An Introduction to Parallel Programming

Peter Pacheco

(Shared Memory Programming
/ with Pthreads

PARALLEL Chapter 4
PROGRAMMING

/0T

/. Peter Pacheco

LLse

Roadmap

s Problems programming shared memory systems
= Controlling access to a critical section.

= [hread synchronization.

s Programming with POSIX threads.

= Mutexes.

= Producer-consumer synchronization and
semaphores.

s Barriers and condition variables.

oINS Jeydeyy #

= Read-write locks.
= [hread safety.

A Shared Memory System

CPU CPU CPU CPU

I /] i il

W N W W
Interconnect

| Processes and Threads

= A process is an instance of a running (or
suspended) program.

= Threads are analogous to a “light-weight”
Process.

= In a shared memory program a single
process may have multiple threads of
control.

| POSIX®Threads

s Also known as Pthreads.

= A standard for Unix-like operating
systems.

= A library that can be linked with C
programs.

m Specifies an application programming
interface (API) for multi-threaded
programming.

| Caveat

= The Pthreads APl is only available on
POSIXR systems — Linux, MacOS X,
Solaris, HPUX, ...

Hello World! (1)

T, T MR O T declares the various Pthreads

#include <stdlib.h> functions, constants, types, etc.
#include <pthread.h>

/¥ Global variable: accessible to all threads =/
int thread count;

void *Hello(veid* rank); /x Thread function =*/
int main(int argc, charx argv[]) {
long thread; /+ Use long in case of a 64— bit system =/

pthread_t#* thread _handles;

/= (Get number of threads from command line #/
thread_count = strtol{argv|[l], NULL, 10);

thread_handles = malloc (thread_count*sizeof(pthread_t));

Hello World! (2)

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,
Hello, (void=*) thread);

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

free(thread handles):
return 0:

} /% main %/

Hello World! (3)

void xHello(veidx rank) {
long my_rank = (long) rank; /+ Use long in case of 64— bit system =/

printf("Hello from thread %1d of %d\n", my_rank, thread_count)};

return NULL;
} /% Hello %/

Compiling a Pthread program

gcc —g —Wall —o pth_hello pth_hello . ¢ —Ipthread

link in the Pthreads library %

Running a Pthreads program

./ pth_hello <number of threads>

./ pth_hello 1

Hello from the main thread
Hello from thread O of 1

./ pth_hello 4

Hello from the main thread
Hello from thread O of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

| Global variables

= Can introduce subtle and confusing bugs!

= Limit use of global variables to situations in
which they're really needed.

= Shared variables.

| Starting the Threads

s Processes in MPI are usually started by a
script.

= In Pthreads the threads are started by the
program executable.

Starting the Threads
pthread.h One object for

\ each thread.
pthread t

int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in */,
void* (*start_routine) (void) /* in */,
void* arg p/*in*);

| pthread t objects

s Opaque

= [he actual data that they store is system-
specific.

= [heir data members aren’t directly accessible
to user code.

= However, the Pthreads standard guarantees
that a pthread t object does store enough
information to uniquely identify the thread
with which it's associated.

| A closer look (1)

int pthread_ create (
pthread t* thread p /* out */,
const pthread _attr t* attr p/*in ™/,
void* (*start_routine) (void) /* in */,
void* arg p/*in*);

We won'’t be using, so we just pass NULL.

Allocate before calling.

| A closer look (2)

int pthread_ create (
pthread t* thread p /* out */,
const pthread _attr t* attr p/*in ™/,
void* (*start_routine) (void) /* in */,
void* arg p/*in*);

Pointer to the argument that should
be passed to the function start routine.

The function that the thread is to run.

| Function started by pthread create

= Prototype:
void* thread_function (void* args p):

= Void* can be cast to any pointer type in C.

= SO args_p can point to a list containing one or
more values needed by thread_function.

s Similarly, the return value of thread_function can
point to a list of one or more values.

Running the Threads

Thread 0
Main / _ \

Thread 1

Main thread forks and joins two threads.

| Stopping the Threads

= \We call the function pthread join once for
each thread.

