Hierarquia de Memória - Parte 1 - Introdução

Arquitetura de Computadores

Emilio Francesquini e.francesquini@ufabc.edu.br 2020.O1

Centro de Matemática, Computação e Cognição Universidade Federal do ABC

- Estes slides foram preparados para o curso de Arquitetura de Computadores na UFABC.
- Este material pode ser usado livremente desde que sejam mantidos, além deste aviso, os créditos aos autores e instituições.
- O conteúdo destes slides foi baseado no conteúdo do livro Computer
 Organization And Design: The Hardware/Software Interface, 5th Edition.

Introdução

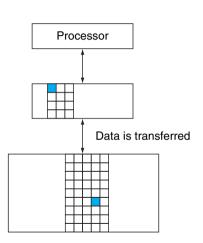
Princípio de localidade

- Programas tendem a acessar uma pequena fatia do espaço de memória disponível.
- Localidade temporal (en: temporal locality).
 - Posições da memória que foram acessadas recentemente têm alta probabilidade de serem acessadas em breve novamente.
 - Ex: instruções em um laço, variáveis de indução
- Localidade espacial (en: spacial locality).
 - Posições de memória próximas às que já foram acessadas, tendem a ser acessadas em breve.
 - Ex: acesso sequencial de instruções, dados em uma array

Aproveitando o princípio da localidade

- Utilizando hierarquia de memória
- Guardar tudo no disco
- Copiar dados recentemente acessados (e aqueles próximos dos acessados) do disco para memórias menores, podem mais rápidas (como DRAM também chamada de memória principal).
- Copiar os dados mais recentemente acessados ainda (e aqueles próximos) da DRAM para memória SRAM (também chamadas de caches)
 - ► Caches são ligadas diretamente à CPU e frequentemente estão no mesmo chip.

Hierarquia de memória



Speed	Processor	Size	Cost (\$/bit)	Current technology
Fastest	Memory	Smallest	Highest	SRAM
	Memory			DRAM
Slowest	Memory	Biggest	Lowest	Magnetic disk

Níveis de hierarquia de memória

- Blocos (ou linhas): unidade mínima de cópia
 - ► Podem ser múltiplas palavras do processador
- Se o dado ao qual se deseja acesso estiver nos níveis mais altos, dizemos que houve um acerto (hit)
 - taxa de acertos (hit ratio): razão de hits pelo número de acessos
- Se o dado ao qual se deseja acesso não estiver nos níveis mais altos, dizemos que houve uma falha (miss)
 - ► taxa de falhas (*miss ratio*): razão de misses pelo número de acessos ou 1 hit ratio
 - No caso de falhas, o dado é recuperado do nivel inferior e fornecido ao nível superior.

Outros termos importantes

Hit time

► Tempo necessário para acessar um nível de memória da hierarquia incluindo o tempo necessário para determinar se o acesso é um hit ou miss.

Miss penalty

Tempo necessário para trazer um bloco do nível de memória de um nível inferior para o superior, incluindo o tempo para acessar o bloco, transmiti-lo de um nível a outro, colocá-lo no nível onde o miss ocorreu e repassar o bloco para quem o requisitou.

Tecnologias de memória

Tecnologias de memória

- Static RAM (SRAM)
 - ▶ 0.5ns 2.5ns, \$500 \$1000 / GB
- Dynamic RAM (DRAM)
 - ► 50ns 70ns, \$10 \$20 / GB
- SSD (Flash)
 - ► 5.000ns 50.000ns, \$0.75 \$1 /GB
- Disco
 - ► 5.000.000ns 20.000.000ns, \$0.05 \$0.10 / GB
- Sonho de consumo:
 - ▶ Tempo de acesso de SRAM
 - ► Capacidade e custo / GB de um disco

Tecnologia DRAM

- Dados armazenados em um capacitor
- Um único transistor é usado para acessar o dado
- Precisa ser periodicamente atualizada (refreshed)
 - ► Leituras destrutivas
 - ► Feitas em uma linha (*row*)

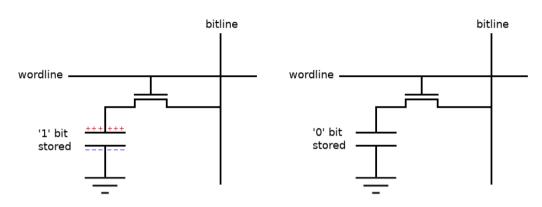


Figura: https://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/

Cara da DRAM

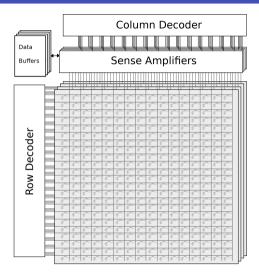


Figura: https://www.allaboutcircuits.com/technical-articles/introduction-to-dram-dynamic-random-access-memory/

