
Hello from the main thread
Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

12

Global variables

 Can introduce subtle and confusing bugs!
 Limit use of global variables to situations in

which they’re really needed.
 Shared variables.

Copyright © 2010, Elsevier Inc. All rights Reserved

13

Starting the Threads

 Processes in MPI are usually started by a
script.

 In Pthreads the threads are started by the
program executable.

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Starting the Threads

Copyright © 2010, Elsevier Inc. All rights Reserved

pthread.h

pthread_t

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

One object for
each thread.

15

pthread_t objects
 Opaque
 The actual data that they store is system-

specific.
 Their data members aren’t directly accessible

to user code.
 However, the Pthreads standard guarantees

that a pthread_t object does store enough
information to uniquely identify the thread
with which it’s associated.

Copyright © 2010, Elsevier Inc. All rights Reserved

16

A closer look (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

We won’t be using, so we just pass NULL.

Allocate before calling.

17

A closer look (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

The function that the thread is to run.

Pointer to the argument that should
be passed to the function start_routine.

18

Function started by pthread_create

 Prototype:
 void* thread_function (void* args_p) ;

 Void* can be cast to any pointer type in C.

 So args_p can point to a list containing one or
more values needed by thread_function.

 Similarly, the return value of thread_function can
point to a list of one or more values.

Copyright © 2010, Elsevier Inc. All rights Reserved

19

Running the Threads

Copyright © 2010, Elsevier Inc. All rights Reserved

Main thread forks and joins two threads.

20

Stopping the Threads

 We call the function pthread_join once for
each thread.

 A single call to pthread_join will wait for
the thread associated with the pthread_t
object to complete.

Copyright © 2010, Elsevier Inc. All rights Reserved

21

MATRIX-VECTOR
MULTIPLICATION IN PTHREADS

Copyright © 2010, Elsevier Inc. All rights Reserved

22

Serial pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

23

Using 3 Pthreads

Copyright © 2010, Elsevier Inc. All rights Reserved

thread 0

general case

24

Pthreads matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

25

CRITICAL SECTIONS

Copyright © 2010, Elsevier Inc. All rights Reserved

26

Estimating π

Copyright © 2010, Elsevier Inc. All rights Reserved

27

Using a dual core processor

Copyright © 2010, Elsevier Inc. All rights Reserved

Note that as we increase n, the estimate
with one thread gets better and better.

28

A thread function for computing π

Copyright © 2010, Elsevier Inc. All rights Reserved

29

Possible race condition

Copyright © 2010, Elsevier Inc. All rights Reserved

30

Busy-Waiting

 A thread repeatedly tests a condition, but,
effectively, does no useful work until the
condition has the appropriate value.

 Beware of optimizing compilers, though!

Copyright © 2010, Elsevier Inc. All rights Reserved

flag initialized to 0 by main thread

31

Pthreads global sum with busy-waiting

Copyright © 2010, Elsevier Inc. All rights Reserved

32

Global sum function with critical section after loop (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

33

Global sum function with critical section after loop (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

34

Mutexes

 A thread that is busy-waiting may
continually use the CPU accomplishing
nothing.

 Mutex (mutual exclusion) is a special type
of variable that can be used to restrict
access to a critical section to a single
thread at a time.

Copyright © 2010, Elsevier Inc. All rights Reserved

35

Mutexes

 Used to guarantee that one thread
“excludes” all other threads while it
executes the critical section.

 The Pthreads standard includes a special
type for mutexes: pthread_mutex_t.

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Mutexes

 When a Pthreads program finishes using a
mutex, it should call

 In order to gain access to a critical section
a thread calls

Copyright © 2010, Elsevier Inc. All rights Reserved

37

Mutexes

 When a thread is finished executing the
code in a critical section, it should call

Copyright © 2010, Elsevier Inc. All rights Reserved

38

Global sum function that uses a mutex (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Global sum function that uses a mutex (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

40Copyright © 2010, Elsevier Inc. All rights Reserved

Run-times (in seconds) of π programs using n = 108
terms on a system with two four-core processors.

41Copyright © 2010, Elsevier Inc. All rights Reserved

Possible sequence of events with busy-waiting
and more threads than cores.

