
1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 6

Parallel Program Development

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 Solving non-trivial problems.
 The n-body problem.
 The traveling salesman problem.
 Applying Foster’s methodology.
 Starting from scratch on algorithms that have no

serial analog.

C
hap ter S

ub title

3

TWO N-BODY SOLVERS

Copyright © 2010, Elsevier Inc. All rights Reserved

4

The n-body problem

 Find the positions and velocities of a
collection of interacting particles over a
period of time.

 An n-body solver is a program that finds
the solution to an n-body problem by
simulating the behavior of the particles.

Copyright © 2010, Elsevier Inc. All rights Reserved

5Copyright © 2010, Elsevier Inc. All rights Reserved

mass

Positiontime 0

Velocitytime 0

N-body solver
Positiontime x

Velocitytime x

6

Simulating motion of planets

 Determine the positions and velocities:
 Newton’s second law of motion.
 Newton’s law of universal gravitation.

Copyright © 2010, Elsevier Inc. All rights Reserved

7Copyright © 2010, Elsevier Inc. All rights Reserved

8Copyright © 2010, Elsevier Inc. All rights Reserved

9

Serial pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

10

Computation of the forces

Copyright © 2010, Elsevier Inc. All rights Reserved

11

A Reduced Algorithm for Computing
N-Body Forces

Copyright © 2010, Elsevier Inc. All rights Reserved

12

The individual forces

Copyright © 2010, Elsevier Inc. All rights Reserved

13

Using the Tangent Line to Approximate a Function

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Euler’s Method

Copyright © 2010, Elsevier Inc. All rights Reserved

15

Parallelizing the N-Body Solvers

 Apply Foster’s methodology.
 Initially, we want a lot of tasks.
 Start by making our tasks the

computations of the positions, the
velocities, and the total forces at each
timestep.

Copyright © 2010, Elsevier Inc. All rights Reserved

16

Communications Among Tasks in
the Basic N-Body Solver

Copyright © 2010, Elsevier Inc. All rights Reserved

17

Communications Among Agglomerated
Tasks in the Basic N-Body Solver

Copyright © 2010, Elsevier Inc. All rights Reserved

18

Communications Among Agglomerated
Tasks in the Reduced N-Body Solver

Copyright © 2010, Elsevier Inc. All rights Reserved

q < rq < r

19

Computing the total force on particle q in
the reduced algorithm

Copyright © 2010, Elsevier Inc. All rights Reserved

20

Serial pseudo-code

Copyright © 2010, Elsevier Inc. All rights Reserved

iterating over particles

In principle, parallelizing the two inner

for loops will map tasks/particles to cores.

21

First attempt

Copyright © 2010, Elsevier Inc. All rights Reserved

Let’s check for race conditions caused
by loop-carried dependences.

22

First loop

Copyright © 2010, Elsevier Inc. All rights Reserved

23

Second loop

Copyright © 2010, Elsevier Inc. All rights Reserved

24

Repeated forking and joining of threads

Copyright © 2010, Elsevier Inc. All rights Reserved

The same team of threads will be used

in both loops and for every iteration

of the outer loop.

But every thread will print all the

positions and velocities.

25

Adding the single directive

Copyright © 2010, Elsevier Inc. All rights Reserved

26

Parallelizing the Reduced Solver Using OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

27

Problems

Copyright © 2010, Elsevier Inc. All rights Reserved

Updates to forces[3] create a race condition.

In fact, this is the case in general.

Updates to the elements of the forces

array introduce race conditions into the code.

28

First solution attempt

Copyright © 2010, Elsevier Inc. All rights Reserved

before all the updates to forces

Access to the forces array
will be effectively serialized!!!

29

Second solution attempt

Copyright © 2010, Elsevier Inc. All rights Reserved

Use one lock for each particle.

30

First Phase Computations for Reduced
Algorithm with Block Partition

Copyright © 2010, Elsevier Inc. All rights Reserved

31

First Phase Computations for Reduced
Algorithm with Cyclic Partition

Copyright © 2010, Elsevier Inc. All rights Reserved

32

Revised algorithm – phase I

Copyright © 2010, Elsevier Inc. All rights Reserved

33

Revised algorithm – phase II

Copyright © 2010, Elsevier Inc. All rights Reserved

34

Parallelizing the Solvers Using Pthreads

 By default local variables in Pthreads are private.
So all shared variables are global in the
Pthreads version.

