Computational steps towards unwrapping the role of myelin in olfactory signal processing

Justin Losacco, Daniel Ramirez-Gordillo, Jessie Gilmer

Elizabeth A. Gould, Nicolas Busquet, Douglas Shepherd, Robert Dietz, Paco Herson, Fabio M. Simoes de Souza, Anan Li, Nicholas M. George, Wendy B. Macklin

Ramón y Cajal

Fig 14

Computational steps towards unwrapping the role of myelin in olfactory signal processing

- Oscillations are augmented and dimensionality changes as the animal learns to differentiate odorants in the gono go task
- Mild Myelin Disruption Elicits Early Alteration in Olfactory Behavior and Proliferation in the Subventricular Zone

Optetrode

Go-no Go Associative Learning Task

Li and Cleland. PLOS Comp. Biol. 13:e1005760, 2017

Granule cell inhibition gives rise to gamma frequency oscillations, and these oscillations are augmented by gap junctions between mitral cells

Pouille et al J. Physiol. 595:5965, 2017

PAC for a proficient mouse

Peak angle variance decreases for S+ and increases for S- as the mouse learns

What happens if the downstream observer of gamma power uses a window at the peak or trough of the theta oscillation?

What happens if the downstream observer of gamma power uses a window at the peak or trough of the theta oscillation?

Decoding of odorant identity with linear discriminant analysis using the theta peakreferenced gamma power preforms better than trough-referenced gamma power

Decision time is the same for theta peak-referenced wavelet power linear discriminant analysis and for lick divergence

Example of principal component separation as the animal learns to differentiate the odorants

What is the dimensionality of the peak-referenced gamma power?

We define the dimension of a system with *M* degrees of freedom, $\mathbf{x} = (x_1, x_2, \dots x_M)$, as

$$\dim(\mathbf{x}) = \frac{\left(\sum_{i=1}^{M} \lambda_i\right)^2}{\sum_{i=1}^{M} \lambda_i^2},$$
 (Equation 1)

where λ_i are the eigenvalues of the covariance matrix of **x** computed by averaging over the distribution of inputs to the system (Abbott et al., 2011).

Dimensionality of the peak-phase referenced gamma power differs between locations and changes after learning

Conclusions

- Theta peak-referenced gamma power carries information on odor identity
- Theta trough-referenced gamma power carries significantly less information on odor identity
- As the mouse learns to differentiate the odorant the dimensionality of theta-peak referenced gamma power decreases

Computational steps towards unwrapping the role of myelin in olfactory signal processing

- Oscillations are augmented and dimensionality changes as the animal learns to differentiate odorants in the gono go task
- Mild Myelin Disruption Elicits Early Alteration in Olfactory Behavior and Proliferation in the Subventricular Zone

Neurological problems in mild myelin disruption (early Multiple Sclerosis): Young adult PLP knockout mouse

Myelin is key for neuronal transmission of information

Proteolipid protein (PLP) is a structural component of the myelin sheath

Gould et. al. eLife e34783, 2018

http://www.nih.gov

Plp point mutations or gene duplications lead to the dysmyelinating diseases, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2

10 years old, Jacob Trossman, http://jacobsladder.ca/pmd/

Deletion of *plp1* leads to loss of myelin compaction

3 month PLP-null overstep rear paw

Problems with motor coordination: swimming

WT *Plp*-null

Puzzle box: comprehensive test of cognitive function

Problem-solving Short-term memory Long-term memory

Entry to goal box

Cognitive function is impaired in PLP-null mice

Plp1-null mice exhibit increased exploration of novel social odors

The distance traveled, velocity and behavioral outcome did not differ in a subset of behavioral tasks

	3 months	3 months			9 months		
Behavioral performance	WT (n = 10) Mean(SEM)	Null (n = 10) Mean(SEM)	p value	WT (n = 10) Mean(SEM)	Null (n = 10) Mean(SEM)	p value	
Open field (duration in center (s))	217.0 (15.52)	203.71 (0.336)	0.88	238.5 (25.14)	158.6 (22.99)	0.02	
Zero maze (duration open arms (s))	92.65 (17.03)	175.7 (21.24)	0.03	126.5 (27.41)	117.2 (26.09)	0.95	
Y maze (% successful alternations)	61.48 (2.484)	61.56 (2.220)	0.99	57.33 (2.888)	57.32 (3.726)	0.99	
Y maze (arm entries)	32.18 (2.529)	35.91 (2.387)	0.60	32.20 (3.608)	29.80 (3.252)	0.82	
Marble burying (marbles buried)	4.800 (1.052)	1.600 (0.400)	<0.01	3.900 (0.862)	0.200 (0.133)	<0.01	
Marble burying (time digging (s))	8.428 (2.245)	2.994 (0.666)	0.25	13.24 (3.767)	4.294 (2.390)	0.04	
Locomotion							
Rotarod (mean latency to fall (s))	196.2 (25.08)	231.2 (28.41)	0.88	145.1 (17.38)	129.7 (7.948)	0.94	
Distance traveled (cm)							
Open field	5255 (466.3)	4589 (229.8)	0.39	4510 (444.4)	5205 (322.4)	0.36	
Zero maze	9532 (3170)	10831 (2210)	0.92	6148 (1708)	7030 (1694)	0.96	
Y maze	27693 (1346)	15484 (11985)	0.68	3931 (734.5)	3812 (324.3)	0.99	
Marble burying	3729 (379.1)	2931 (361.1)	0.16	5591 (204.0)	5566 (289.0)	0.99	
Habituation				845.2 (78.3)	1041 (56.31)	0.06	
Velocity (cm/s)							
Open field	9.551 (0.673)	9.287 (0.336)	0.94	7.518 (0.741)	8.667 (0.537)	0.32	
Zero maze	16.34 (6.224)	10.25 (2.864)	0.52	11.79 (2.815)	18.38 (3.695)	0.46	
Y maze	65.95 (43.50)	33.15 (24.92)	0.61	8.987 (1.585)	8.198 (0.885)	0.99	
Marble burying	6.766 (0.407)	6.188 (0.595)	0.61	9.323 (0.339)	9.298 (0.482)	0.99	
Habituation				7.859 (0.619)	6.986 (1.028)	0.47	

