An Introduction to Parallel Programming

PARALLEL
PROGRAMMING

Peter Pacheco

| Chapter 6

Parallel Program Development

Roadmap

= Solving non-trivial problems.

= The n-body problem.

= The traveling salesman problem.
= Applying Foster’s methodology.

= Starting from scratch on algorithms that have no
serial analog.

apgng Jeydeyn #

The n-body problem

" Find the positions and velocities of a
collection of interacting particles over a
period of time.

" An n-body solver is a program that finds
the solution to an n-body problem by
simulating the behavior of the particles.

Position,, . ,

> Position,, .,
mass -bOdy solve <

* Velocity,,. ,

Velocity, .. o

Simulating motion of planets

" Determine the positions and velocities:
= Newton’s second law of motion.
= Newton’s law of universal gravitation.

(6.2)
n—1 n—1
Fal!) _kzofq’% v qkzb ‘Sq(f)_sk(f)‘% [SQ(I) Sk(t)]

Serial pseudo-code

Get 1input data;:
for cach timestep {
if (timestep output) Print positions and velocities of particles;
for ecach particle g
Compute total force on q;:
for each particle g
Compute position and velocity of q:

}

Print positions and velocities of particles;:

VI

MORGAN KAUFMANN

Computation of the forces

for cach particle g {
for each particle k != q {

¥x_diff = pos|g]lX] — pos|k][X]:
y_diff = pos[qg][Y] — pos[k][Y];
dist = sqrt(x_diffsx_diff + y_diff*y_diff);
dist _cubed = distxdistxdist;:
forces|qg]|X] —= Gxmasses|qg]*masses|k]/dist_cubed % x_diff;
forces|qg]|Y] —= Gx*masses|g]|*masses|k]/dist_cubed x y_diff;

A Reduced Algorithm for Computing
N-Body Forces

for each particle g
forces|[g] = 0;
for cach particle g |{
for each particle k > q |
x_diff = pos|[qg][X] — pos|k][X]:
y_diff = pos[q][Y] — pos[k][Y];
dist = sgrt(x_diffsx_diff + y_diff*xy_diff);
dist_cubed = distxdist*dist;
force_qgk|X] Gxmasses|g]*masses|k]/dist_cubed * x_diff;
force_qgk|Y] Gxmasses|g]+*masses|k]/dist_cubed % y_diff

forces|[qg]|X] += force_qgk|X]:
forces|[qg][Y] += force_qgk[Y]:
forces|k][X] —= force_qgk[X];
forces|k]|Y] —= force_qgk|Y]:

The individual forces

0 fo foo SRR (P
—fo; 0 fio -t
—fo —f 0 R G

—fto,-1 —ti,o1 1 o0 O

Using the Tangent Line to Approximate a Function

YA

y=9(to)+g’(tp) (t—1tp)

g(to)+g'(tp) At -
g(to+At) 1

g(fo)

~

s Method

J

Euler

T to+ 2At T

to

AN

fo+3At

fo+ At

Parallelizing the N-Body Solvers

= Apply Foster's methodology.
= |nitially, we want a lot of tasks.

= Start by making our tasks the
computations of the positions, the
velocities, and the total forces at each
timestep.

L_Communications Among Tasks in
the Basic N-Body Solver

Sq(t) Vg(1) Sr(t)

Ve(t)
\ \ _ \/ Vv
Sq(t+At) Vg(t+Al) S (t+At) v, (t+ At)

T e

Communications Among Agglomerated

Tasks in the Basic N-Body Solver

Sf'! vf” Ff'

Hn-:: _1&:!

[+ Al

Communications Among Agglomerated

Tasks in the Reduced N-Body Solver

Sy(f)

O.~=

fﬁr(t)

V!’
F!’
S, (t+Al)

fr(t+Al)

Computing the total force on particle q in
the reduced algorithm

for each particle k > g {
x_diff = pos[q][X] — pos[k][X];
y_diff = pos[q][Y] — pos[k][Y];
dist = sqrt(x_diff*x_diff + y_diff*xy_diff):
dist _cubed = dist*xdist#*dist:
force_qgk|[X] = Gxmasses|[qg|*masses|[k]/dist_cubed * x_diff:
force_qgk|Y] = G*masses|qg|+*masses|[k]|/dist_cubed * y_diff:

forces[qg][X] += force_gk[X]:
forces|[qg][Y] += force_qgk[Y]:
forces|k][X] —= force_qgk[X]:
force_qgk|[Y]:

forces[k][Y] —

Serial pseudo-code

for each timestep {
if (timestep output) Print positions and velocities of particles;
for each particle g
Compute total force on q:
for each particle g
Compute position and velocity of q:

_

<

iterating over particles

In principle, parallelizing the two inner
for loops will map tasks/particles to cores.

