
User Space Live Patching

João Moreira
SUSE Labs

 



User Space Live Patching

João Moreira
(formerly at) SUSE Labs

joao.moreira@lsc.ic.unicamp.br

 



Software has bugs,
and bugs have to be fixed
+ security issues
+ execution degradation
+ undefined behavior



Fixing bugs
+ kill the process
+ replace the respective binary with a fixed version
+ restart the process
+ wait until process is ready
+ re-establish services



Fixing bugs: downtime
+ kill the process
+ replace the respective binary with a fixed version
+ restart the process
+ wait until process is ready
+ re-establish services



Downside of downtime
+ Some services may take very long to restart
+ Active connections will drop
+ Interruption of large computations



Live Patching
+ Fixing bugs in live software without restart
+ Already a thing in the Linux kernel

Libpulp
+ User Space Live Patching Library
+ Actually... not only a library, but a full framework



Quiessence
+ Changes should not lead to inconsistent states

+ Patches must be applied atomically
+ Functions cannot be patched while running



Kernel Consistency model
+ Execution boundary between user and kernel space
+ Hold new kernel threads and wait all others to finish
+ Safe to patch

+ Stack unwinding
+ Identify that to-be-patched functions are not running
+ Safe to patch



Consistency model

Kernel
+ Execution boundary between user and kernel space
+ Hold new kernel threads and wait all others to finish
+ Safe to patch

+ Stack unwinding
+ Identify that to-be-patched functions are not running
+ Safe to patchHOW?!



Consistency model

Kernel
+ Execution boundary between user and kernel space
+ Hold new kernel threads and wait all others to finish
+ Safe to patch

+ Stack unwinding
+ Identify that to-be-patched functions are not running
+ Safe to patchHOW?!libpulp to the
RESCUE!!1!



libpulp Consistency Model
+ Uses shared libs model to identify quiescent states
+ If lib was not entered, all its functions can be patched

+ Before patch is applied, check if library was entered



libpulp Consistency Model
+ Uses shared libs model to identify quiescent states
+ If lib was not entered, all its functions can be patched

+ Before patch is applied, check if library was enteredHOW?!



For now, imagine that we...
+ can magically change the functions in a process
+ just need to ensure that these functions aren't running



libpulp Consistency Model
+ Entry points to the library are its exported functions
+ Referenced in the ELF dynamic symbol table (.dynsym)



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .trm entries

- relocations are now resolved to .trm entry
+ .trm saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .ulp entries

- relocations are now resolved to .ulp entry
+ .trm saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .ulp entries

- relocations are now resolved to .ulp entry
+ .ulp saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .ulp entries

- relocations are now resolved to .ulp entry
+ .ulp saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .ulp entries

- relocations are now resolved to .ulp entry
+ .ulp saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns



libpulp Consistency Model
+ Linker emits .ulp section with entries for exp. functions
+ .dynsym symbols modified to point to .ulp entries

- relocations are now resolved to .ulp entry
+ .ulp saves function reference and jumps to ulp_entry
+ ulp_entry flags entrance, realigns stack, calls function
+ Function returns to ulp_entry
+ ulp_entry flags exit, restores return address, returns





Thread-local Universes
+ We don't want to wait for all threads to leave the library
+ Some may never leave the library
+ libpulp keeps per-thread patching states, or universes



Thread-local Universes
+ One global universe counter

- Updated upon patching
+ Per-thread universe counters

- Synchronized to the global universe in ulp_entry
- When a patch is effectively applied to a thread 



Thread-local Universes
+ Functions are emitted with padding nops area



Thread-local Universes
+ Nops modified into universe checker when patched



Thread-local Universes
+ Libpulp keeps a list of patched functions
+ Each node contains another list of function versions
+ Universe checking routine selects which detour to take



Thread-local Universes



libpulp
+ Library that can be LD_PRELOAD'ed
+ Provides self-modifying capabilities
+ Keeps needed data structures
+ Activated from the outside, through ptrace



libpulp
+ Library that can be LD_PRELOAD'ed
+ Provides self-modifying capabilities
+ Keeps needed data structures
+ Activated from the outside, through ptrace

- This is the magic



All Together Now!
+ P is running process that LD_PRELOAD'ed libpulp
+ P uses specially compiled libs
+ We need to fix function F in lib L, but we can't kill P

+ A ptrace-based tool called T (trigger) attaches to P



All Together Now!
+ T stops P, parses its memory and saves its context
+ Redirects a thread to a patch_apply routine in libpulp
+ Redirects all other threads to a infinite loop routine
+ Restarts P



All Together Now!
+ patch_apply:

- Modifies the to-be-patched functions
- Loads .so file with function replacements
- Updates data structures and increments universe
- Interrupts, returning the control to T

+ T restores the original context and restarts P



All Together Now!
+ P calls F in L, which is being entered by the thread
+ Control-flow goes through ulp_entry
+ Thread-local universe counter is updated
+ F first runs the universe checking routine
+ New version of F is executed



All Together Now!
+ P calls F in L, from a thread which was already in L
+ Control-flow goes through ulp_entry
+ Thread-local universe update is bypassed
+ F first runs the universe checking routine
+ Thread-local universe is obsolete
+ Previous version of F is executed



The Trigger
+ Fully based on ptrace
+ Uses original binary to map all symbols within the process
+ Checks if libpulp was loaded into the process memory
+ Hijacks control-flow of threads to invoke libpulp routines



Live patch anatomy
+ Two separate parts
+ Compiled .so file that contains replacement functions
+ Metadata file with data required for applying the patch

- Names of functions that will be replaced
- Names of replacement functions
- Sanity check: dependencies, target build-ids



Metadata Generation
+ There is also a packer tool
+ Gets patch description text file and all objects involved
+ Generates metadata and reverse patches automatically



Stacked Patches
+ Multiple patches can be applied to the same process
+ Universe may be higher than the universes of available 
detours for given functions
+ Detour with higher universe below the compared 
universe is picked



Unpatching
+ Unpacthing is similar to patching
+ Global universe is incremented
+ Doesn't load .so, only marks detours as inactive
+ Inactive detour picked if its universe matches exactly





Overheads
+ ~2% for libpulp-prepared glibc on SPEC

+ Worst case scenario for a process with a patch-applied
- Recursive fibonacci sequence computation
- Similar to having all called functions patched
- Up to 50x overhead



github.com/SUSE/libpulp





twitter.com/linuxdevbr

instagram.com/linuxdevbr

t.me/linuxdevbr



User Space Live Patching

João Moreira
(formerly at) SUSE Labs

joao.moreira@lsc.ic.unicamp.br

 