Region-wide analysis of oligodendrocytes (OL)

**Klugmann et al. (1997)

	Progressive Late		
Cellular	< 2 months	2 -16 months	> 16 months
Oligodendrocytes	Normal appearance	Are there region-specific differences?	Demyelination (spinal cord)

WT PLP-null

PLP-eGFP labels majority of mature oligodendrocytes in adult mouse Established in 2002 by Mallon et al.

30 µm section tiled image

Clear tissue enables high volume imaging

Epp et al 2014

Light sheet fluorescence microscopy

Light sheet fluorescence microscopy

Heterogenous RI breaks co-planarity in light sheet fluorescence microscopy

Heterogenous RI breaks co-planarity in light sheet fluorescence microscopy

Chung, K, et al (2013) *Nature* Yang, B, et al (2014) *Cell* Ryan, D. et al (2017) *Nature Communications*

Inertia-free volumetric imaging $f_{\rm scan}$ $f_{\rm scan}$ $f_{\rm tube}$ $f_{\rm tube}$ Lens Lens Aperture Excitation Objective 2D galvo Scan Tube mirrors $\Delta \mathbf{Z}_{ETL-2} = -\frac{1}{\mathbf{M}_{DO}^2} \left[\frac{\mathbf{n} \cdot \mathbf{f}_{L1}^2}{\mathbf{f}_{ETL-2}} \right]$ ETL-1 Detection FC 488/532/640 nm Objective $f_{ m obj->tube}$ Camera **Tube Lens** $f_{\rm tube}$ $f_{\rm relay}$ relay Г **Relay Lens Relay Lens** ETL-2 -ODE NITTO Fahrbach, F. et al (2013) Optics Express $f_{\rm relay}$ $f_{\rm relay}$ Mickoleit, M. et al (2014) Nature Methods L Chmielewski, A. et al (2015) Scientific Reports Vertical 4f system Ryan, D. et al (2017) Nature Communications Patent issued April 8th 2018

Computer vision to maintain coplanarity

Light chast imaging aligndandrog that in

100 um

Adaptive light sheet microscopy of PLP-eGFP. Ryan et al. Nature Comms. 8:612, 2017

Loss of *plpl1* alters regional production of oligodendrocyte cells

Gould, E. et al (2018) eLife

Loss of *plpl1* alters regional production of Denver Anschutz Medical Campus of oligodendrocyte cells

increase in the CC of the 6 month PLPnull mice

Proliferative response in SVZ

Summary of EDU experiments:

Increase in OL in CC and OB of young adult PLP-null mice

Accumulation of new OL

Cortical axon disruption in *Plp*-null mice evidenced by the presence of axonal spheroids

Mild demyelination elicits a decrease in the velocity of action potential transmission in the corpus callosum

Ramón y Cajal

Fig 14

conduction velocity should increase in axonal oscillations in piriform cortex

Optetrode

Go-no Go Associative Learning Task

Synchronous neuronal activity in piriform cortex

Myelin disruption leads to inefficient conduction

Alters timing within neuronal populations

Impairs synchronous neuronal activity

Alters oscillations

Rewarded

Unrewarded

2.5s

Oscillations in piriform cortex

Myelin disruption can be a primary cause of altered oscillations

Mann-Whitney U test. Data not normally distributed

In piriform cortex feedback inhibition shortens the response to the odorant ensuring correct decoding of odor identity

Bolding et al., Science 361, eaat6904 (2018)

Odorant responses are severely diminished in the piriform cortex of *Plp*-null mice

Confidential. Gould et. al. unpublished

In collaboration with Fabio Simoes de Souza we intend to model the effect of demyelination on olfactory circuit function

Confidential. Gould et. al. unpublished

In the young adult mouse mild myelin dysfunction leads to:

- Select deficits in higher-order processes (motor coordination, problem-solving, motivation, sensory perception)
- Triggering of production of oligodendrocyte progenitors by the subventricular zone
- Transfer of new oligodendrocyte progenitors to the olfactory bulb and the genu of the corpus callosum
- Decreased action potential conduction velocity
- Increased oscillations

These findings raise the question whether the SVZ production of new oligodendrocytes and the accompanying increase in oscillatory power is a protective response that reduces the behavioral effects of the loss of PLP in myelin

Our CU neurophotonics group is hiring a postdoctoral fellow with interest in interacting with engineers to beautiful Coloradol

EN HARD BAR STATE