First attempt

for cach timestep {
if (timestep output) Print positions and velocities of particles;
pragma omp parallel for
for cach particle g
Compute total force on d;:
pragma omp parallel for
for cach particle g
Compute position and velocity of q:

Let’'s check for race conditions caused
by loop-carried dependences.

First loop

pragma omp parallel for
for cach particle g {

forces|g]lX] = forces|[g][Y] = 0;

for cach particle k != g {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[q][Y] — pos[k][Y];
dist = sqgrt(x_diffsx_diff + y_diffsy_diff);
dist_cubed = dist*distxdist;:
forces[g][X] —= Gxmasses|[qg]*masses|k]/dist_cubed % x_diff;
forces|g]|Y] —= Gxmasses|qg|*masses|[k]|/dist_cubed % y_diff;

+=
+=
+=
+=

Second loop

pragma omp parallel for
for each particle gq {

pos|[q][X]
pos|[q][Y]
vel[q][X]
vell[q][Y]

delta_tsvel[qg][X]:
delta_ts*vel[qg][Y]:
delta_t /masses|qg]*forces|[qg]||X];
delta_t/masses[q]*forces[q][Y];

Repeated forking and joining of threads

The same team of threads will be used
in both loops and for every iteration

4/ of the outer loop.

pragma omp parallel
for ecach timestep |{

VI

MORGAN KAUFMANN

if (timestep output) Print positions and velocities of particles;

pragma omp for

for each particle g N
Compute total force on q:

pragma omp for

for each particle g
Compute position and velocity of q;

But every thread will print all the
positions and velocities.

Adding the single directive

pragma omp parallel
for ecach timestep {
if (timestep output) {
pragma omp single
Print positions and velocities of particles;
}

pragma omp for
for ecach particle g
Compute total force on q:
pragma omp for
for ecach particle g
Compute position and velocity of q:

Parallelizing the Reduced Solver Using OpenMP

pragma omp parallel
for each timestep |{
if (timestep output) {
pragma omp single
Print positions and velocities of particles;
}

pragma omp for
for cach particle g
forces|[qg] = 0.0;
pragma omp for
for cach particle g
Compute total force on q:
pragma omp for
for ecach particle g
Compute position and velocity of q;

Problems
¥ M

\z\/\

F3 = —fp3 — 13 —1x3

Updates to forces[3] create a race condition.

In fact, this is the case in general.

Updates to the elements of the forces
array introduce race conditions into the code.

#

|

First solution attempt

? before all the updates to forces

pragma omp critical

{

forces|
forces|
forces|
forces|

ql[X] += force_qgk|[X]
qllY] 4= force_qgk| Y]
k][X] —= force_qgk|[X]
k][Y] —= force_qgk]|Y]

Access to the forces array
will be effectively serialized!!!

Second solution attempt

omp_set_lock(locks[qg]):
forces|[qg]|X]|] 4= force_qgk|X]:
forces|[qg]|lY]|] 4= force_qgk|Y]:
omp_unset_lock(locks[qg]):

omp_set_lock(locks[k]):
forces|k]||[X] —= force_qgk|X]:
forces|k]|Y|] —= force_qgk|Y]:
omp_unset_lock(locks[k]):

Use one lock for each particle.

First Phase Computations for Reduced
Algorithm with Block Partition

Thread
Thread | Particle 0 1 2
0 0 fo; + oo + £z + g + fos 0 0
I —fo1 + 1t + 13+ 114 +155 0 0
I 2 —foo — 112 f3+fu+fs | O
3 —fo3 — 113 —f3+1f4 4135 | 0
2 - —fos — 14 —fry — 134 fa5
S —fos —fi5 —frs — 135 —f45

First Phase Computations for Reduced
Algorithm with Cyclic Partition

Thread
Thread | Particle 0 1 2
0 0 fo1 +foo +fo3 +fos +1os 0 0
I I —fo fio +fi3+f4+ 15 0
2 2 —fo2 —f fr3 + 1y + 15
0 3 —fo3 4134 + 135 —f3 —f3
I 4 —fo4 — 134 —f14 + 145 —f4
2 S —fos — 35 —f15 —fys —f)s

