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Chapter 6: Synchronization Tools

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Alternative Approaches
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Objectives

 To present the concept of process synchronization.
 To introduce the critical-section problem, whose solutions 

can be used to ensure the consistency of shared data
 To present both software and hardware solutions of the 

critical-section problem
 To examine several classical process-synchronization 

problems
 To explore several tools that are used to solve process 

synchronization problems
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Synchronization

 Concurrent access to shared data may result in data 
inconsistency

 Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

 The synchronization  mechanism is usually provided by 
both hardware and the operating system

 Illustration of the problem – The producer-Consumer 
problem, which we introduced in Chapter 3.

 Basic assumption – load and store instructions are atomic.
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Producer-Consumer Problem

 The  Solution  we presented  in chapter 3 is correct, but 
can only use BUFFER_SIZE - 1 elements.

 The methodology used  is to allow only a single process 
to increment/decrement a particular shared variable.

 There is a solution that fills all the buffers, using the 
same  methodology:
 The producer process increments the value on the 

variable “in” (but not “out”) and the consumer 
process increments the value on the variable “’out” 
(but not “in”)

 The solution is more complex.  Try and see if you 
can come up with the algorithm.
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Producer-Consumer Problem (Cont.)

 Suppose that we wanted to provide a solution that fills 
all the buffers where we allow the producer and 
consumer processes to increment and decrement the 
same variable.

 We can do so by adding another integer variable -- 
counter that keeps track of the number of full buffers. 
Initially, counter is set to 0. 

 The variable counter It is incremented by the producer 
after it produces a new buffer and is decremented by 
the consumer after it consumes a buffer.

 Code is shown in next two slides
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Producer Process 

while (true) {
/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter = counter +1; 

} 
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Consumer Process

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

       counter = counter - 1; 

/* consume the item in next consumed */ 

} 
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Race Condition

 counter = counter + 1 could be implemented as

     register1 = counter
     register1 = register1 + 1
     counter = register1

 counter = counter -1 could be implemented as

     register2 = counter
     register2 = register2 - 1
     counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Race Condition (Cont.)

 How do we solve the race condition?
 We need to make sure that:

 The execution of 
     counter = counter + 1 

  is done as an “atomic” action. That is, while it is    being 
executed, no other instruction can be executed 
concurrently.
 actually no other instruction can access counter

 Similarly for
     counter = counter - 1 

 The ability to execute an instruction, or a number of 
instructions, atomically is crucial for being able to solve many 
of the synchronization problems.
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Critical Section Problem

 Consider system of n processes {P0, P1, … Pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating 
table, writing file, etc

 When one process in critical section, no other may be 
in its critical section

 Critical section problem is to design protocol to solve this
 Each process must ask permission to enter critical section 

in entry section code; it than executes in the critical 
section; once  it finishes  executing in the critical section it  
enters the exit section code.  The process then enters the 
remainder section code.
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General structure of Process Entering the Critical Section

 General structure of process Pi  



6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Solution

 Entry section – first  action is to “disable interrupts.
 Exit  section – last action is to “enable interrupts”.
 Must be done by the OS.  Why?
 Implementation issues:

 Uniprocessor systems 
 Currently running code would execute without 

preemption
 Multiprocessor systems.

 Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

 Is this an acceptable  solution?
 This is impractical if  the critical section  code is taking 

a long time to execute.
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Software Solution for Process Pi

   Keep a variable “turn” to indicate which process is next

 Algorithm is correct.  Only one process at a time in  the 
critical section.  But:

 Results  in “busy waiting”.
 What if turn = j;  Pi wants to enter the critical section and Pj 

does not want to enter the critical section?

do { 

while (turn == j); 

critical section 

turn = j; 

remainder section 

 } while (true); 
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3.  Bounded Waiting -  A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the n 

processes
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Software Solution: Peterson’s Algorithm

 Good algorithmic software solution
 Two process solution
 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn; 
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the 
critical section

 The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true  implies that 
process Pi is ready!
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Algorithm for Process Pi

do { 

flag[i] = true; 
turn = j; 
while (flag[j] && turn = = j); 

flag[i] = false;

 critical section 

 remainder section 

 } while (true); 
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Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:
        1.   Mutual exclusion is preserved

                Pi enters CS only if:

                      either flag[j] = false or turn = i
        2.   Progress requirement is satisfied
        3.   Bounded-waiting requirement is met
 What about a solution to N > 2 processes
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Busy Waiting

 All the software solutions we presented employee “busy 
waiting”
 A process interested in entering the critical-section is 

stuck in a loop asking continuously  
“can I get into the critical-section”

 Busy waiting is a pure waste of CPU cycles
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Solution to Critical-section Problem Using Locks

 Many systems provide hardware support for implementing 
the critical section code.

 All solutions are based on idea of locking
 Two processes can not have a lock simultaneosly. 