= A single call to pthread join will wait for
the thread associated with the pthread t
object to complete.

l

ey g L8 app—1 Yo
an ap alpn—| X0 b2 |
X1
ai ajl s flig—1 Yi = @ioXo + @il X1 + - - @ip—1¥n—1
Xn—1
Am—1.0 | Am—1.1 | " | Am—1,n—1 ¥m—1

MATRIX-VECTOR

MULTIPLICATION IN PTHREADS

Serial pseudo-code

/* For each row of A %/
for (i = 0; i < m; i++) {
y[i] = 0.0;
/* For each element of the row and each element of x =/
ftaxr £7 = 08 5% 8 55
yl[il += A[i][31* x[31];

n—1

=L agn

=

Using 3 Pthreads

Components
Thread of y
0 y[0], yl1]
I |y[2], yI3] \
2 yl4], yl[3]

thread O

0
0; £ Hy “4)

general case

y[i] = 0.0;
for (1 = s 1< ng)
pla] = Ala 1 gy s

Pthreads matrix-vector multiplication

void #Pth_mat_vect(void+ rank) {
long my_rank = (long) rank;
it 1., 3
int local m = m/thread count;:
int ny first vow = my _rankxlocal m;
int my last row = (my_rank+1)xlocal m — 1;

for (i = my_first_row; i <= my_last_row; i++) {
y[i] = 0.0;
for (] = 6;] < bj J++)
vli] += Ali][jl*x[]];

h

refurn NULL:
} /= Pth_mat_vect =/

CRITICAL SECTIONS

Estimating 1r

L1 1
— AT s T e e g B s
"t (I R Py)

double factor = 1.0;

double sum = 0.0;

fer (i =1; 1 « ny 14+, factor
sum 4= factor/(2%xi+1):

—factor) {

pli = 4.0xsum;

Using a dual core processor

n
10° 10° 10’ 10°
T 3.14159 | 3.141593 | 3.1415927 | 3.14159265

| Thread || 3.14158 | 3.141592 | 3.1415926 | 3.14159264
2 Threads || 3.14158 | 3.141480 | 3.1413692 | 3.14164686

Note that as we increase n, the estimate
with one thread gets better and better.

A thread function for computing 1

void+ Thread_sum(veoidx rank) {
long my rank = (long) rank;
double factor:
long long 1i:
long long my n = n/thread count;

long long my first i = my_n*my_rank;
long long my_last_i = my_first_i + my_n;
if (my_first i % 2 == 0) /+ my_first_i is even x*/
facter = 1.0;
else /+ my_first_i is odd x/
factor = —1.0;
for (i = my fipst 1; 1< my. last i; i++, faector = —facter) |

sum += fFdcter/(2Zxi+4+1);

i

return NULL:
} /% Thread_sum %/

| Possible race condition

Time Thread 0 Thread 1
1 Started by main thread
2 Call Compute () Started by main thread
3 Assigny = 1 Call Compute ()
4 Put x=0 and y=1 into registers | Assigny = 2
5 Add O and 1 Put x=0 and y=2 into registers
6 Store 1 in memory location x | Add 0 and 2
7 Store 2 in memory location x

B)

| Busy-Waiting

= A thread repeatedly tests a condition, but,
effectively, does no useful work until the
condition has the appropriate value.

= Beware of optimizing compilers, though!

y = Compute(my_rank);
while (flag != my_rank);
X = X + ¥;
il B e e o o

flag initialized to O by main thread

Pthreads global sum with busy-waiting

void* Thread_sum(veoidx rank) {
long my _rank = (loeng) rank;
double factor:
long long 1i;
long long my_n = n/thread_count;
long long my first i = my_n*my_rank;
long long my_last_i = my_first_i + my_n;

i (my Tirsi 1 % 2 = '6)
Factor = 1,0

else
factor = —1.0;

for (i = my first i; i < my_last_i; i++, factor = —factor) {
while (flag != my_rank);

sum += factor/(2xi+1);
flag = (flag+1) % thread count;

t

return NULL;
V' /« Thread_sum =/

Global sum function with critical section after loop (1)

void+ Thread_sum(void* rank) {
long my_rank = (long) rank;
double factor, my_sum = 0.0;
long long 1i:
long long my_n = n/thread_count;
long long my first_ i = my_n*my_rank;
long long my_last_i = my_first_i + my_n;

i (my_ fifst 4 % 2 ==)
fdctar = 1 .10:

else
facter = =—1.0;