Revised algorithm — phase |

pragma omp for
for each particle q {

force_qgk[X] = force_agk[Y] = 0;

for each particle k > gq {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[qg][Y] — pos[k][Y]:
dist = sqgrt(x_diff=x_diff + y_diff*xy_diff):
dist cubed = distxdistsxdist;
force_qk[X] = G#masses|[g]+*masses|[k]/dist_cubed * x_diff:
force_qgk|[Y] = G#masses|[g]+*masses|[k]/dist_cubed * y_diff:

loc_forces|[my_rank][g][X] += force_qgk|X]:

loc_forces|[my_rank]

k][X] —= force_qgk]|X
loc_forces|my_rank][k][Y] —= force_qgk]|Y

¥

[|
loc_forces|my_rank][g][Y] += force_qgk]|Y]:

[|

[|

¥

Revised algorithm — phase I

pragma omp for
for (g = 0. g < n: g++) {
forces|[qg][X] = forces[qg]lY] = 0.

for (thread = 0; thread < thread_count; thread++) {
forces[qg][X] += loc_forces|[thread]|[qg][X]:
forces[qg][Y] += loc_forces|[thread]|[qg][Y]:

Parallelizing the Solvers Using Pthreads

= By default local variables in Pthreads are private.
So all shared variables are global in the
Pthreads version.

" The principle data structures in the Pthreads
version are identical to those in the OpenMP
version: vectors are two-dimensional arrays of
doubles, and the mass, position, and velocity of
a single particle are stored in a struct.

" The forces are stored in an array of vectors.

Parallelizing the Solvers Using Pthreads

= Startup for Pthreads is basically the same as the
startup for OpenMP: the main thread gets the
command line arguments, and allocates and
initializes the principle data structures.

" The main difference between the Pthreads and
the OpenMP implementations is in the details of
parallelizing the inner loops.

= Since Pthreads has nothing analogous to a
parallel for directive, we must explicitly determine
which values of the loop variables correspond to
each thread’s calculations.

Parallelizing the Solvers Using Pthreads

= Another difference between the Pthreads and the
OpenMP versions has to do with barriers.

= At the end of a parallel for OpenMP has an implied
barrier.

= \We need to add explicit barriers after the inner
loops when a race condition can arise.

® The Pthreads standard includes a barrier.

" However, some systems don’t implement it.

= |f a barrier isn't defined we must define a function
that uses a Pthreads condition variable to
Implement a barrier.

Parallelizing the Basic Solver Using MPI

= Choices with respect to the data
structures:

= Each process stores the entire global array of
particle masses.

= Each process only uses a single n-element
array for the positions.

= Each process uses a pointer loc_pos that refers
to the start of its block of pos.

= So on process 0 local _pos = pos; on process
1 local_pos = pos + loc_n; etc.

Pseudo-code for the MPI version of the
basic n-body solver

Get 1input data;
for each timestep {
if (timestep output)
Print positions and velocitles of particles;
for each local particle loc_q
Compute total force on loc_q:
for each local particle loc_q
Compute position and velocity of loc_q:;
Allgather local positions into global pos array;

i

Print positions and velocitles of particles;

Pseudo-code for output

Gather velocities onto process 0:
if (my_rank == 0) {
Print timestep:

for each particle
Print pos|[particle] and vel|particle]

Communication In A Possible MPI

Implementation of the N-Body Solver
(for a reduced solver)

Process 0 Process 1 Process 2
Particles 0, 1 b I 4 5
s a3 = >
S
Sn 6
Compute
forces
? A v
04,
% % %s, ek < 2s,
< 2 15 3¢, ,5
< - 5
=
Update ? '
velocities

A Ring of Processes

Ring Pass of Positions

Phase 1 Phase 2 Phase 3

@/ S1, S5 @ @{ S2: Se @ @/ S3, 57 @

\ \

Computation of Forces in Ring Pass (1)

Time Variable Process 0 Process 1

Start loc_pos || Sp.$2 S1.S3

loc_forces || 0.0 0,0
tmp_pos || Sp.S2 $1.83

tmp_forces || 0.0 0,0

After loc_pos || Sp.$2 S1.S3

Comp of || loc_forces || fpn,0 fi5.0

Forces tmp_pos || $p.S2 S1.S3
tmp_forces || 0,—fpn 0, —1f3

After loc_pos || $p.S2 S1.S3

First loc_forces || f.0 fi3.0

Comm tmp_pos || $1.83 SO, S?
tmp_forces || 0.—f3 0, —fo2

After loc_pos || $p.S2 S1.S3

Comp of || loc_forces || o1 + fo2 + fo3,123 f1o+13.0

Forces tmp_pos || $1.83 SO, S
tmp_forces || —fo1, —fp3 — 13 — 13 0, —fp — 112

Computation of Forces in Ring Pass (2)

