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Chapter 6

Parallel Program Development

An Introduction to Parallel Programming
Peter Pacheco
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Roadmap

 Solving non-trivial problems.
 The n-body problem.
 The traveling salesman problem.
 Applying Foster’s methodology.
 Starting from scratch on algorithms that have no 

serial analog.

# C
hap ter S

ub title



3

TWO N-BODY SOLVERS
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The n-body problem

 Find the positions and velocities of a 
collection of interacting particles over a 
period of time.

 An n-body solver is a program that finds 
the solution to an n-body problem by 
simulating the behavior of the particles.
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mass

Positiontime 0

Velocitytime 0

N-body solver
Positiontime x

Velocitytime x
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Simulating motion of planets

 Determine the positions and velocities: 
 Newton’s second law of motion.
 Newton’s law of universal gravitation.
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Serial pseudo-code
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Computation of the forces
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A Reduced Algorithm for Computing 
N-Body Forces
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The individual forces
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Using the Tangent Line to Approximate a Function
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Euler’s Method
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Parallelizing the N-Body Solvers

 Apply Foster’s methodology.
 Initially, we want a lot of tasks.
 Start by making our tasks the 

computations of the positions, the 
velocities, and the total forces at each 
timestep.
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Communications Among Tasks in 
the Basic N-Body Solver
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Communications Among Agglomerated 
Tasks in the Basic N-Body Solver
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Communications Among Agglomerated 
Tasks in the Reduced N-Body Solver
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q < rq < r
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Computing the total force on particle q in 
the reduced algorithm
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Serial pseudo-code
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iterating over particles

In principle, parallelizing the two inner

for loops will map tasks/particles to cores.
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First attempt
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Let’s check for race conditions caused 
by loop-carried dependences.
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First loop
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Second loop
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Repeated forking and joining of threads
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The same team of threads will be used

in both loops and for every iteration 

of the outer loop.

But every thread will print all the

positions and velocities.
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Adding the single directive
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Parallelizing the Reduced Solver Using OpenMP
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Problems
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Updates to forces[3] create a race condition.

In fact, this is the case in general. 

Updates to the elements of the forces

array introduce race conditions into the code.
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First solution attempt
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before all the updates to forces

Access to the forces array 
will be effectively serialized!!!



29

Second solution attempt
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Use one lock for each particle.
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First Phase Computations for Reduced 
Algorithm with Block Partition
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First Phase Computations for Reduced 
Algorithm with Cyclic Partition
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Revised algorithm – phase I
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Revised algorithm – phase II
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Parallelizing the Solvers Using Pthreads

 By default local variables in Pthreads are private. 
So all shared variables are global in the 
Pthreads version.

 The principle data structures in the Pthreads 
version are identical to those in the OpenMP 
version: vectors are two-dimensional arrays of 
doubles, and the mass, position, and velocity of 
a single particle are stored in a struct. 

 The forces are stored in an array of vectors.
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Parallelizing the Solvers Using Pthreads

 Startup for Pthreads is basically the same as the 
startup for OpenMP: the main thread gets the 
command line arguments, and allocates and 
initializes the principle data structures.

 The main difference between the Pthreads and 
the OpenMP implementations is in the details of 
parallelizing the inner loops. 

 Since Pthreads has nothing analogous to a 
parallel for directive, we must explicitly determine 
which values of the loop variables correspond to 
each thread’s calculations.
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Parallelizing the Solvers Using Pthreads

 Another difference between the Pthreads and the 
OpenMP versions has to do with barriers.

 At the end of a parallel for OpenMP has an implied 
barrier.

 We need to add explicit barriers after the inner 
loops when a race condition can arise. 

 The Pthreads standard includes a barrier. 
 However, some systems don’t implement it.
 If a barrier isn't defined we must define a function 

that uses a Pthreads condition variable to 
implement a barrier.
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Parallelizing the Basic Solver Using MPI

 Choices with respect to the data 
structures:
 Each process stores the entire global array of 

particle masses.
 Each process only uses a single n-element 

array for the positions.
 Each process uses a pointer loc_pos that refers 

to the start of its block of pos. 
 So on process 0 local_pos = pos; on process 

1 local_pos = pos + loc_n; etc.
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Pseudo-code for the MPI version of the 
basic n-body solver
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Pseudo-code for output
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Communication In A Possible MPI 
Implementation of the N-Body Solver
(for a reduced solver)
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A Ring of Processes
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Ring Pass of Positions
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Computation of Forces in Ring Pass (1)
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Computation of Forces in Ring Pass (2)
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Pseudo-code for the MPI implementation of the 
reduced n-body solver
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Loops iterating through global particle indexes
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Performance of the MPI n-body solvers
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(in seconds)
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Run-Times for OpenMP and MPI N-Body 
Solvers
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(in seconds)
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TREE SEARCH

Copyright © 2010, Elsevier Inc. All rights Reserved



50

Tree search problem (TSP)

 An NP-complete problem.