 The principle data structures in the Pthreads
version are identical to those in the OpenMP
version: vectors are two-dimensional arrays of
doubles, and the mass, position, and velocity of
a single particle are stored in a struct.

 The forces are stored in an array of vectors.

Copyright © 2010, Elsevier Inc. All rights Reserved

35

Parallelizing the Solvers Using Pthreads

 Startup for Pthreads is basically the same as the
startup for OpenMP: the main thread gets the
command line arguments, and allocates and
initializes the principle data structures.

 The main difference between the Pthreads and
the OpenMP implementations is in the details of
parallelizing the inner loops.

 Since Pthreads has nothing analogous to a
parallel for directive, we must explicitly determine
which values of the loop variables correspond to
each thread’s calculations.

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Parallelizing the Solvers Using Pthreads

 Another difference between the Pthreads and the
OpenMP versions has to do with barriers.

 At the end of a parallel for OpenMP has an implied
barrier.

 We need to add explicit barriers after the inner
loops when a race condition can arise.

 The Pthreads standard includes a barrier.
 However, some systems don’t implement it.
 If a barrier isn't defined we must define a function

that uses a Pthreads condition variable to
implement a barrier.

Copyright © 2010, Elsevier Inc. All rights Reserved

37

Parallelizing the Basic Solver Using MPI

 Choices with respect to the data
structures:
 Each process stores the entire global array of

particle masses.
 Each process only uses a single n-element

array for the positions.
 Each process uses a pointer loc_pos that refers

to the start of its block of pos.
 So on process 0 local_pos = pos; on process

1 local_pos = pos + loc_n; etc.

Copyright © 2010, Elsevier Inc. All rights Reserved

38

Pseudo-code for the MPI version of the
basic n-body solver

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Pseudo-code for output

Copyright © 2010, Elsevier Inc. All rights Reserved

40

Communication In A Possible MPI
Implementation of the N-Body Solver
(for a reduced solver)

Copyright © 2010, Elsevier Inc. All rights Reserved

41

A Ring of Processes

Copyright © 2010, Elsevier Inc. All rights Reserved

42

Ring Pass of Positions

Copyright © 2010, Elsevier Inc. All rights Reserved

43

Computation of Forces in Ring Pass (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

44

Computation of Forces in Ring Pass (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

45

Pseudo-code for the MPI implementation of the
reduced n-body solver

Copyright © 2010, Elsevier Inc. All rights Reserved

46

Loops iterating through global particle indexes

Copyright © 2010, Elsevier Inc. All rights Reserved

47

Performance of the MPI n-body solvers

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

48

Run-Times for OpenMP and MPI N-Body
Solvers

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

49

TREE SEARCH

Copyright © 2010, Elsevier Inc. All rights Reserved

50

Tree search problem (TSP)

 An NP-complete problem.

 No known solution to TSP that is better in
all cases than exhaustive search.

 Ex., the travelling salesperson problem,
finding a minimum cost tour.

Copyright © 2010, Elsevier Inc. All rights Reserved

51

A Four-City TSP

Copyright © 2010, Elsevier Inc. All rights Reserved

52

Search Tree for Four-City TSP

Copyright © 2010, Elsevier Inc. All rights Reserved

53

Pseudo-code for a recursive solution to TSP
using depth-first search

Copyright © 2010, Elsevier Inc. All rights Reserved

54

Pseudo-code for an implementation of a depth-first
solution to TSP without recursion

Copyright © 2010, Elsevier Inc. All rights Reserved

55

Pseudo-code for a second solution to TSP that
doesn’t use recursion

Copyright © 2010, Elsevier Inc. All rights Reserved

56

Using pre-processor macros

Copyright © 2010, Elsevier Inc. All rights Reserved

57

Run-Times of the Three Serial
Implementations of Tree Search

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

The digraph contains 15 cities.

All three versions visited
approximately 95,000,000 tree
nodes.

58

Making sure we have the “best tour” (1)

 When a process finishes a tour, it needs to
check if it has a better solution than
recorded so far.

 The global Best_tour function only reads
the global best cost, so we don’t need to tie
it up by locking it. There’s no contention
with other readers.

 If the process does not have a better
solution, then it does not attempt an update.

Copyright © 2010, Elsevier Inc. All rights Reserved

59

Making sure we have the “best tour” (2)

 If another thread is updating while we
read, we may see the old value or the new
value.