Time Variable Process 0 Process 1
After loc_pos || Sg.82 S1.S3
Second loc_forces || fo1 +foo +fo3, 123 fio +113,0
Comm tmp_pos || Sp,$2 S1.S3
tmp_forces || 0, —fp —fi2 —fo1. —fo3 —f13 — 13
After loc_pos || Sg.82 S1.S3
COITIP of || loc_forces | fo; + g + o3, —fop —F10 +13 | —fpy + 10 +113, —fp3 — F13 — 153
Forces tmp_pos || Sp,S2 S1.S3
tmp_forces || 0, —fpr —f12 —fo1. —fo3 — 13 — 153

Pseudo-code for the MPI implementation of the
reduced n-body solver

source = (my_rank + 1) % comm_sz;

dest = (my_rank — | + comm_sz) % comm_szZ;
Copy loc_pos into tmp_pos:

loc_forces = tmp_forces = 0;

Compute forces due to interactions among local particles;
for (phase = 1; phase < comm_sz; phase++) {
Send current tmp_pos and tmp_forces to dest:
Receive new tmp_pos and tmp_forces from source;
/+ Owner of the positions and forces we're receiving =/
owner = (my_rank + phase) % comm_sz;
Compute forces due to interactions among my particles
and owner'’s particles;

}

Send current tmp_pos and tmp_forces to dest;
Receive new tmp_pos and tmp_forces from source;

Loops iterating through global particle indexes

for (loc_partl = 0, glb_partl = my_rank;
loc_partl < loc_n—1;
loc_partl++, glb_partl += comm_sz)
for (glb_part?2 = First_index(glb_partl, my_rank, owner, comm_sz),

loc_part2 = Global_to_local(glb_part2, owner, loc_n);
loc_part2 < loc_n;

loc_part2++, glb_part2 += comm_sz)

Compute_force(loc_pos|[loc_partl]. masses|[glb_partl],
tmp_pos|loc_part2], masses|[glb_part2],
loc_forces|loc_partl]., tmp_forces|[loc_part2]):

VI

MORGAN KAUFMANN

Performance of the MPI n-body solvers

Processes || Basic | Reduced
| 17.30 8.68
2 8.65 4.45
4 4.35 2.30
8 2.20 1.26
16 1.13 0.78

(in seconds)

Run-Times for OpenMP and MPI N-Body

Solvers
Processes/ OpenMP MPI
Threads Basic | Reduced || Basic | Reduced
1 15.13 8.77 17.30 8.68
2 7.62 4.42 8.65 4.45
4 3.8 2.26 4.35 2.30

(in seconds)

L
O
14
<
LU
N
LLI
LLl
14
-

VI

MORGAN KAUFMANN

Tree search problem (TSP)

= An NP-complete problem.

= No known solution to TSP that is better in
all cases than exhaustive search.

= Ex., the travelling salesperson problem,
finding a minimum cost tour.

A Four-City TSP

Search Tree for Four-City TSP

0,0

0—=>1, 1 0=2, 3 0—=>3,8

0->1-=2,3 0->1-3,7 021,21 0-2-3,13 0-=3->1,12 0—=3->2,

X 20 x
0-1-2-3-=0, 20 0=2—-1-3-=0, 0=3=>1-=2-=0,
34 x 15
0>1>3->2->0, 0>2->3->1->0, 0>3—=2->1-=0,

20 22 43 X

Pseudo-code for a recursive solution to TSP

using depth-first search

void Depth_first_search(tour_t tour) {
city_t city:

if (City_count(tour) == n) {
if (Best _tour(tour))
Update_best_tour(tour);
} else |
for cach neighboring city
if (Feasible(tour, city)) {
Add_city(tour, city);:
Depth_first_search(tour);:
Remove_last_city(tour);:

}
|

} /% Depth_first_search =/

Pseudo-code for an implementation of a depth-first

solution to TSP without recursion

for (city = n—1; city >= 1|; city——)
Push(stack. city):
while (!Empty(stack)) {
city = Pop(stack):
if (city == NO_CITY) // End of child list, back up
Remove_last_city(curr_tour);

else |
Add_city(curr_tour, citv);
if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour))
Update_best_tour(curr_tour);

Remove_last_city(curr_tour);