Global sum function with critical section after loop (2)

for (i = my _first i; i < my_last _i; di++4, factor = —factor)
my_sum += factor/(2xi+1);

while (flag != my_rank);
sum += my_sum;
flag = (flag+1) % thread_count;

return NULL;
} /+ Thread_sum =/

| Mutexes

= A thread that is busy-waiting may
continually use the CPU accomplishing
nothing.

s Mutex (mutual exclusion) is a special type
of variable that can be used to restrict
access to a critical section to a single
thread at a time.

| Mutexes

= Used to guarantee that one thread '
“excludes” all other threads while it
executes the critical section.

s [he Pthreads standard includes a special
type for mutexes: pthread mutex t.

int pthread_mutex_init(
pthread_mutex_tx mutex_p /% out */

const pthread_mutexattr_t* attr_p e in wf):

| Mutexes

= \When a Pthreads program finishes using a
mutex, it should call

int pthread_mutex_destroy(pthread_mutex_t* mutex_ p /x in/out */);

= In order to gain access to a critical section
a thread calls

int pthread_mutex_lock(pthread_mutex_t* mutex_p /% in/out =/):;

Mutexes

= WWhen a thread is finished executing the
code In a critical section, it should call

int pthread_mutex_unlock(pthread_mutex_t+* mutex_p /x in/out =*/);

Global sum function that uses a mutex (1)

void+ Thread_sum(veid#* rank) {
long my rank = (lomg) rank;
double factor;
long long 1i;
long long my n = n/thread count;
long long my first i = my n%my rank;
long long my last i = my first i + my_n;
double my sum = 0.0;

iE oy _Eifest. 4% 2 = D)
factor = 1.0:
else

factar = =14E

Global sum function that uses a mutex (2)

for (i = my Fikst i: i < my last 15 444, Factor = —factot) {
my_sum += factor/(2+%i+1);

pthread_mutex_ lock(&mutex);

sum += my_sum;

pthread_mutex_unlock(&mutex);

return NULL;
} /% Thread_sum x/

-

Tserial

Threads || Busy-Wait | Mutex
| 2.90 2.90
2 1.45 1.45
4 (.73 0.73
8 0.38 0.38
16 0.50 0.38
32 0.80 0.40
64 3.96 0.38

Ip

arallel

~ thread_count

Run-times (in seconds) of 1 programs using n = 108
terms on a system with two four-core processors.

Thread

Time | flag 0 I 2 3 4
0 0 crit sect | busy wait | susp susp susp
1 1 terminate | crit sect susp | busy wait susp
2 2 — terminate susp | busy wait | busy wait
? 2 — — crit sect susp busy wait

Possible sequence of events with busy-waiting
and more threads than cores.

l

PRODUCER-CONSUMER
SYNCHRONIZATION AND
SEMAPHORES

|Issues

= Busy-waiting enforces the order threads
access a critical section.

= Using mutexes, the order is left to chance
and the system.

= [here are applications where we need to
control the order threads access the
critical section.

Problems with a mutex solution

/¥ n and product_matrix are shared and initialized by the main thread =/

/* product_matrix is initialized to be the identity matrix x/
void* Thread_work(veidx rank) {

long my_rank = (long) rank;

matrix_t my_mat = Allocate_matrix(n);

Generate_matrix(my_mat);
pthread_mutex_lock(&mutex);
Multiply_matrix(product_mat, my_mat);
pthread_mutex_unlock(&mutex);
Free_matrix(&my_mat);
return NULL:

} /% Thread_work =/

A first attempt at sending messages using pthreads

/* messages has type charx=. It’s allocated in main. =/

/> Each entry is set to NULL in main. x/
void xSend_msg(voidx rank) {
long my_rank = (long) rank;

long dest = (my_rank + 1) % thread_count;
long source = (my_rank + thread_count — 1) % thread_count;
char+* my_msg = malloc(MSG_MAX=«sizeof (char));

sprintf(my_msg, "Hello to %1d from %1d", dest, my_rank);

messages|[dest] = my_msqg:
if (messages[my_rank] != NULL)
printf("Thread %1d > %s\n", my_rank, messages|[my_rank]);
else
printf("Thread %$1d > No message from %1d\n", my_rank, source);

return NULL:
} /% Send_msg =/

Syntax of the various semaphore functions

/ Semaphores are not part of Pthreads;
#include <semaphore.h> you need to add this.