 The new value is preferable, but to ensure
this would be more costly than it is worth.

Copyright © 2010, Elsevier Inc. All rights Reserved

60

Making sure we have the “best tour” (3)

 In the case where a thread tests and decides it
has a better global solution, we need to ensure
two things:
1) That the process locks the value with a mutex,

preventing a race condition.

2) In the possible event that the first check was against
an old value while another process was updating, we
do not put a worse value than the new one that was
being written.

 We handle this by locking, then testing again.

Copyright © 2010, Elsevier Inc. All rights Reserved

61

First scenario

Copyright © 2010, Elsevier Inc. All rights Reserved

global
tour value

process x process y

local
tour value

local
tour value30

2722

1. test3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. update

9. unlock

2722

62

Second scenario

Copyright © 2010, Elsevier Inc. All rights Reserved

global
tour value

process x process y

local
tour value

local
tour value30

2729

1. test3. test

2. lock

4. update

5. unlock

6. lock

7. test again

8. unlock

27

63

Pseudo-code for a Pthreads implementation of a
statically parallelized solution to TSP

Copyright © 2010, Elsevier Inc. All rights Reserved

64

Dynamic Parallelization of Tree Search
Using Pthreads

 Termination issues.
 Code executed by a thread before it splits:

 It checks that it has at least two tours in its
stack.

 It checks that there are threads waiting.
 It checks whether the new_stack variable is

NULL.

Copyright © 2010, Elsevier Inc. All rights Reserved

65

Pseudo-Code for Pthreads Terminated Function (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

66

Pseudo-Code for Pthreads Terminated Function (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

67

Grouping the termination variables

Copyright © 2010, Elsevier Inc. All rights Reserved

68

Run-times of Pthreads tree search programs

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

numbers of times

stacks were split

15-city problems

69

Parallelizing the Tree Search Programs
Using OpenMP

 Same basic issues implementing the static
and dynamic parallel tree search programs
as Pthreads.

 A few small changes can be noted.

Copyright © 2010, Elsevier Inc. All rights Reserved

Pthreads

OpenM
P

70

OpenMP emulated condition wait

Copyright © 2010, Elsevier Inc. All rights Reserved

71

Performance of OpenMP and Pthreads
implementations of tree search

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

72

IMPLEMENTATION OF TREE
SEARCH USING MPI AND
STATIC PARTITIONING

Copyright © 2010, Elsevier Inc. All rights Reserved

73

Sending a different number of objects to each
process in the communicator

Copyright © 2010, Elsevier Inc. All rights Reserved

74

Gathering a different number of objects from
each process in the communicator

Copyright © 2010, Elsevier Inc. All rights Reserved

75

Checking to see if a message is available

Copyright © 2010, Elsevier Inc. All rights Reserved

76Copyright © 2010, Elsevier Inc. All rights Reserved

Terminated Function for
a Dynamically
Partitioned TSP solver
that Uses MPI.

77

Modes and Buffered Sends

 MPI provides four modes for sends.
 Standard
 Synchronous
 Ready
 Buffered

Copyright © 2010, Elsevier Inc. All rights Reserved

78

Printing the best tour

Copyright © 2010, Elsevier Inc. All rights Reserved

79

Terminated Function for a Dynamically
Partitioned TSP solver with MPI (1)

Copyright © 2010, Elsevier Inc. All rights Reserved

80

Terminated Function for a Dynamically
Partitioned TSP solver with MPI (2)

Copyright © 2010, Elsevier Inc. All rights Reserved

81

Packing data into a buffer of contiguous
memory

Copyright © 2010, Elsevier Inc. All rights Reserved

82

Unpacking data from a buffer of contiguous
memory

Copyright © 2010, Elsevier Inc. All rights Reserved

83Copyright © 2010, Elsevier Inc. All rights Reserved

84

Performance of MPI and Pthreads
implementations of tree search

Copyright © 2010, Elsevier Inc. All rights Reserved

(in seconds)

85

Concluding Remarks (1)

 In developing the reduced MPI solution to
the n-body problem, the “ring pass”
algorithm proved to be much easier to
implement and is probably more scalable.

 In a distributed memory environment in
which processes send each other work,
determining when to terminate is a
nontrivial problem.

Copyright © 2010, Elsevier Inc. All rights Reserved

86

Concluding Remarks (2)

 When deciding which API to use, we
should consider whether to use shared- or
distributed-memory.