} else |

Push(stack. NO _CITY);:

for (nbr = n—1; nbr >= 1; nbr——)
if (Feasible(curr_tour. nbr))

Push(stack, nbr);

!
} /= if Feasible =/
+ /+ while !Empty =/

Pseudo-code for a second solution to TSP that
doesn’t use recursion

Push_copv(stack, tour):; // Tour that visits only the hometown
while (!Empty(stack)) {

curr_tour = Pop(stack):

if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour))
Update_best_tour(curr_tour);
| else |
for (nbr = n—1; nbr >= 1; nbr——)
if (Feasible(curr_tour. nbr)) {
Add_city(curr_tour, nbr);:
Push_copy(stack, curr_tour);
Remove_last_city(curr_tour);

}

|

Free_tour(curr_tour):

Using pre-processor macros

/¥ Find the ith city on the partial tour =*/
int Tour_city(tour_t tour, int i) {

return tour—>cities|1];
} /% Tour_city =/

=\

/¥ Find the ith city on the partial tour =*/
#define Tour_city(tour, i) (tour—>cities|[i])

Run-Times of the Three Serial
Implementations of Tree Search

Recursive | First Iterative | Second Iterative
30.5 29.2 32.9

(in seconds)

The digraph contains 15 cities.

All three versions visited

approximately 95,000,000 tree
nodes.

Making sure we have the “best tour” (1)

=" \WWhen a process finishes a tour, it needs to
check if it has a better solution than
recorded so far.

" The global Best_ tour function only reads
the global best cost, so we don’t need to tie
it up by locking it. There's no contention
with other readers.

" |f the process does not have a better
solution, then it does not attempt an update.

Making sure we have the “best tour” (2)

= |f another thread is updating while we
read, we may see the old value or the new
value.

® The new value is preferable, but to ensure
this would be more costly than it is worth.

Making sure we have the “best tour” (3)

" |n the case where a thread tests and decides it
has a better global solution, we need to ensure
two things:

1) That the process locks the value with a mutex,
preventing a race condition.

2) In the possible event that the first check was against
an old value while another process was updating, we
do not put a worse value than the new one that was
being written.

= \We handle this by locking, then testing again.

Fir nari

process X global processy
. tour value
local i i local
tour value/,7 3 <\t0ur value
22 27
3. test 1. test
6. lock 2 lock
/. test again 4. update
8. update 5. unlock

9. unlock

process X global processy
. tour value
local i i local
tour value/,7 3@ <\t0ur value
29 27
3. test 1. test
6. lock 2 lock
/. test again 4. update

8. unlock 5. unlock

Pseudo-code for a Pthreads implementation of a

—.statically parallelized solution to TSP

Partition_tree(my_rank, my_stack);

while (!Empty(my_stack)) |

curr_tour = Pop(my_stack);
if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour)) Update_best_tour(curr_tour);
} else {

for (city = n—1; city >= 1; city——)
if (Feasible(curr_tour, city)) {
Add_city(curr_tour, city);
Push_copy(my_stack, curr_tour);
Remove_last_city(curr_tour)

}

}

Free tour(curr_tour);

Dynamic Parallelization of Tree Search
Using Pthreads

® Termination issues.

= Code executed by a thread before it splits:

= |t checks that it has at least two tours In its
stack.

" |t checks that there are threads waliting.

= |t checks whether the new_stack variable is
NULL.

Pseudo-Code for Pthreads Terminated Function (1)

-

if (my_stack_size >= 2 && threads_in_cond_wailt > 0 &&

new_stack == NULL) {
lock term_mutex;
if (threads_in_cond_wait > 0 && new_stack == NULL) {

Split my_stack creating new_stack;
pthread_cond_signal(&term_cond_var);
}
unlock term_mutex;
return 0; /% Terminated = False; don’t quit =/
b else if (!Empty(my_stack)) { /+« Stack not empty, keep working +/
return 0; /% Terminated = false; don’t quit */
I else { /+ My stack is empty =/
lock term_mutex;
if (threads_in_cond_wait == thread_count —1) { /+ Last thread %/
/% running */

threads_1in_cond _walt ++;
pthread_cond_broadcast(&term_cond_var);
unlock term_mutex:

return 1: /« Terminated = true; quit */

Pseudo-Code for Pthreads Terminated Function (2)

b else { /+ Other threads still working, wait for work x/
threads _in_cond wailt ++;
while (pthread_cond_wait(&term_cond_var, &term_mutex) != 0);
/+ We've been awakened =+/
if (threads_in_cond_wait < thread_count) { /+ We got work %/
my_stack = new_stack;
new_stack = NULL;
threads_in_cond _wait ——;
unlock term_mutex;
return 0; /% Terminated = false */
} else { /x All threads done */
unlock term_mutex;
return 1; /+ Terminated = true; quit */

|

b /x else wait for work =/
} /+ else my_stack is empty */

Grouping the termination variables

typedef struct {
my_stack_t new_stack;
int threads _in _cond wait:
pthread_cond_t term_cond_var;:
pthread_mutex_t term_mutex:

} term_struct;

typedef term_structx term_t:

term_t term: // global variable

Run-times of Pthreads tree search programs

15-city problems

First Problem Second Problem
Threads || Serial | Static | Dynamic Serial | Static | Dynamic
I 329 | 327|347 (0) 26.0 | 258|275 (0)
2 279 | 28.9 (7) 258 1 19.2 (6)
4 25.7 1259 47) 258 | 9.3 (49)
8 23.8 | 224 (180) 240 | 5.7 (256)

(in seconds) V\ /7

numbers of times
stacks were split

Parallelizing the Tree Search Programs
Using OpenMP

= Same basic issues implementing the static
and dynamic parallel tree search programs
as Pthreads.

= A few small changes can be noted.

666
Q%«a if (my_rank == whatever)

N .

,O@/)
ragma omp single
prag p g Lo,

OpenMP emulated condition wait

[+ Global vars =/
int awakened thread = —1;
work _remains = 1; /% true =/

omp_unset_lock(&term_lock):
while (awakened_thread != my_rank && work_remains):
omp_set_lock(&term_lock):

Performance of OpenMP and Pthreads

implementations of tree search

First Problem

Second Problem

Static Dynamic Static Dynamic
Th || OMP | Pth OMP Pth OMP | Pth OMP Pth
1 32.5 | 32.7 || 33.7 (0) 347 (0) 25.6 | 25.8 || 26.6 (0) 27.5 (0)
2 27.7 1 27.9 | 28.0 (6) 28.9 (7) 256 | 25.8 || 18.8 (9) 19.2 (6)
4 254 25.7 | 33.1 (75) | 259 (47) 256 | 258 || 9.8 (52) 9.3 (49)
8 28.0 | 23.8 || 19.2 (134) | 224 (180) || 23.8 240 | 6.3 (163)| 5.7 (256)

(in seconds)

IMPLEMENTATION OF TREE
SEARCH USING MPI AND
STATIC PARTITIONING

Y,

W g
L ﬂ__ﬂ

s § |\
o

Sending a different number of objects to each
process Iin the communicator

int MPI Scatterv(

void * sendbuf /x in =/,
int: sendcounts [in =/,
int displacements /% in %/,
MPI_Datatype sendtype /[in %/,
void * recvbuf /= out */,
int recvcount /= in =/,
MPI_Datatype recvtype /[in x/,
int root [+ in =/,

MPI_Comm comm [+ in *x/)

Gathering a different number of objects from
each process in the communicator

int MPI_Gatherv(

void * sendbuf e In =¥,
int sendcount % In =f,
MPI_Datatype sendtype fd in *f,
void * recvbuf {4 ot =+
intx recvcounts f+ In &5
intx* displacements F¥ In &5
MPI_Datatype recvtype f% mn w{
int root T In %

MPI_Comm comm FE m wr)

Checking to see if a message is available

int MPI_Iprobe(

int source e In =¥,
int tag /x in x/,
MPI_Comm comm f& in =i,
intx msg_avail_p f4 ot =+ .

MPI_Status* status_p f+ out *LY);

if (My_avail tour_count{my_stack) >= 2) {
Fulfill request(my_stack);
return false; J/+ Still more work =/
} else { 7+ At most 1 available tour =/
Send_rejects(); /+ Tell everyone who’'s requested =/
/= work that I have none w/
if (!Empty_stack(my_stack)) {
return false; /= Srill more work =/
} else { 7+ Empty stack =/

if (comm_sz == 1) return true;
Out_of_work();
work_request_sent = false;
while (1) {
Clear_msgs(); /* Messages unrelared to work, termination =/
if (No_work_left()) {
return true; J+ No work lefr. Quit =/

} else if (!work_request_sent) {
Send_work_request (); /% Reguest work from someone =/
work_request_sent = true;
} else |
Check_for_work(&work_request_sent, &work_avail);
if (work_avail) {
Receive_work(my_stack):

; S false; Terminated Function for
! a Dynamically
} 7+ while «/ Partitioned TSP solver
} /= Empty stack =/
} /+ At most 1 available tour «/ that Uses MPI.