int sem_init(

sem_t* semaphore_p ¥ DUt %V,
int shared % IR W,
unsigned initial_val % amw wh);:

int sem_destroy(sem_t* semaphore_p /% in/out =/);
int sem_post(sem_tx semaphore_p /% in/out */);
int sem_wait(sem_t=x semaphore_p /% in/out */);

BARRIERS AND CONDITION
VARIABLES

| Barriers

= Synchronizing the threads to make sure
that they all are at the same pointin a
program is called a barrier.

s No thread can cross the barrier until all the
threads have reached it.

Using barriers to time the slowest thread

/% Shared %/
double elapsed_time;

I Private =/
double my_start, my_finish, my_elapsed;

Synchronize threads;
Store current time 1n my_start;
/* Execute timed code x/

Store current time 1n my_finish;

my_elapsed = my_finish — my_start;

elapsed = Maximum of my_elapsed values;

Using barriers for debugging

point 1in program we want to reach;

barrier:

if {my wank == {I) {
printf ("All threads reached this point\n");
fflush(stdout);

| Busy-waiting and a Mutex

= Implementing a barrier using busy-waiting
and a mutex is straightforward.

= \We use a shared counter protected by the
mutex.

= \When the counter indicates that every
thread has entered the critical section,
threads can leave the critical section.

Busy-waiting and a Mutex

/¥ Shared and initialized by the main thread =x/

int eounter: /2 Iniiialize to 0 »f

int thread count: K\)

pthread_mutex_t barrier_mutex; We need one counter
variable for each

instance of the barrier,

void*x Thread_work (. . .) { otherwise problems
are likely to occur.

rx Borrvier »f

pthread_mutex_lock(&barrier_mutex);
counter++;
pthread_mutex_unlock(&barrier_mutex);
while (counter < thread_count);

Implementing a barrier with semaphores

/¥ Shared variables %/

int counter: /¥ Initialize to 0 %/
sem_t count sem; l¥ Initialize to 1 #/
sem t barrier sem; /% Initialize to 0O %/

void*x Thread_work (...) {

/¥ Barrier =%/

sem wait(&count sem);

if (counter == thread_count—1) {
couriter = 0
sem_post(&count_sem);
for (j = 0; j < thread count —1; j++)

sem_post(&barrier sem);

} else {
counter++;
sem_post(&count_sem);
sem_wait(&barrier sem);

Condition Variables

= A condition variable is a data object that
allows a thread to suspend execution until
a certain event or condition occurs.

= \When the event or condition occurs
another thread can signal the thread to
“wake up.”

= A condition variable is always associated
with a mutex.

Condition Variables

lock mutex;
if condition has occurred
signal thread(s):
else {
unlock the mutex and block;
/+ when thread 15 unblocked, mutex is relocked #/

}

unlock mutex:

Implementing a barrier with condition variables

/* Shared =/
int counter = 0;
pthread mutex t mutex;

pthread _cond_t cond var;
void* Thread work(. . .) {

/¥ Barrier =/
pthread_mutex_lock(&mutex);
counter ++;

if (counter == thread_count) {
counter = 0;
pthread_cond_broadcast(&cond_var);
} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}

pthread_mutex_unlock(&mutex);

| Controlling access to a large,

shared data structure

m Let's look at an example.

s Suppose the shared data structure is a
sorted linked list of ints, and the operations
of interest are Member, Insert, and Delete.

Linked Lists

W
(&)
\
Qo

head_p > 2

struct list_node_s {
int data:

struct list node sx next;

Linked List Membership

int Member(int value, struct list_node_sx* head_p) {

struct list. node 8% curr_p = head p;

while (curr_p != NULL && curr_p—>data < value)
CHEr_p = Curr p—>aexkt.;

if (curr_p == NULL || curr_p—>data > value) {
return 0;