 We should look at the memory
requirements of the application and the
amount of communication among the
processes/threads.

Copyright © 2010, Elsevier Inc. All rights Reserved

87

Concluding Remarks (3)

 If the memory requirements are great or
the distributed memory version can work
mainly with cache, then a distributed
memory program is likely to be much
faster.

 On the other hand if there is considerable
communication, a shared memory program
will probably be faster.

Copyright © 2010, Elsevier Inc. All rights Reserved

88

Concluding Remarks (3)

 In choosing between OpenMP and
Pthreads, if there’s an existing serial
program and it can be parallelized by the
insertion of OpenMP directives, then
OpenMP is probably the clear choice.

 However, if complex thread
synchronization is needed then Pthreads
will be easier to use.

Copyright © 2010, Elsevier Inc. All rights Reserved

	Slide 1
	Roadmap
	TWO N-BODY SOLVERS
	The n-body problem
	Slide 5
	Simulating motion of planets
	Slide 7
	Slide 8
	Serial pseudo-code
	Computation of the forces
	A Reduced Algorithm for Computing N-Body Forces
	The individual forces
	Using the Tangent Line to Approximate a Function
	Euler’s Method
	Parallelizing the N-Body Solvers
	Communications Among Tasks in the Basic N-Body Solver
	Communications Among Agglomerated Tasks in the Basic N-Body Solver
	Communications Among Agglomerated Tasks in the Reduced N-Body Solver
	Computing the total force on particle q in the reduced algorithm
	Slide 20
	First attempt
	First loop
	Second loop
	Repeated forking and joining of threads
	Adding the single directive
	Parallelizing the Reduced Solver Using OpenMP
	Problems
	First solution attempt
	Second solution attempt
	First Phase Computations for Reduced Algorithm with Block Partition
	First Phase Computations for Reduced Algorithm with Cyclic Partition
	Revised algorithm – phase I
	Revised algorithm – phase II
	Parallelizing the Solvers Using Pthreads
	Slide 35
	Slide 36
	Parallelizing the Basic Solver Using MPI
	Pseudo-code for the MPI version of the basic n-body solver
	Pseudo-code for output
	Communication In A Possible MPI Implementation of the N-Body Solver (for a reduced solver)
	A Ring of Processes
	Ring Pass of Positions
	Computation of Forces in Ring Pass (1)
	Computation of Forces in Ring Pass (2)
	Pseudo-code for the MPI implementation of the reduced n-body solver
	Loops iterating through global particle indexes
	Performance of the MPI n-body solvers
	Run-Times for OpenMP and MPI N-Body Solvers
	TREE SEARCH
	Tree search problem (TSP)
	A Four-City TSP
	Search Tree for Four-City TSP
	Pseudo-code for a recursive solution to TSP using depth-first search
	Pseudo-code for an implementation of a depth-first solution to TSP without recursion
	Pseudo-code for a second solution to TSP that doesn’t use recursion
	Using pre-processor macros
	Run-Times of the Three Serial Implementations of Tree Search
	Making sure we have the “best tour” (1)
	Making sure we have the “best tour” (2)
	Making sure we have the “best tour” (3)
	First scenario
	Second scenario
	Pseudo-code for a Pthreads implementation of a statically parallelized solution to TSP
	Dynamic Parallelization of Tree Search Using Pthreads
	Pseudo-Code for Pthreads Terminated Function (1)
	Pseudo-Code for Pthreads Terminated Function (2)
	Grouping the termination variables
	Run-times of Pthreads tree search programs
	Parallelizing the Tree Search Programs Using OpenMP
	OpenMP emulated condition wait
	Performance of OpenMP and Pthreads implementations of tree search
	IMPLEMENTATION OF TREE SEARCH USING MPI AND STATIC PARTITIONING
	Sending a different number of objects to each process in the communicator
	Gathering a different number of objects from each process in the communicator
	Checking to see if a message is available
	Slide 76
	Modes and Buffered Sends
	Printing the best tour
	Terminated Function for a Dynamically Partitioned TSP solver with MPI (1)
	Terminated Function for a Dynamically Partitioned TSP solver with MPI (2)
	Packing data into a buffer of contiguous memory
	Unpacking data from a buffer of contiguous memory
	Slide 83
	Performance of MPI and Pthreads implementations of tree search
	Concluding Remarks (1)
	Concluding Remarks (2)
	Concluding Remarks (3)
	Slide 88

