
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Synchronization
Tools

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Synchronization Tools

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Alternative Approaches

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.
 To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data
 To present both software and hardware solutions of the

critical-section problem
 To examine several classical process-synchronization

problems
 To explore several tools that are used to solve process

synchronization problems

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Concurrent access to shared data may result in data
inconsistency

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

 The synchronization mechanism is usually provided by
both hardware and the operating system

 Illustration of the problem – The producer-Consumer
problem, which we introduced in Chapter 3.

 Basic assumption – load and store instructions are atomic.

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 The Solution we presented in chapter 3 is correct, but
can only use BUFFER_SIZE - 1 elements.

 The methodology used is to allow only a single process
to increment/decrement a particular shared variable.

 There is a solution that fills all the buffers, using the
same methodology:
 The producer process increments the value on the

variable “in” (but not “out”) and the consumer
process increments the value on the variable “’out”
(but not “in”)

 The solution is more complex. Try and see if you
can come up with the algorithm.

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem (Cont.)

 Suppose that we wanted to provide a solution that fills
all the buffers where we allow the producer and
consumer processes to increment and decrement the
same variable.

 We can do so by adding another integer variable --
counter that keeps track of the number of full buffers.
Initially, counter is set to 0.

 The variable counter It is incremented by the producer
after it produces a new buffer and is decremented by
the consumer after it consumes a buffer.

 Code is shown in next two slides

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer Process

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter = counter +1;

}

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer Process

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

 counter = counter - 1;

/* consume the item in next consumed */

}

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter = counter + 1 could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1

 counter = counter -1 could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition (Cont.)

 How do we solve the race condition?
 We need to make sure that:

 The execution of
 counter = counter + 1

 is done as an “atomic” action. That is, while it is being
executed, no other instruction can be executed
concurrently.
 actually no other instruction can access counter

 Similarly for
 counter = counter - 1

 The ability to execute an instruction, or a number of
instructions, atomically is crucial for being able to solve many
of the synchronization problems.

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {P0, P1, … Pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be
in its critical section

 Critical section problem is to design protocol to solve this
 Each process must ask permission to enter critical section

in entry section code; it than executes in the critical
section; once it finishes executing in the critical section it
enters the exit section code. The process then enters the
remainder section code.

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General structure of Process Entering the Critical Section

 General structure of process Pi

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hardware Solution

 Entry section – first action is to “disable interrupts.
 Exit section – last action is to “enable interrupts”.
 Must be done by the OS. Why?
 Implementation issues:

 Uniprocessor systems
 Currently running code would execute without

preemption
 Multiprocessor systems.

 Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

 Is this an acceptable solution?
 This is impractical if the critical section code is taking

a long time to execute.

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Software Solution for Process Pi

 Keep a variable “turn” to indicate which process is next

 Algorithm is correct. Only one process at a time in the
critical section. But:

 Results in “busy waiting”.
 What if turn = j; Pi wants to enter the critical section and Pj

does not want to enter the critical section?

do {

while (turn == j);

critical section

turn = j;

remainder section

 } while (true);

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Software Solution: Peterson’s Algorithm

 Good algorithmic software solution
 Two process solution
 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn;
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the
critical section

 The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process Pi is ready!

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true;
turn = j;
while (flag[j] && turn = = j);

flag[i] = false;

 critical section

 remainder section

 } while (true);

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:
 1. Mutual exclusion is preserved

 Pi enters CS only if:

 either flag[j] = false or turn = i
 2. Progress requirement is satisfied
 3. Bounded-waiting requirement is met
 What about a solution to N > 2 processes

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Busy Waiting

 All the software solutions we presented employee “busy
waiting”
 A process interested in entering the critical-section is

stuck in a loop asking continuously
“can I get into the critical-section”

 Busy waiting is a pure waste of CPU cycles

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

 Many systems provide hardware support for implementing
the critical section code.

 All solutions are based on idea of locking
 Two processes can not have a lock simultaneosly.

 Code:

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Modern machines provide special atomic hardware
instructions to implement locks
 Atomic = non-interruptible

 Two types instructions:
 Test memory word and set value
 Swap contents of two memory words

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

 Definition:
 boolean test_and_set (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

 Properties:
 Executed atomically
 Returns the original value of passed parameter
 Set the new value of passed parameter to “TRUE”.

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Each process, wishing to execute critical-section code:

 do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

 } while (true);

 What about bounded waiting?
 Solution results in busy waiting.