} else {
return |

}

V' /« Member =/

Inserting a new node into a list

pred_p CHYY D

head_p| ———> 2 ——2 B ———+ea[ﬁ 8

temp_p iy

Inserting a new node into a list

int Insert(imt value, struct list_node_sx*% head_pp) {
struct list_node_s%x curr_p = xhead_pp;
struct list_node_s%* pred_p = NULL;
struct list_node_sx* temp_p;:

while (curr_p != NULL &% curr_p-—>data < value) {
pred p = curr_p;
curr_p = curr_p—>next;

f

if (curr_p == NULL || curr_p—>data > value) {

temp_p = malloc(sizeof(struct list_node_s));
temp_p—>data = wvalue;

temp_p—>next = curr_p;

if (pred_p == NULL) /* New first node =/
*head_pp = temp_p;

else
pred_p—>next = temp_p:

return 1;

b else { /« Value already in list #/
return 0O:

|

i 7% Inzexrt =4

MK

MORGAN KAUFMANN

Deleting a node from a linked list

head p| —— 2 ——x3 5 —— 8

pred_p CHEY D

Deleting a node from a linked list

int Delete(int value, struct list_node_s#*# head_pp) {
struct list_node_s* curr_p = *head_pp;
struct list_node_s#* pred_p = NULL:

while (curr_p != NULL && curr_p—>data < value) {
pred_p = curr_p;
CIIET. P = CuUrr ‘p—>next;
i
if (curr_p != NULL && curr_p—>data == value) {
if (pred_p == NULL) { /« Deleting first node in list =/

*head_pp = curr_p—>next;
free(curr_p);

} else {
pred. p—Sneaxf = curr p-o-nexi:;
Eree(curr g);

}

return 1:

} else { Jx Value isn”r th Tisi »/
return 0O:

}

} /+ Delete */

| A Multi-Threaded Linked List

m Let's try to use these functions in a
Pthreads program.

m In order to share access to the list, we can
define head p to be a global variable.

= This will simplify the function headers for
Member, Insert, and Delete, since we
won't need to pass in either head p or a
pointer to head p: we'll only need to pass
in the value of interest.

Simultaneous access by two threads

Thread O:
CUurr: p
W
head_p > 2 > 5 > 8
7)
Thread 1: Thread 1:

pred_p cury_p

| Solution #1

= An obvious solution is to simply lock the
list any time that a thread attempts to
access it.

s A call to each of the three functions can be
protected by a mutex.

Pthread mutex_lock(&list_mutex);
Member (value);
Pthread mutex unlock(&list _mutex);

In place of calling Member(value).

|Issues

= We're serializing access to the list.

m If the vast majority of our operations are
calls to Member, we'll fail to exploit this
opportunity for parallelism.

= On the other hand, if most of our
operations are calls to Insert and Delete,
then this may be the best solution since
we’ll need to serialize access to the list for
most of the operations, and this solution
will certainly be easy to implement.

| Solution #2

= Instead of locking the entire list, we could
try to lock individual nodes.

= A “finer-grained” approach.

struct list_node_s {
int data;
struct list node s%* next;
pthread_mutex_t mutex;

|Issues

= [his iIs much more complex than the
original Member function.

= It Is also much slower, since, in general,
each time a node is accessed, a mutex
must be locked and unlocked.

= The addition of a mutex field to each node
will substantially increase the amount of
storage needed for the list.

Implementation of Member with one mutex per list node (1)

int Member(int value) {
struct list_node_sx* temp_p;

pthread_mutex_lock(&head_p_mutex):
temp_p = head_p;:
while (temp_p != NULL && temp_p—>data < value) {
if (temp_p—>next != NULL)
pthread_mutex_lock(&(temp_p—>next—>mutex)):
if (temp_p == head_p)
pthread_mutex_unlock(&head_p_mutex);
pthread_mutex_unlock(&(temp_p—>mutex));
temp_p = temp_p—>next;

Implementation of Member with one mutex per list node (2)

if (temp_p ==
if (temp_p
pthread
if (temp_p
pthread
return 0;
} else {
if (temp_p
pthread
pthread_mu
return |;

;
} /% Member =/

NULL || temp_p—>data > value) {

== head_p)
_mutex_unlock(&head_p_mutex):

= NULL)
_mutex_unlock(&(temp_p—>mutex));

== head_p)
_mutex_unlock(&head_p_mutex);
tex_unlock(&(temp_p—>mutex));:

| Pthreads Read-Write Locks

= Neither of our multi-threaded linked lists
exploits the potential for simultaneous
access to any node by threads that are
executing Member.