VI

MORGAN KAUFMANN

Modes and Buffered Sends

= MPI provides four modes for sends.
= Standard
= Synchronous
= Ready
= Buffered

Printing the best tour

struct {
int cost:
int rank:
} loc_data, global_data;

loc_data.cost = Tour_cost(loc_best_tour);
loc_data.rank my_rank;

MPTI_Allreduce(&loc_data, &global_data, 1, MPI_2INT, MPI_MINLOC, comm);

if (global_data.rank == 0) return: /« 0 already has the best tour =/
if (my_rank == 0)

Receive best tour from process global_data.rank;:
else if (my_rank == global_data.rank)

Send best tour to process 0;

VI

MORGAN KAUFMANN

Terminated Function for a Dynamically
Partitioned TSP solver with MPI (1)

if (My_avail_tour_count(my_stack) >= 2) {
Fulfill_request(my_stack):
return false: /= Srtill more work =/

} else { /+« At most | available tour */

Send_rejects (). /= Tell everyvone who's requested =/
/% work that [have none x/

if (!Empty_stack(my_stack)) {

return false: /% Still more work =/
} else { /« Empty stack =/

if (comm_sz == 1) return true;:

Out_of_work ():

work_request_sent = false;

while (1) {

Clear_msgs (). /% Messages unrelated to work, termination =/

if (No_work_left()) {
return true: /x No work left. Quit =/

Terminated Function for a Dynamically
Partitioned TSP solver with MPI (2)

} else if (!work_request_sent) {

Send_work_request (): /* Request work from someone =/
work_request_sent = true;
} else {

Check_for_work(&work_request_sent, &work_avail):
if (work_avail) {

Receive_work(my_stack):

return false:

h
}

b /% while #/
} /= Empty stack =/
b/« At most I available tour =/

Packing data into a buffer of contiguous

memory

int MPI_Pack(

void = data_to_be_packed / *
int to_be_packed_count / *
MPI_Datatype datatype / *
void = contig_buf /
int contig_buf_size /
intx position_p / *
MPI Comm comm / *

In

In

in

out

In
in/out
In

*/
x/

x/
x/
x/
x/")

Unpacking data from a buffer of contiguous

memory

int MPI_Unpack(
void *
int
intx
void *
int
MPI_Datatype
MPI Comm

contig_buf
contig_buf_size
position_p
unpacked_data
unpack_count
datatype

comm

/ %
/ %
/ *
/ *
/ *
/ *
/ %

I n

I n
in/out
out

VI

MORGAN KAUFMANN

Table 6.10 Termination Events that Result in an Error

Time

0

Process 0
Out of Work
Notify 1, 2
oow = 1
Send request to 1
opow = 1
opow = 1
oow = 1
oow = 1
oow = 1
oow = 1
Recv notify fr 2
oow = 2
Recv 1st notify fr 1
oow = 3
Quit

Process 1

Out of Work
MNotify O, 2

oow = 1

Send Request to 2
oow = 1

Recv notify fr O
oow = 2

oow = 2

Recv work fr 2
oow = 1
MNotify O

oow = 1

Recv request fr O
oow = 1

Send work to O
oow = 0
Recv notify fr 2
oow = 1

Recv request fr 2
oow = 1

Process 2

Working
oow = 0

Recv notify fr 1

oow =1

Recv request fr 1
oow = 1

Send work to 1
oow = 0

Recv notify fr O
oow =1
Working

oow =1

QOut of work
Notify O, 1

oow = 2

Send request to 1
oow = 2

oow = 2

oow = 2

Performance of MPI and Pthreads
implementations of tree search

First Problem Second Problem
Static Dynamic Static Dynamic
Th/Pr || Pth | MPI Pth MPI Pth | MPI Pth MPI

1 3581409 | 41.9 (0) | 56.5 (0) 274 1 31.5) 32.3 (0) |43.8 (0)

2 2991349 | 343 (9) | 556 (5) 274 1 315 220 (8) |37.4 (9)

4 27.2 1 31.7 || 30.2 (55) | 52.6 (85) | 27.4 | 31.5| 10.7 (44) | 21.8 (76)
8 35.7 45.5 (165) 35.7 16.5 (161)
16 20.1 10.5 (441) 17.8 0.1 (173)

(in seconds)

Concluding Remarks (1)

" In developing the reduced MPI solution to
the n-body problem, the “ring pass”
algorithm proved to be much easier to
iImplement and is probably more scalable.