42

PRODUCER-CONSUMER
SYNCHRONIZATION AND
SEMAPHORES

Copyright © 2010, Elsevier Inc. All rights Reserved

43

Issues

 Busy-waiting enforces the order threads
access a critical section.

 Using mutexes, the order is left to chance
and the system.

 There are applications where we need to
control the order threads access the
critical section.

Copyright © 2010, Elsevier Inc. All rights Reserved

44

Problems with a mutex solution

Copyright © 2010, Elsevier Inc. All rights Reserved

45

A first attempt at sending messages using pthreads

Copyright © 2010, Elsevier Inc. All rights Reserved

46

Syntax of the various semaphore functions

Copyright © 2010, Elsevier Inc. All rights Reserved

Semaphores are not part of Pthreads;
you need to add this.

47

BARRIERS AND CONDITION
VARIABLES

Copyright © 2010, Elsevier Inc. All rights Reserved

48

Barriers

 Synchronizing the threads to make sure
that they all are at the same point in a
program is called a barrier.

 No thread can cross the barrier until all the
threads have reached it.

Copyright © 2010, Elsevier Inc. All rights Reserved

49

Using barriers to time the slowest thread

Copyright © 2010, Elsevier Inc. All rights Reserved

50

Using barriers for debugging

Copyright © 2010, Elsevier Inc. All rights Reserved

51

Busy-waiting and a Mutex

 Implementing a barrier using busy-waiting
and a mutex is straightforward.

 We use a shared counter protected by the
mutex.

 When the counter indicates that every
thread has entered the critical section,
threads can leave the critical section.

Copyright © 2010, Elsevier Inc. All rights Reserved

52

Busy-waiting and a Mutex

Copyright © 2010, Elsevier Inc. All rights Reserved

We need one counter
variable for each
instance of the barrier,
otherwise problems
are likely to occur.

53

Implementing a barrier with semaphores

Copyright © 2010, Elsevier Inc. All rights Reserved

54

Condition Variables

 A condition variable is a data object that
allows a thread to suspend execution until
a certain event or condition occurs.

 When the event or condition occurs
another thread can signal the thread to
“wake up.”

 A condition variable is always associated
with a mutex.

Copyright © 2010, Elsevier Inc. All rights Reserved

55

Condition Variables

Copyright © 2010, Elsevier Inc. All rights Reserved

56

Implementing a barrier with condition variables

Copyright © 2010, Elsevier Inc. All rights Reserved

57

READ-WRITE LOCKS

Copyright © 2010, Elsevier Inc. All rights Reserved

58

Controlling access to a large,
shared data structure

 Let’s look at an example.

 Suppose the shared data structure is a
sorted linked list of ints, and the operations
of interest are Member, Insert, and Delete.

Copyright © 2010, Elsevier Inc. All rights Reserved

59

Linked Lists

Copyright © 2010, Elsevier Inc. All rights Reserved

60

Linked List Membership

Copyright © 2010, Elsevier Inc. All rights Reserved

61

Inserting a new node into a list

Copyright © 2010, Elsevier Inc. All rights Reserved

62

Inserting a new node into a list

Copyright © 2010, Elsevier Inc. All rights Reserved

63

Deleting a node from a linked list

Copyright © 2010, Elsevier Inc. All rights Reserved

64

Deleting a node from a linked list

Copyright © 2010, Elsevier Inc. All rights Reserved

65

A Multi-Threaded Linked List

 Let’s try to use these functions in a
Pthreads program.

 In order to share access to the list, we can
define head_p to be a global variable.

 This will simplify the function headers for
Member, Insert, and Delete, since we
won’t need to pass in either head_p or a
pointer to head_p: we’ll only need to pass
in the value of interest.

Copyright © 2010, Elsevier Inc. All rights Reserved

66

Simultaneous access by two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

67

Solution #1

 An obvious solution is to simply lock the
list any time that a thread attempts to
access it.

 A call to each of the three functions can be
protected by a mutex.

Copyright © 2010, Elsevier Inc. All rights Reserved

In place of calling Member(value).

68

Issues
 We’re serializing access to the list.
 If the vast majority of our operations are

calls to Member, we’ll fail to exploit this
opportunity for parallelism.