= The first solution only allows one thread to
access the entire list at any instant.

= [he second only allows one thread to
access any given node at any instant.

| Pthreads Read-Write Locks

= A read-write lock is somewhat like a mutex
except that it provides two lock functions.

s [he first lock function locks the read-write
lock for reading, while the second locks it
for writing.

| Pthreads Read-Write Locks

= SO multiple threads can simultaneously
obtain the lock by calling the read-lock
function, while only one thread can obtain
the lock by calling the write-lock function.

= Thus, if any threads own the lock for
reading, any threads that want to obtain
the lock for writing will block in the call to
the write-lock function.

| Pthreads Read-Write Locks

» |If any thread owns the lock for writing, any
threads that want to obtain the lock for
reading or writing will block in their
respective locking functions.

Protecting our linked list functions

pthread_rwlock_rdlock(&rwlock);
Member(value);
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
Insert(value);
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
Delete(value);
pthread_rwlock_unlock(&rwlock);

| Linked List Performance

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 | 0.123 | 0.098 | 0.115
One Mutex for Entire List || 0.211 | 0.450 | 0.385 | 0.457
One Mutex per Node 1.680 | 5.700 | 3.450 | 2.700

100,000 ops/thread
99.9% Member
0.05% Insert
0.05% Delete

| Linked List Performance

Number of Threads
Implementation 1 2 4 8
Read-Write Locks 248 | 497 | 4.69 | 4.71
One Mutex for Entire List || 2.50 | 5.13 | 5.04 | 5.11
One Mutex per Node 12.00 | 29.60 | 17.00 | 12.00
100,000 ops/thread

80% Member
10% Insert
10% Delete

Caches, Cache-Coherence, and
False Sharing

= Recall that chip designers have added
blocks of relatively fast memory to
processors called cache memory.

= The use of cache memory can have a
huge impact on shared-memory.

= A write-miss occurs when a core tries to
update a variable that's not in cache, and it
has to access main memory.

Pthreads matrix-vector multiplication

void *Pth_mat_vect(voidx* rank) {
long my_rank = (long) rank;
int i, 7;
int local m = m/thread. count;
int my_first_row = my_rankx*xlocal_m;
int my_last_row = (my_rank+1)*xlocal_ m — 1;

first_row;, 1 <= my_last_row; i++) {
y[i] = 0.0;
for 0; 7 < n; j++)
y[i] = AJli]l Jl=x]]15

o [i = my_
0.

j

return NULL;
} /% Pth_mat_vect */

| Run-times and efficiencies of
matrix-vector multiplication

Matrix Dimension
8,000,000 x 8 | 8000 x 8000 | 8 x 8,000,000
Threads || Time Eff. | Time Eff. | Time EAfT.
| 0.393 | 1.000 | 0.345 | 1.000 | 0.441 | 1.000
2 0217 | 0.906 | 0.188 | 0.918 | 0.300 | 0.735
4 0.139 | 0.707 | 0.115 | 0.750 | 0.388 | 0.290

(times are in seconds)

!
f |

THREAD-SAFETY

| Thread-Safety

= A block of code is thread-safe if it can be
simultaneously executed by multiple
threads without causing problems.

Example

s Suppose we want to use multiple threads
to “tokenize” a file that consists of ordinary
English text.

= [he tokens are just contiguous sequences
of characters separated from the rest of
the text by white-space — a space, a tab,

AL

or a newline.

| Simple approach

= Divide the input file into lines of text and
assign the lines to the threads in a round-
robin fashion.

= The first line goes to thread 0, the second
goes to thread 1, . . ., the tth goes to
thread t, the t +1st goes to thread 0, etc.

| Simple approach

s \We can serialize access to the lines of
input using semaphores.

m After a thread has read a single line of
iInput, it can tokenize the line using the
strtok function.

| The strtok function

= The first time it's called the string
argument should be the text to be
tokenized.

= Our line of input.

m For subsequent calls, the first argument
shoiild he NI |

charx strtok(
char string /x n/out =/,
const charx separators /x 1in 7 il B

| The strtok function

s [he idea is that in the first call, strtok
caches a pointer to string, and for
subsequent calls it returns successive
tokens taken from the cached copy.