" |In a distributed memory environment in
which processes send each other work,
determining when to terminate is a
nontrivial problem.

Concluding Remarks (2)

" \When deciding which API to use, we
should consider whether to use shared- or
distributed-memory.

= \We should look at the memory
requirements of the application and the
amount of communication among the
processes/threads.

Concluding Remarks (3)

= |[f the memory requirements are great or
the distributed memory version can work
mainly with cache, then a distributed
memory program is likely to be much
faster.

= On the other hand if there is considerable
communication, a shared memory program
will probably be faster.

Concluding Remarks (3)

" |[n choosing between OpenMP and
Pthreads, if there’'s an existing serial
program and it can be parallelized by the
insertion of OpenMP directives, then
OpenMP is probably the clear choice.

=" However, if complex thread
synchronization is needed then Pthreads

will be easier to use.

	Slide 1
	Roadmap
	TWO N-BODY SOLVERS
	The n-body problem
	Slide 5
	Simulating motion of planets
	Slide 7
	Slide 8
	Serial pseudo-code
	Computation of the forces
	A Reduced Algorithm for Computing N-Body Forces
	The individual forces
	Using the Tangent Line to Approximate a Function
	Euler’s Method
	Parallelizing the N-Body Solvers
	Communications Among Tasks in the Basic N-Body Solver
	Communications Among Agglomerated Tasks in the Basic N-Body Solver
	Communications Among Agglomerated Tasks in the Reduced N-Body Solver
	Computing the total force on particle q in the reduced algorithm
	Slide 20
	First attempt
	First loop
	Second loop
	Repeated forking and joining of threads
	Adding the single directive
	Parallelizing the Reduced Solver Using OpenMP
	Problems
	First solution attempt
	Second solution attempt
	First Phase Computations for Reduced Algorithm with Block Partition
	First Phase Computations for Reduced Algorithm with Cyclic Partition
	Revised algorithm – phase I
	Revised algorithm – phase II
	Parallelizing the Solvers Using Pthreads
	Slide 35
	Slide 36
	Parallelizing the Basic Solver Using MPI
	Pseudo-code for the MPI version of the basic n-body solver
	Pseudo-code for output
	Communication In A Possible MPI Implementation of the N-Body Solver (for a reduced solver)
	A Ring of Processes
	Ring Pass of Positions
	Computation of Forces in Ring Pass (1)
	Computation of Forces in Ring Pass (2)
	Pseudo-code for the MPI implementation of the reduced n-body solver
	Loops iterating through global particle indexes
	Performance of the MPI n-body solvers
	Run-Times for OpenMP and MPI N-Body Solvers
	TREE SEARCH
	Tree search problem (TSP)
	A Four-City TSP
	Search Tree for Four-City TSP
	Pseudo-code for a recursive solution to TSP using depth-first search
	Pseudo-code for an implementation of a depth-first solution to TSP without recursion
	Pseudo-code for a second solution to TSP that doesn’t use recursion
	Using pre-processor macros
	Run-Times of the Three Serial Implementations of Tree Search
	Making sure we have the “best tour” (1)
	Making sure we have the “best tour” (2)
	Making sure we have the “best tour” (3)
	First scenario
	Second scenario
	Pseudo-code for a Pthreads implementation of a statically parallelized solution to TSP
	Dynamic Parallelization of Tree Search Using Pthreads
	Pseudo-Code for Pthreads Terminated Function (1)
	Pseudo-Code for Pthreads Terminated Function (2)
	Grouping the termination variables
	Run-times of Pthreads tree search programs
	Parallelizing the Tree Search Programs Using OpenMP
	OpenMP emulated condition wait
	Performance of OpenMP and Pthreads implementations of tree search
	IMPLEMENTATION OF TREE SEARCH USING MPI AND STATIC PARTITIONING
	Sending a different number of objects to each process in the communicator
	Gathering a different number of objects from each process in the communicator
	Checking to see if a message is available
	Slide 76
	Modes and Buffered Sends
	Printing the best tour
	Terminated Function for a Dynamically Partitioned TSP solver with MPI (1)
	Terminated Function for a Dynamically Partitioned TSP solver with MPI (2)
	Packing data into a buffer of contiguous memory
	Unpacking data from a buffer of contiguous memory
	Slide 83
	Performance of MPI and Pthreads implementations of tree search
	Concluding Remarks (1)
	Concluding Remarks (2)
	Concluding Remarks (3)
	Slide 88