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

 Definition:
 int compare_and_swap(int *value, int expected, int new_value) {

 int temp = *value;

 if (*value = = expected)

 *value = new_value;

 return temp;

 }

 Properties:
 Executed atomically
 Returns the original value of passed parameter “value”
 Set “value” to “new_value ” but only if “value” == “expected”.

That is, the swap takes place only under this condition.

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;
 Solution:
 do {

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 } while (true);

 What about bounded waiting?
 Solution results in busy waiting.

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible to
application programmers

 OS designers build software tools to solve critical section problem
 Simplest tools is the Mutex lock, which has a Boolean variable

“available” associated with it to indicate if the lock is available or not.
 Two operations available to access a Mutex Lock:

 acquire() {
 while (!available)

 ; /* busy wait */

 available = false;

 }

 release() {
 available = true;

 }

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks (Cont.)

 Calls to acquire() and release() are atomic
 Usually implemented via hardware atomic instructions

 Usage:
 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

 Solution requires busy waiting
 This lock is therefore called a spinlock

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphores

 Synchronization tool that provides more sophisticated ways (than
Mutex locks) for processes to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()
 Originally called P() and V()

 Definition of the wait()operation
 wait(S) {
 while (S <= 0)

 ; // busy wait

 S = S - 1;

 }

 Definition of the signal() operation
 signal(S) {
 S = S + 1;

 }

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

Can solve various synchronization problems
 A solution to the CS problem.

 Create a semaphore “synch” initialized to 1
 wait(synch)

 CS

 signal(synch);

 Consider P1 and P2 that require code segment S1 to happen before
code segment S2

 Create a semaphore “synch” initialized to 0
 P1:

 S1;

 signal(synch);

 P2:

 wait(synch);

 S2;

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of Semaphores

 Counting semaphore – integer value can range over an
unrestricted domain

 Binary semaphore – integer value can range only
between 0 and 1
 Same as a mutex lock

 Can implement a counting semaphore S as a binary
semaphore

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Semaphores Example

 Allow at most two process to execute in the CS.
 Create a semaphore “synch” initialized to 2
 wait(synch)

 CS

 signal(synch);

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the
same time

 Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in
the critical section

 This implementation is based on busy waiting in critical
section implementation (that is, the code for wait()and
signal())
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Can we implement semaphores with no busy waiting?

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy Waiting

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 typedef struct{

 int value;

 struct process *list;

 } semaphore;

 Two operations:
 block () – place the process invoking the operation on the appropriate

waiting queue
 wakeup (P) – remove one of processes in the waiting queue and place it

in the ready queue

6.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

 wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {
 add this process to S->list;

 block();

 }

 }

 signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {
 remove a process P from S->list;

 wakeup(P);

 }

 }

6.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Implementation with no Busy waiting (Cont.)

 Does the implementation ensure the “progress”
requirement?

 Does implementation ensure the “bounded waiting”
requirement?

6.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

 Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which

it is suspended
 Priority Inversion – Scheduling problem when lower-priority

process holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol

6.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.
 Solution – create high-level programming language constructs

6.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

 Initialization code (…) { … }
}

}
 Mutual exclusion is guaranteed by the compiler.

6.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

6.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

 Need mechanism to allow a process wait within a monitor
 Provide condition variables.
 A condition variable (say x) can be accessed only via two

operations:
 x.wait() – a process that invokes the operation is

suspended until another process invoked x.signal()
 x.signal() – resumes one of processes (if any) that

invoked x.wait()
 If no process is suspended on variable x , then it has

no effect on the variable

6.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Monitor with Condition Variables

6.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

 If process P invokes x.signal(), and process Q is
suspended in x.wait(), what should happen next?
 Both Q and P cannot execute in parallel. If Q is resumed,

then P must wait
 Options include:

 Signal and wait – P either waits until Q leaves the
monitor or it waits for another condition

 Signal and continue – Q either waits until P leaves the
monitor or it waits for another condition

6.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices (Cont.)

 There are reasonable arguments in favor of adopting either
option.
 Since P was already executing in the monitor, the

signal-and-continue method seems more reasonable.
 However, if we allow P to continue, by the time Q is

resumed, the logical condition for which Q was waiting
may no longer hold.

 A compromise between these two choices was adopted in
the language Concurrent Pascal. When P executes the
signal operation, it immediately leaves the monitor. Hence,
Q is immediately resumed.