Multi-threaded tokenizer (1)

void #Tokenize(void* rank) {

long my_rank = (long) rank:
int count;
int next = (my_rank + 1) % thread_count;

char xfg_rv;
char my_line[MAX]:
char xmy_string:

sem_wait(&sems[my_rank]);
fg rv = fgets(my_line, MAX, stdin);
sem_post(&sems|[next]):
while (fg_rv != NULL) {
printf("Thread %1d > my line = %s", my_rank, my_line);

Multi-threaded tokenizer (2)

count = 0;
my string = gtrbtok(my liae ., ™ \eg\n®*);
while (my_string != NULL) {

count ++;

printf("Thread %1d > string %d = %s\n", my_rank, count,
my_string);
my string = strtok(NULL, * \t\no");

}

sem_wait(&sems[my_rank]):
tg rv = fgets(my line . MAX, stdin);
sem_post(&sems[next]);

}

return NULL;
} /x Tokenize =*/

Running with one thread

m It correctly tokenizes the input stream.

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

Running with two threads

Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease

Thread 0 > string 2 = porridge

Thread 0 > string 3 = hot.

Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease

Thread 0 > string 2 = porridge

Thread 0 > string 3 = in OOPS!
Thread 0 > string 4 = the

Thread 0 > string 5 = pot

Thread 1 > string 1 = Pease

Thread 1 > my line Nine days old.

Thread 1 > string 1 = Nine

Thread 1 > string 2 = days

Thread 1 > string 3 = old.

| What happened?

» strtok caches the input line by declaring a
variable to have static storage class.

= [his causes the value stored in this
variable to persist from one call to the
next.

= Unfortunately for us, this cached string is
shared, not private.

| What happened?

s Thus, thread O’s call to strtok with the third
line of the input has apparently overwritten
the contents of thread 1’'s call with the
second line.

s S0 the strtok function
Is not thread-safe.
If multiple threads call
it simultaneously, the
output may not be
correct.

| Other unsafe C library functions

= Regrettably, it's not uncommon for C
library functions to fail to be thread-safe.

= [he random number generator random in
stdlib.h.

s | he time conversion function localtime In
time.h.

| “re-entrant” (thread safe) functions

= In some cases, the C standard specifies
an alternate, thread-safe, version of a

function.

charx strtok_r(
char string /x in/out */,

const charx separators, /x in x/
char = saveptr_p fx: InSLolt */);

| Concluding Remarks (1)

= A thread in shared-memory programming
IS analogous to a process in distributed
memory programming.

= However, a thread is often lighter-weight
than a full-fledged process.

= In Pthreads programs, all the threads have

access to global variables, while local
variables usually are private to the thread

running the function.

| Concluding Remarks (2)

= \When indeterminacy results from multiple
threads attempting to access a shared
resource such as a shared variable or a
shared file, at least one of the accesses is
an update, and the accesses can result in
an error, we have a race condition.

| Concluding Remarks (3)

= A critical section is a block of code that
updates a shared resource that can only
be updated by one thread at a time.

s SO the execution of code in a critical
section should, effectively, be executed as
serial code.

| Concluding Remarks (4)

= Busy-waiting can be used to avoid
conflicting access to critical sections with a
flag variable and a while-loop with an
empty body.

= It can be very wasteful of CPU cycles.

= It can also be unreliable if compiler
optimization is turned on.

| Concluding Remarks (5)

= A mutex can be used to avoid conflicting
access to critical sections as well.

s Think of it as a lock on a critical section,
since mutexes arrange for mutually
exclusive access to a critical section.

| Concluding Remarks (6)

= A semaphore is the third way to avoid
conflicting access to critical sections.

s It is an unsigned int together with two
operations: sem_wait and sem_post.

s Semaphores are more powerful than
mutexes since they can be Initialized to
any nonnegative value.

| Concluding Remarks (7)

= A barrier is a point in a program at which
the threads block until all of the threads
have reached it.

= A read-write lock is used when it's safe for
multiple threads to simultaneously read a
data structure, but if a thread needs to
modify or write to the data structure, then
only that thread can access the data
structure during the modification.

| Concluding Remarks (8)

= Some C functions cache data between
calls by declaring variables to be static,
causing errors when multiple threads call
the function.

= This type of function is not thread-safe.