 No known solution to TSP that is better in 
all cases than exhaustive search.

 Ex., the travelling salesperson problem, 
finding a minimum cost tour.
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A Four-City TSP
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Search Tree for Four-City TSP
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Pseudo-code for a recursive solution to TSP 
using depth-first search
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Pseudo-code for an implementation of a depth-first 
solution to TSP  without recursion
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Pseudo-code for a second solution to TSP that 
doesn’t use recursion
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Using pre-processor macros
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Run-Times of the Three Serial 
Implementations of Tree Search
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(in seconds)

The digraph contains 15 cities. 

All three versions visited 
approximately 95,000,000 tree 
nodes.
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Making sure we have the “best tour” (1)

 When a process finishes a tour, it needs to 
check if it has a better solution than 
recorded so far.

 The global Best_tour function only reads 
the global best cost, so we don’t need to tie 
it up by locking it. There’s no contention 
with other readers.

 If the process does not have a better 
solution, then it does not attempt an update.
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Making sure we have the “best tour” (2)

 If another thread is updating while we 
read, we may see the old value or the new 
value.

 The new value is preferable, but to ensure 
this would be more costly than it is worth.
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Making sure we have the “best tour” (3)

 In the case where a thread tests and decides it 
has a better global solution, we need to ensure 
two things:
1) That the process locks the value with a mutex, 

preventing a race condition.

2) In the possible event that the first check was against 
an old value while another process was updating, we 
do not put a worse value than the new one that was 
being written.

 We handle this by locking, then testing again.
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First scenario
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global
tour value

process x process y

local
tour value

local
tour value30

2722

1. test3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. update

9. unlock

2722
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Second scenario
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global
tour value

process x process y

local
tour value

local
tour value30

2729

1. test3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. unlock

27
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Pseudo-code for a Pthreads implementation of a 
statically parallelized solution to TSP
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Dynamic Parallelization of Tree Search 
Using Pthreads

 Termination issues.
 Code executed by a thread before it splits:

 It checks that it has at least two tours in its 
stack.

 It checks that there are threads waiting.
 It checks whether the new_stack variable is 

NULL.
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Pseudo-Code for Pthreads Terminated Function (1)
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Pseudo-Code for Pthreads Terminated Function (2)
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Grouping the termination variables
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Run-times of Pthreads tree search programs
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(in seconds)

numbers of times

stacks were split

15-city problems
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Parallelizing the Tree Search Programs 
Using OpenMP

 Same basic issues implementing the static 
and dynamic parallel tree search programs 
as Pthreads.

 A few small changes can be noted.
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Pthreads

OpenM
P
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OpenMP emulated condition wait
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Performance of OpenMP and Pthreads 
implementations of tree search
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(in seconds)
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IMPLEMENTATION OF TREE 
SEARCH USING MPI AND 
STATIC PARTITIONING
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Sending a different number of objects to each 
process in the communicator
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Gathering a different number of objects from 
each process in the communicator
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Checking to see if a message is available
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Terminated Function for 
a Dynamically 
Partitioned TSP solver 
that Uses MPI.
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Modes and Buffered Sends

 MPI provides four modes for sends.
 Standard
 Synchronous
 Ready
 Buffered 
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Printing the best tour
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Terminated Function for a Dynamically 
Partitioned TSP solver with MPI (1)
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Terminated Function for a Dynamically 
Partitioned TSP solver with MPI (2)
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Packing data into a buffer of contiguous 
memory
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Unpacking data from a buffer of contiguous 
memory
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Performance of MPI and Pthreads 
implementations of tree search
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(in seconds)
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Concluding Remarks (1)

 In developing the reduced MPI solution to 
the n-body problem, the “ring pass” 
algorithm proved to be much easier to 
implement and is probably more scalable.

 In a distributed memory environment in 
which processes send each other work, 
determining when to terminate is a 
nontrivial problem.
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Concluding Remarks (2)

 When deciding which API to use, we 
should consider whether to use shared- or 
distributed-memory.

 We should look at the memory 
requirements of the application and the 
amount of communication among the 
processes/threads.
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Concluding Remarks (3)

 If the memory requirements are great or 
the distributed memory version can work 
mainly with cache, then a distributed 
memory program is likely to be much 
faster. 

 On the other hand if there is considerable 
communication, a shared memory program 
will probably be faster.
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Concluding Remarks (3)

 In choosing between OpenMP and 
Pthreads, if there’s an existing serial 
program and it can be parallelized by the 
insertion of OpenMP directives, then 
OpenMP is probably the clear choice.

 However, if complex thread 
synchronization is needed then Pthreads 
will be easier to use.
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