An Introduction to Parallel Programming

PARALLEL
PROGRAMMING

Peter Pacheco

| Chapter 6

Parallel Program Development




Roadmap

= Solving non-trivial problems.

= The n-body problem.

= The traveling salesman problem.
= Applying Foster’s methodology.

= Starting from scratch on algorithms that have no
serial analog.
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The n-body problem

" Find the positions and velocities of a
collection of interacting particles over a
period of time.

" An n-body solver is a program that finds
the solution to an n-body problem by
simulating the behavior of the particles.
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Simulating motion of planets

" Determine the positions and velocities:
= Newton’s second law of motion.
= Newton’s law of universal gravitation.
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Serial pseudo-code

Get 1input data;:
for cach timestep {
if (timestep output) Print positions and velocities of particles;
for ecach particle g
Compute total force on q;:
for each particle g
Compute position and velocity of q:

}

Print positions and velocities of particles;:
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Computation of the forces

for cach particle g {
for each particle k != q {

¥x_diff = pos|g]lX] — pos|k][X]:
y_diff = pos[qg][Y] — pos[k][Y];
dist = sqrt(x_diffsx_diff + y_diff*y_diff);
dist _cubed = distxdistxdist;:
forces|qg]|X] —= Gxmasses|qg]*masses|k]/dist_cubed % x_diff;
forces|qg]|Y] —= Gx*masses|g]|*masses|k]/dist_cubed x y_diff;




A Reduced Algorithm for Computing
N-Body Forces

for each particle g
forces|[g] = 0;
for cach particle g |{
for each particle k > q |
x_diff = pos|[qg][X] — pos|k][X]:
y_diff = pos[q][Y] — pos[k][Y];
dist = sgrt(x_diffsx_diff + y_diff*xy_diff);
dist_cubed = distxdist*dist;
force_qgk|X] Gxmasses|g]*masses|k]/dist_cubed * x_diff;
force_qgk|Y] Gxmasses|g]+*masses|k]/dist_cubed % y_diff

forces|[qg]|X] += force_qgk|X]:
forces|[qg][Y] += force_qgk[Y]:
forces|k][X] —= force_qgk[X];
forces|k]|Y] —= force_qgk|Y]:




The individual forces
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Using the Tangent Line to Approximate a Function
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Parallelizing the N-Body Solvers

= Apply Foster's methodology.
= |nitially, we want a lot of tasks.

= Start by making our tasks the
computations of the positions, the
velocities, and the total forces at each
timestep.




L_Communications Among Tasks in
the Basic N-Body Solver
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Communications Among Agglomerated

Tasks in the Basic N-Body Solver
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Communications Among Agglomerated

Tasks in the Reduced N-Body Solver

Sy(f)

O.~=

fﬁr(t)

V!’
F!’
S, (t+Al)

fr(t+Al)




Computing the total force on particle q in
the reduced algorithm

for each particle k > g {
x_diff = pos[q][X] — pos[k][X];
y_diff = pos[q][Y] — pos[k][Y];
dist = sqrt(x_diff*x_diff + y_diff*xy_diff):
dist _cubed = dist*xdist#*dist:
force_qgk|[X] = Gxmasses|[qg|*masses|[k]/dist_cubed * x_diff:
force_qgk|Y] = G*masses|qg|+*masses|[k]|/dist_cubed * y_diff:

forces[qg][X] += force_gk[X]:
forces|[qg][Y] += force_qgk[Y]:
forces|k][X] —= force_qgk[X]:
force_qgk|[Y]:

forces[k][Y] —




Serial pseudo-code

for each timestep {
if (timestep output) Print positions and velocities of particles;
for each particle g
Compute total force on q:
for each particle g
Compute position and velocity of q:

_

<

iterating over particles

In principle, parallelizing the two inner
for loops will map tasks/particles to cores.




First attempt

for cach timestep {
if (timestep output) Print positions and velocities of particles;
# pragma omp parallel for
for cach particle g
Compute total force on d;:
# pragma omp parallel for
for cach particle g
Compute position and velocity of q:

Let’'s check for race conditions caused
by loop-carried dependences.