6.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Languages Supporting the Monitor Concept

 Many programming languages have incorporated the
idea of the monitor as described in this section, including
Java and C#.

 Other languages such as Erlang provide concurrency
support using a similar mechanism.

6.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation

 For each monitor, a semaphore mutex is provided.
 A process must execute wait(mutex) before

entering the monitor and must execute
signal(mutex) after leaving the monitor. This is
ensured by the compiler.

 We use the “signal and wait” mechanism to handle the
signal operation.

 Since a signaling process must wait until the resumed
process either leaves or it waits, an additional
semaphore, next, is used.

 The signaling processes can use next to suspend
themselves.

 An integer variable next_count is provided to count
the number of processes suspended on next

6.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

 Variables

 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
 …

 body of F;
 …
if (next_count > 0)
signal(next)

else
signal(mutex);

 Mutual exclusion within a monitor is ensured

6.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Monitor with Next Semaphore

6.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Implementation

 For each condition variable x, we have:

 semaphore x_sem; // (initially = 0)
 int x_count = 0;

 The operation x.wait can be implemented as:

 x_count++;
 if (next_count > 0)
 signal(next);
 else
 signal(mutex);
 wait(x_sem);
 x_count--;

6.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

6.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

 If several processes are queued on condition x, and
x.signal() is executed, which one should be
resumed?

 FCFS frequently not adequate
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (low number  highest

priority) is scheduled next
 Some languages provide a mechanism to find out the PID of

the executing process.
 In C we have getpid(), which retunes the PID of the

calling process

6.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocator Monitor Example

 A monitor to allocate a single resource among competing processes
 Each process, when requesting an allocation of this resource, specifies

the maximum time it plans to use the resource. The monitor allocates the
resource to the process that has the shortest time-allocation request.

 monitor ResourceAllocator
{
 boolean busy;
 condition x;

void acquire(int time) {
 if (busy)
 x.wait(time)
 busy = true;
}

void release () {
 busy = false;
 x.signal();
}

 busy= false;
}

6.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocator Monitor Example (Cont.)

 A process that needs to access the resource in question
must observe the following sequence:

R.acquire(t);
 . . .
 access the resource;
 . . .
R.release();

 where R is is an instance of type ResourceAllocator

6.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Observation the Resource Allocator Example

 Incorrect use of the operations:

 R.release …. R.acquire(t)

 R.acquire(t) .… R.acquire(t)

 Omitting of acquire and or release (or both)

 Solution exist but not covered in this course

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

	Chapter 6: Synchronization Tools
	Chapter 6: Synchronization Tools
	Objectives
	Synchronization
	Producer-Consumer Problem
	Producer-Consumer Problem (Cont.)
	Producer Process
	Consumer Process
	Race Condition
	Race Condition (Cont.)
	Critical Section Problem
	General structure of Process Entering the Critical Section
	Hardware Solution
	Software Solution for Process Pi
	Solution to Critical-Section Problem
	Software Solution: Peterson’s Algorithm
	Algorithm for Process Pi
	Peterson’s Solution (Cont.)
	Busy Waiting
	Solution to Critical-section Problem Using Locks
	Synchronization Hardware
	test_and_set Instruction
	Solution using test_and_set()
	Bounded-waiting Mutual Exclusion with test_and_set
	compare_and_swap Instruction
	Solution using compare_and_swap
	Mutex Locks
	Mutex Locks (Cont.)
	Semaphores
	Semaphore Usage
	Types of Semaphores
	Counting Semaphores Example
	Semaphore Implementation
	Semaphore Implementation with no Busy Waiting
	Implementation with no Busy waiting (Cont.)
	Implementation with no Busy waiting (Cont.)
	Deadlock and Starvation
	Problems with Semaphores
	Monitors
	Schematic view of a Monitor
	Condition Variables
	Monitor with Condition Variables
	Condition Variables Choices
	Condition Variables Choices (Cont.)
	Languages Supporting the Monitor Concept
	Monitor Implementation
	Monitor Implementation (Cont.)
	Monitor with Next Semaphore
	Condition Variables Implementation
	Condition Variables Implementation (Cont.)
	Resuming Processes within a Monitor
	Resource Allocator Monitor Example
	Resource Allocator Monitor Example (Cont.)
	Observation the Resource Allocator Example
	End of Chapter 6