 Code:

do { 

               

           critical section     

      

           remainder section 

} while (TRUE); 

acquire lock

release lock
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Synchronization Hardware

 Modern machines provide special atomic hardware 
instructions to implement locks
 Atomic = non-interruptible

 Two types instructions:
 Test memory word and set value
 Swap contents of two memory words
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test_and_set  Instruction 

 Definition:
       boolean test_and_set (boolean *target)

          {

               boolean rv = *target;

               *target = TRUE;

               return rv:

          }

  Properties:
 Executed atomically
 Returns the original value of passed parameter
 Set the new value of passed parameter to “TRUE”.
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Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Each process, wishing to execute critical-section code:

      do {
          while (test_and_set(&lock)) 

             ; /* do nothing */ 

                 /* critical section */ 

          lock = false; 

                 /* remainder section */ 

       } while (true); 

   What  about  bounded waiting?
     Solution results in busy waiting.
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Bounded-waiting Mutual Exclusion with test_and_set

do {
   waiting[i] = true;
   key = true;
   while (waiting[i] && key) 

      key = test_and_set(&lock); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = false; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

} while (true); 
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compare_and_swap Instruction

 Definition:
     int compare_and_swap(int *value, int expected, int new_value) { 

         int temp = *value; 

         if (*value = = expected) 

             *value = new_value; 

      return temp; 

     } 

     Properties:
   Executed atomically
   Returns the original value of passed parameter “value”
   Set  “value”  to “new_value ” but only if “value” == “expected”.

That is, the swap takes  place only under this condition.
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Solution using compare_and_swap

 Shared integer  “lock”  initialized to 0; 
 Solution:
      do {

         while (compare_and_swap(&lock, 0, 1) != 0) 

            ; /* do nothing */ 

          /* critical section */ 

       lock = 0; 

          /* remainder section */ 

      } while (true); 

    What  about  bounded waiting?
    Solution results in busy waiting.
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Mutex Locks

 Previous solutions are complicated and generally inaccessible to 
application programmers

 OS designers build software tools to solve critical section problem
 Simplest  tools is the Mutex lock, which has a Boolean variable 

“available” associated with it to indicate if the lock is available or not.
 Two operations available to access a Mutex Lock:

    acquire() {
      while (!available)

             ; /* busy wait */

      available = false;

    }

       release() {
       available = true;

        }
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Mutex Locks (Cont.)

 Calls to acquire() and release() are atomic
 Usually implemented via hardware atomic instructions

  Usage:
      do { 

        acquire lock

           critical section

        release lock 

           remainder section 

       } while (true); 

  Solution requires busy waiting
 This lock is therefore called a spinlock
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Semaphores

 Synchronization tool that provides more sophisticated ways (than 
Mutex locks)  for processes to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()
 Originally called P() and V()

 Definition of  the wait()operation
   wait(S) { 
       while (S <= 0)

         ; // busy wait

       S = S - 1;

    }

 Definition of  the signal() operation
   signal(S) { 
       S = S + 1;

   }
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Semaphore Usage

Can  solve various synchronization problems
 A solution to the CS problem.

  Create a semaphore “synch” initialized to 1 
       wait(synch)

          CS

       signal(synch);

 Consider P1  and P2 that require code segment S1 to happen before 
code segment S2

 Create a semaphore “synch” initialized to 0 
     P1:

         S1;

         signal(synch);

     P2:

         wait(synch);

         S2;
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Types of Semaphores

 Counting semaphore – integer value can range over an 
unrestricted domain

 Binary semaphore – integer value can range only 
between 0 and 1
 Same as a mutex lock

 Can implement a counting semaphore S as a binary 
semaphore
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Counting Semaphores Example

 Allow at most two process to execute in the CS.
  Create a semaphore “synch” initialized to 2  
       wait(synch)

          CS

       signal(synch);
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Semaphore Implementation

 Must guarantee that no two processes can execute  the 
wait() and signal() on the same semaphore at the 
same time

 Thus, the implementation becomes the critical section 
problem where the wait and signal code are placed in 
the critical section

 This implementation is based on busy waiting in critical 
section implementation (that is, the code for wait()and 
signal())
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Can we implement semaphores with no busy waiting?
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Semaphore Implementation with no Busy Waiting 

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

  value (of type integer)
  pointer to next record in the list

           typedef struct{ 

           int value; 

           struct process *list; 

           } semaphore; 

 Two operations:
 block () – place the process invoking the operation on the appropriate 

waiting queue
 wakeup (P) – remove one of processes in the waiting queue and place it 

in the ready queue
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Implementation with no Busy waiting (Cont.)

   wait(semaphore *S) { 

         S->value--; 

         if (S->value < 0) {
             add this process to S->list; 

             block(); 

         } 

     }

   signal(semaphore *S) { 

          S->value++; 

          if (S->value <= 0) {
              remove a process P from S->list; 

              wakeup(P); 

          } 

     } 
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 Implementation with no Busy waiting (Cont.)

 Does the implementation ensure the “progress” 
requirement?