Organização Avançada da DRAM

- Bits na DRAM são organizados em linhas em uma matriz retangular
 - Quando há um acesso, acessa-se uma linha inteira
 - Burst mode ocorre quando acessamos palavras sucessivas de uma mesma linha¹.
- DDR RAM Double Data Rate
 - ► Transfere nas bordas ascendentes e descendentes do clock
- QDR RAM Quad data rate
 - Canais DDR separados para entradas e saídas

¹Em ingles usa-se as palavras row e line. Row invariavelmente diz respeito à linha da matriz da DRAM e line/block às unidades de transferência entre os níveis hierarquicos da memória

Gerações da DRAM

Year introduced	Chip size	\$ per GiB	Total access time to a new row/column	Average column access time to existing row
1980	64 Kibibit	\$1,500,000	250 ns	150 ns
1983	256 Kibibit	\$500,000	185 ns	100 ns
1985	1 Mebibit	\$200,000	135 ns	40 ns
1989	4 Mebibit	\$50,000	110 ns	40 ns
1992	16 Mebibit	\$15,000	90 ns	30 ns
1996	64 Mebibit	\$10,000	60 ns	12 ns
1998	128 Mebibit	\$4,000	60 ns	10 ns
2000	256 Mebibit	\$1,000	55 ns	7 ns
2004	512 Mebibit	\$250	50 ns	5 ns
2007	1 Gibibit	\$50	45 ns	1.25 ns
2010	2 Gibibit	\$30	40 ns	1 ns
2012	4 Gibibit	\$1	35 ns	0.8 ns

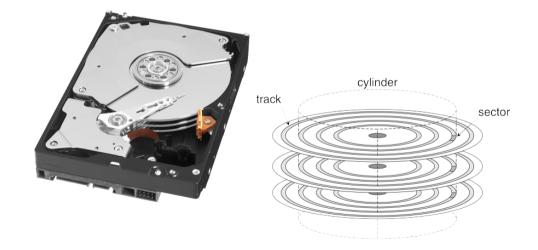
Fatores de desempenho da DRAM

- Row Buffer
 - Permite que várias palavras sejam lidas e atualizadas em paralelo
- Synchronous DRAM SDRAM
 - Permite acessos consecutivos em bursts sem necessidade de mandar cada endereço
 - Aumenta a banda
- DRAM Banking
 - Permite acesso simultâneo a vários chips de DRAM
 - ► Aumenta a banda

Memória Flash

- Armazenamento não volátil
- De 100 a 1000× mais rápida que discos
- Menor, consome menos energia, mais robusta
- Contudo, mais cara e se posiciona entre disco e DRAM

Tipos de memória Flash



- NOR Flash: cada célula se assemelha a uma porta NOR
 - Acesso aleatório de leitura/escrita
 - Usada para memória de instruções em sistemas embarcados
- NAND Flash: cada célula se assemelha a uma porta NAND
 - Mais densa, porém só permite acesso em blocos
 - Mais barata por GB
 - Usada para pen drives, SSDs, ...
- Flash se degrada (wear) com o uso depois de alguns milhares de ciclos de escrita
 - Não é apropriada para substituir, diretamente, RAM ou disco
 - Mecanismos de wear leveling remapeiam dados para os blocos menos acessados

Discos rígidos

Armazenamento de dados não volátil em discos giratórios magnéticos

Setores do disco e acesso

- Cada setor armazena
 - ► Seu ID
 - ► 512 a 4096 bytes de dados
 - Códigos de correção de erros (ECC)
 - Usado para esconder defeitos e erros de gravação
 - Campos de sincronização e algumas lacunas
- Acessar um setor envolve
 - Aguardar caso outro acesso já esteja ocorrendo
 - Busca (seek): move a cabeça até a trilha desejada
 - Latência Rotacional (rotacional latency)
 - ► Transferência de dados
 - Eventuais overheads do controlador

Exemplo de acesso à disco

Dados

- setores de 512 bytes, 15.000 RPM, 4ms de tempo médio de busca, 100 MB/s de taxa de transferência, overhead do controlador de 0.2 ms e que o disco não está ocupado
- Tempo médio para leitura
 - ► 4ms de busca +
 - ▶ 0.5 / (15000/60) = 2 ms de latência rotacional +
 - ► 512 B / 100 MB/s = 0.005ms de transferência +
 - 0.2 ms do controlador =
 - ► Total: 6.2 ms

Considerações de desempenho em discos

- Fabricantes anunciam o tempo de busca médio
 - ► Baseando-se em todos as buscas possíveis
 - Localidade e o próprio SO acabam levando a um tempo de busca inferior
- Discos frequentemente incluem caches
 - Que buscam antecipadamente setores que podem ser necessários
 - Evitam tempo de busca e latência rotacional