
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Synchronization
Examples

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Synchronization Examples

 Classic Problems of Synchronization
 Synchronization Examples
 Alternative Approaches

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To examine several classical process-synchronization
problems

 To explore several tools that are used to solve process
synchronization problems

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

 We will present solutions using:
 Semaphores.
 Monitors
 Various operating systems

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Solutions

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value n

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

 do {

 ...
 /* produce an item in next_produced */

 ...

 wait(empty);

 wait(mutex);

 ...
 /* add next produced to the buffer */

 ...

 signal(mutex);

 signal(full);

 } while (true);

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 Do {

 wait(full);

 wait(mutex);

 ...
 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex);

 signal(empty);

 ...
 /* consume the item in next consumed */

 ...
 } while (true);

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any

updates
 Writers – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the

same time
 Several variations of how readers and writers are considered

– all involve some form of priorities
 Shared Data

 Semaphore rw_mutex initialized to 1
 Semaphore mutex initialized to 1
 Integer read_count initialized to 0

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

 do {
 wait(rw_mutex);

 ...
 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process

 do {
 wait(mutex);
 read_count++;
 if (read_count == 1)

 wait(rw_mutex);
 signal(mutex);

 ...
 /* reading is performed */

 ...
 wait(mutex);

 read_count--;
 if (read_count == 0)

 signal(rw_mutex);
 signal(mutex);
 } while (true);

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has
permission to use shared object

 Second variation – once writer is ready, it performs the
write ASAP

 Both may have starvation leading to even more variations
 Problem is solved on some systems by kernel providing

reader-writer locks

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating
 They do not interact with their neighbors, occasionally try to

pick up 2 chopsticks (one at a time) to eat from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers, the shared data:
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 This solution guarantees that no two neighbors are eating
simultaneously.

 Possibility of a deadlock. Suppose that all five philosophers
become hungry at the same time and each grabs the left
chopstick.

 Solution:
 Allow at most 4 philosophers to be sitting simultaneously

at the table.
 Allow a philosopher to pick up the forks only if both are

available (picking must be done in a critical section.
 Use an asymmetric solution -- an odd-numbered

philosopher picks up first the left chopstick and then the
right chopstick. Even-numbered philosopher picks up first
the right chopstick and then the left chopstick.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 7

	Chapter 7: Synchronization Examples
	Chapter 7: Synchronization Examples
	Objectives
	Classical Problems of Synchronization
	Slide 5
	Bounded-Buffer Problem
	Bounded Buffer Problem (Cont.)
	Slide 8
	Readers-Writers Problem
	Readers-Writers Problem (Cont.)
	Slide 11
	Readers-Writers Problem Variations
	Dining-Philosophers Problem
	Dining-Philosophers Problem Algorithm
	Dining-Philosophers Problem Algorithm (Cont.)
	End of Chapter 7