 On the other hand, if most of our
operations are calls to Insert and Delete,
then this may be the best solution since
we’ll need to serialize access to the list for
most of the operations, and this solution
will certainly be easy to implement.

Copyright © 2010, Elsevier Inc. All rights Reserved

69

Solution #2

 Instead of locking the entire list, we could
try to lock individual nodes.

 A “finer-grained” approach.

Copyright © 2010, Elsevier Inc. All rights Reserved

70

Issues

 This is much more complex than the
original Member function.

 It is also much slower, since, in general,
each time a node is accessed, a mutex
must be locked and unlocked.

 The addition of a mutex field to each node
will substantially increase the amount of
storage needed for the list.

Copyright © 2010, Elsevier Inc. All rights Reserved

71

Implementation of Member with one mutex per list node (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

72

Implementation of Member with one mutex per list node (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

73

Pthreads Read-Write Locks

 Neither of our multi-threaded linked lists
exploits the potential for simultaneous
access to any node by threads that are
executing Member.

 The first solution only allows one thread to
access the entire list at any instant.

 The second only allows one thread to
access any given node at any instant.

Copyright © 2010, Elsevier Inc. All rights Reserved

74

Pthreads Read-Write Locks

 A read-write lock is somewhat like a mutex
except that it provides two lock functions.

 The first lock function locks the read-write
lock for reading, while the second locks it
for writing.

Copyright © 2010, Elsevier Inc. All rights Reserved

75

Pthreads Read-Write Locks

 So multiple threads can simultaneously
obtain the lock by calling the read-lock
function, while only one thread can obtain
the lock by calling the write-lock function.

 Thus, if any threads own the lock for
reading, any threads that want to obtain
the lock for writing will block in the call to
the write-lock function.

Copyright © 2010, Elsevier Inc. All rights Reserved

76

Pthreads Read-Write Locks

 If any thread owns the lock for writing, any
threads that want to obtain the lock for
reading or writing will block in their
respective locking functions.

Copyright © 2010, Elsevier Inc. All rights Reserved

77

Protecting our linked list functions

Copyright © 2010, Elsevier Inc. All rights Reserved

78

Linked List Performance

Copyright © 2010, Elsevier Inc. All rights Reserved

100,000 ops/thread
99.9% Member
0.05% Insert
0.05% Delete

79

Linked List Performance

Copyright © 2010, Elsevier Inc. All rights Reserved

100,000 ops/thread
80% Member
10% Insert
10% Delete

80

Caches, Cache-Coherence, and
False Sharing
 Recall that chip designers have added

blocks of relatively fast memory to
processors called cache memory.

 The use of cache memory can have a
huge impact on shared-memory.

 A write-miss occurs when a core tries to
update a variable that’s not in cache, and it
has to access main memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

81

Pthreads matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

82

Run-times and efficiencies of
matrix-vector multiplication

Copyright © 2010, Elsevier Inc. All rights Reserved

(times are in seconds)

83

THREAD-SAFETY

Copyright © 2010, Elsevier Inc. All rights Reserved

84

Thread-Safety

 A block of code is thread-safe if it can be
simultaneously executed by multiple
threads without causing problems.

Copyright © 2010, Elsevier Inc. All rights Reserved

85

Example

 Suppose we want to use multiple threads
to “tokenize” a file that consists of ordinary
English text.

 The tokens are just contiguous sequences
of characters separated from the rest of
the text by white-space — a space, a tab,
or a newline.

Copyright © 2010, Elsevier Inc. All rights Reserved

86

Simple approach

 Divide the input file into lines of text and
assign the lines to the threads in a round-
robin fashion.

 The first line goes to thread 0, the second
goes to thread 1, . . . , the tth goes to
thread t, the t +1st goes to thread 0, etc.

Copyright © 2010, Elsevier Inc. All rights Reserved

87

Simple approach

 We can serialize access to the lines of
input using semaphores.

 After a thread has read a single line of
input, it can tokenize the line using the
strtok function.

Copyright © 2010, Elsevier Inc. All rights Reserved

88

The strtok function

 The first time it’s called the string
argument should be the text to be
tokenized.
 Our line of input.