 Does implementation ensure the “bounded waiting” 
requirement?
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Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
        P0                            P1

          wait(S);               wait(Q);

           wait(Q);               wait(S);

 ...      ...

           signal(S);                 signal(Q);

              signal(Q);                 signal(S);

 Starvation – indefinite blocking  
 A process may never be removed from the semaphore queue in which 

it is suspended
 Priority Inversion – Scheduling problem when lower-priority 

process holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol
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Problems with Semaphores

  Incorrect use of semaphore operations:

  signal (mutex)  ….  wait (mutex)

  wait (mutex)  …  wait (mutex)

  Omitting  of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.
 Solution – create high-level programming language constructs
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Monitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the 
procedure

 Only one process may be active within the monitor at a time

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

    Initialization code (…) { … }
}

}
 Mutual exclusion is guaranteed by the compiler.
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Schematic view of a Monitor
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Condition Variables

 Need mechanism to allow a process wait within a monitor
 Provide condition variables.
 A condition variable (say x) can be accessed only via two 

operations:
 x.wait() –  a process that invokes the operation is 

suspended until another process invoked x.signal() 
 x.signal() – resumes one of processes (if any) that  

invoked x.wait()
 If no process is suspended on variable x , then it has 

no effect on the variable
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 Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal(), and process Q is 
suspended in x.wait(), what should happen next?
 Both Q and P cannot execute in parallel. If Q is resumed, 

then P must wait
 Options include:

 Signal and wait – P either waits until Q leaves the 
monitor or it waits for another condition

 Signal and continue – Q either waits until P leaves the 
monitor or it  waits for another condition
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Condition Variables Choices (Cont.)

 There are reasonable arguments in favor of adopting either 
option. 
 Since P was already executing in the monitor, the 

signal-and-continue method seems more reasonable. 
 However, if we allow P to continue, by the time Q is 

resumed, the logical condition for which Q was waiting 
may no longer hold. 

 A compromise between these two choices was adopted in 
the language Concurrent Pascal. When P executes the 
signal operation, it immediately leaves the monitor. Hence, 
Q is immediately resumed.
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Languages Supporting the Monitor Concept

 Many programming languages have incorporated the 
idea of the monitor as described in this section, including 
Java and C#.

 Other languages such as Erlang provide concurrency 
support using a similar mechanism.
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Monitor Implementation

 For each monitor, a semaphore  mutex  is provided. 
 A process must execute  wait(mutex) before 

entering the monitor and must execute  
signal(mutex) after leaving the monitor.  This is 
ensured by the compiler.

 We use the “signal and wait” mechanism to handle the 
signal  operation.

 Since a signaling process must wait until the resumed 
process either leaves or  it waits, an additional 
semaphore, next, is used. 

 The signaling processes can use next to suspend 
themselves.

 An integer variable next_count is provided to count 
the number of processes suspended on next
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Monitor Implementation (Cont.)

 Variables 

 semaphore mutex;  // (initially  = 1)
 semaphore next;   // (initially  = 0)
 int next_count = 0;

 Each procedure F  will be replaced by

wait(mutex);
     …  

                    body of F;
     …
if (next_count > 0)
signal(next)

else 
signal(mutex);

 Mutual exclusion within a monitor is ensured
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 Monitor with Next Semaphore
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Condition Variables Implementation 

 For each condition variable x, we  have:

   semaphore x_sem; // (initially  = 0)
   int x_count = 0;

 The operation x.wait can be implemented as:

    x_count++;
    if (next_count > 0)
       signal(next);
    else
       signal(mutex);
    wait(x_sem);
    x_count--;
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Condition Variables Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}
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Resuming Processes within a Monitor

 If several processes are queued on condition x, and 
x.signal() is executed, which one  should be 
resumed?

 FCFS frequently not adequate 
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (low number  highest 

priority) is scheduled next
 Some languages provide a mechanism to find out the PID of 

the executing process.
 In C  we have getpid(), which retunes the PID of the 

calling process
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Resource Allocator Monitor Example 

 A monitor to allocate a single resource among competing processes
 Each process, when requesting an allocation of this resource, specifies 

the maximum time it plans to use the resource. The monitor allocates the 
resource to the process that has the shortest time-allocation request. 

 monitor ResourceAllocator
{
       boolean busy;
       condition x;

void acquire(int time) {
     if (busy)
        x.wait(time)
     busy = true;
}
  
void release () {
     busy = false;
     x.signal();
}

     busy= false;
}
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Resource Allocator Monitor Example (Cont.)

 A process that needs to access the resource in question 
must observe the following sequence:

R.acquire(t);
  . . .
 access the resource;
  . . .
R.release();

      where R is is an instance of type ResourceAllocator
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Observation the Resource Allocator Example 

  Incorrect use of  the operations:

  R.release  ….  R.acquire(t)

  R.acquire(t)   .… R.acquire(t)

  Omitting  of acquire and or  release (or both)

 Solution exist but not covered in this course
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End of Chapter 6
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