 For subsequent calls, the first argument
should be NULL.

Copyright © 2010, Elsevier Inc. All rights Reserved

89

The strtok function

 The idea is that in the first call, strtok
caches a pointer to string, and for
subsequent calls it returns successive
tokens taken from the cached copy.

Copyright © 2010, Elsevier Inc. All rights Reserved

90

Multi-threaded tokenizer (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

91

Multi-threaded tokenizer (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

92

Running with one thread

 It correctly tokenizes the input stream.

Copyright © 2010, Elsevier Inc. All rights Reserved

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

93

Running with two threads

Copyright © 2010, Elsevier Inc. All rights Reserved

Oops!

94

What happened?

 strtok caches the input line by declaring a
variable to have static storage class.

 This causes the value stored in this
variable to persist from one call to the
next.

 Unfortunately for us, this cached string is
shared, not private.

Copyright © 2010, Elsevier Inc. All rights Reserved

95

What happened?

 Thus, thread 0’s call to strtok with the third
line of the input has apparently overwritten
the contents of thread 1’s call with the
second line.

 So the strtok function
is not thread-safe.
If multiple threads call
it simultaneously, the
output may not be
correct.

Copyright © 2010, Elsevier Inc. All rights Reserved

96

Other unsafe C library functions

 Regrettably, it’s not uncommon for C
library functions to fail to be thread-safe.

 The random number generator random in
stdlib.h.

 The time conversion function localtime in
time.h.

Copyright © 2010, Elsevier Inc. All rights Reserved

97

“re-entrant” (thread safe) functions

 In some cases, the C standard specifies
an alternate, thread-safe, version of a
function.

Copyright © 2010, Elsevier Inc. All rights Reserved

98

Concluding Remarks (1)

 A thread in shared-memory programming
is analogous to a process in distributed
memory programming.

 However, a thread is often lighter-weight
than a full-fledged process.

 In Pthreads programs, all the threads have
access to global variables, while local
variables usually are private to the thread
running the function.

Copyright © 2010, Elsevier Inc. All rights Reserved

99

Concluding Remarks (2)

 When indeterminacy results from multiple
threads attempting to access a shared
resource such as a shared variable or a
shared file, at least one of the accesses is
an update, and the accesses can result in
an error, we have a race condition.

Copyright © 2010, Elsevier Inc. All rights Reserved

100

Concluding Remarks (3)

 A critical section is a block of code that
updates a shared resource that can only
be updated by one thread at a time.

 So the execution of code in a critical
section should, effectively, be executed as
serial code.

Copyright © 2010, Elsevier Inc. All rights Reserved

101

Concluding Remarks (4)

 Busy-waiting can be used to avoid
conflicting access to critical sections with a
flag variable and a while-loop with an
empty body.

 It can be very wasteful of CPU cycles.
 It can also be unreliable if compiler

optimization is turned on.

Copyright © 2010, Elsevier Inc. All rights Reserved

102

Concluding Remarks (5)

 A mutex can be used to avoid conflicting
access to critical sections as well.

 Think of it as a lock on a critical section,
since mutexes arrange for mutually
exclusive access to a critical section.

Copyright © 2010, Elsevier Inc. All rights Reserved

103

Concluding Remarks (6)

 A semaphore is the third way to avoid
conflicting access to critical sections.

 It is an unsigned int together with two
operations: sem_wait and sem_post.

 Semaphores are more powerful than
mutexes since they can be initialized to
any nonnegative value.

Copyright © 2010, Elsevier Inc. All rights Reserved

104

Concluding Remarks (7)

 A barrier is a point in a program at which
the threads block until all of the threads
have reached it.

 A read-write lock is used when it’s safe for
multiple threads to simultaneously read a
data structure, but if a thread needs to
modify or write to the data structure, then
only that thread can access the data
structure during the modification.

Copyright © 2010, Elsevier Inc. All rights Reserved

105

Concluding Remarks (8)

 Some C functions cache data between
calls by declaring variables to be static,
causing errors when multiple threads call
the function.

 This type of function is not thread-safe.

Copyright © 2010, Elsevier Inc. All rights Reserved