First loop

# pragma omp parallel for
for cach particle g {

forces|g]lX] = forces|[g][Y] = 0;

for cach particle k != g {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[q][Y] — pos[k][Y];
dist = sqgrt(x_diffsx_diff + y_diffsy_diff);
dist_cubed = dist*distxdist;:
forces[g][X] —= Gxmasses|[qg]*masses|k]/dist_cubed % x_diff;
forces|g]|Y] —= Gxmasses|qg|*masses|[k]|/dist_cubed % y_diff;




+=
+=
+=
+=

Second loop

# pragma omp parallel for
for each particle gq {

pos|[q][X]
pos|[q][Y]
vel[q][X]
vell[q][Y]

delta_tsvel[qg][X]:
delta_ts*vel[qg][Y]:
delta_t /masses|qg]*forces|[qg]||X];
delta_t/masses[q]*forces[q][Y];



Repeated forking and joining of threads

The same team of threads will be used
in both loops and for every iteration

4/ of the outer loop.

# pragma omp parallel
for ecach timestep |{

VI

MORGAN KAUFMANN

if (timestep output) Print positions and velocities of particles;

pragma omp for

for each particle g N
Compute total force on q:

pragma omp for

for each particle g
Compute position and velocity of q;

But every thread will print all the
positions and velocities.




Adding the single directive

# pragma omp parallel
for ecach timestep {
if (timestep output) {
# pragma omp single
Print positions and velocities of particles;
}

# pragma omp for
for ecach particle g
Compute total force on q:
# pragma omp for
for ecach particle g
Compute position and velocity of q:




Parallelizing the Reduced Solver Using OpenMP

# pragma omp parallel
for each timestep |{
if (timestep output) {
# pragma omp single
Print positions and velocities of particles;
}

# pragma omp for
for cach particle g
forces|[qg] = 0.0;
# pragma omp for
for cach particle g
Compute total force on q:
# pragma omp for
for ecach particle g
Compute position and velocity of q;




Problems
¥ M

\z\/\

F3 = —fp3 — 13 —1x3

Updates to forces[3] create a race condition.

In fact, this is the case in general.

Updates to the elements of the forces
array introduce race conditions into the code.




#

|

First solution attempt

? before all the updates to forces

pragma omp critical

{

forces|
forces|
forces|
forces|

ql[X] += force_qgk|[X]
qllY] 4= force_qgk| Y]
k][X] —= force_qgk|[X]
k][Y] —= force_qgk]|Y]

Access to the forces array
will be effectively serialized!!!




Second solution attempt

omp_set_lock(locks[qg]):
forces|[qg]|X]|] 4= force_qgk|X]:
forces|[qg]|lY]|] 4= force_qgk|Y]:
omp_unset_lock(locks[qg]):

omp_set_lock(locks[k]):
forces|k]||[X] —= force_qgk|X]:
forces|k]|Y|] —= force_qgk|Y]:
omp_unset_lock(locks[k]):

Use one lock for each particle.




First Phase Computations for Reduced
Algorithm with Block Partition

Thread
Thread | Particle 0 1 2
0 0 fo; + oo + £z + g + fos 0 0
I —fo1 + 1t + 13+ 114 +155 0 0
I 2 —foo — 112 f3+fu+fs | O
3 —fo3 — 113 —f3+1f4 4135 | 0
2 - —fos — 14 —fry — 134 fa5
S —fos —fi5 —frs — 135 —f45




First Phase Computations for Reduced
Algorithm with Cyclic Partition

Thread
Thread | Particle 0 1 2
0 0 fo1 +foo +fo3 +fos +1os 0 0
I I —fo fio +fi3+f4+ 15 0
2 2 —fo2 —f fr3 + 1y + 15
0 3 —fo3 4134 + 135 —f3 —f3
I 4 —fo4 — 134 —f14 + 145 —f4
2 S —fos — 35 —f15 —fys —f)s




Revised algorithm — phase |

# pragma omp for
for each particle q {

force_qgk[X] = force_agk[Y] = 0;

for each particle k > gq {
x_diff = pos[q][X] — pos[k][X]:
y_diff = pos[qg][Y] — pos[k][Y]:
dist = sqgrt(x_diff=x_diff + y_diff*xy_diff):
dist cubed = distxdistsxdist;
force_qk[X] = G#masses|[g]+*masses|[k]/dist_cubed * x_diff:
force_qgk|[Y] = G#masses|[g]+*masses|[k]/dist_cubed * y_diff:

loc_forces|[my_rank][g][X] += force_qgk|X]:

loc_forces|[my_rank]

k][X] —= force_qgk]|X
loc_forces|my_rank][k][Y] —= force_qgk]|Y

¥

[ |
loc_forces|my_rank][g][Y] += force_qgk]|Y]:

[ |

[ |

¥




Revised algorithm — phase I

# pragma omp for
for (g = 0. g < n: g++) {
forces|[qg][X] = forces[qg]lY] = 0.

for (thread = 0; thread < thread_count; thread++) {
forces[qg][X] += loc_forces|[thread]|[qg][X]:
forces[qg][Y] += loc_forces|[thread]|[qg][Y]:




Parallelizing the Solvers Using Pthreads

= By default local variables in Pthreads are private.
So all shared variables are global in the
Pthreads version.

" The principle data structures in the Pthreads
version are identical to those in the OpenMP
version: vectors are two-dimensional arrays of
doubles, and the mass, position, and velocity of
a single particle are stored in a struct.

" The forces are stored in an array of vectors.




Parallelizing the Solvers Using Pthreads

= Startup for Pthreads is basically the same as the
startup for OpenMP: the main thread gets the
command line arguments, and allocates and
initializes the principle data structures.

" The main difference between the Pthreads and
the OpenMP implementations is in the details of
parallelizing the inner loops.

= Since Pthreads has nothing analogous to a
parallel for directive, we must explicitly determine
which values of the loop variables correspond to
each thread’s calculations.




Parallelizing the Solvers Using Pthreads

= Another difference between the Pthreads and the
OpenMP versions has to do with barriers.

= At the end of a parallel for OpenMP has an implied
barrier.

= \We need to add explicit barriers after the inner
loops when a race condition can arise.

® The Pthreads standard includes a barrier.

" However, some systems don’t implement it.

= |f a barrier isn't defined we must define a function
that uses a Pthreads condition variable to
Implement a barrier.




Parallelizing the Basic Solver Using MPI

= Choices with respect to the data
structures:

= Each process stores the entire global array of
particle masses.

= Each process only uses a single n-element
array for the positions.

= Each process uses a pointer loc_pos that refers
to the start of its block of pos.

= So on process 0 local _pos = pos; on process
1 local_pos = pos + loc_n; etc.




Pseudo-code for the MPI version of the
basic n-body solver

Get 1input data;
for each timestep {
if (timestep output)
Print positions and velocitles of particles;
for each local particle loc_q
Compute total force on loc_q:
for each local particle loc_q
Compute position and velocity of loc_q:;
Allgather local positions into global pos array;

i

Print positions and velocitles of particles;




Pseudo-code for output

Gather velocities onto process 0:
if (my_rank == 0) {
Print timestep:

for each particle
Print pos|[particle] and vel|particle]




Communication In A Possible MPI

Implementation of the N-Body Solver
(for a reduced solver)

Process 0 Process 1 Process 2
Particles 0, 1 b I 4 5
s a3 = >
S
Sn 6
Compute
forces
? A v
04,
% % %s, ek < 2s,
< 2 15 3¢, ,5
< - 5
=
Update ? '
velocities




A Ring of Processes




Ring Pass of Positions

Phase 1 Phase 2 Phase 3

@/ S1, S5 @ @{ S2: Se @ @/ S3, 57 @
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Computation of Forces in Ring Pass (1)

Time Variable Process 0 Process 1

Start loc_pos || Sp.$2 S1.S3

loc_forces || 0.0 0,0
tmp_pos || Sp.S2 $1.83

tmp_forces || 0.0 0,0

After loc_pos || Sp.$2 S1.S3

Comp of || loc_forces || fpn,0 fi5.0

Forces tmp_pos || $p.S2 S1.S3
tmp_forces || 0,—fpn 0, —1f3

After loc_pos || $p.S2 S1.S3

First loc_forces || f.0 fi3.0

Comm tmp_pos || $1.83 SO, S?
tmp_forces || 0.—f3 0, —fo2

After loc_pos || $p.S2 S1.S3

Comp of || loc_forces || o1 + fo2 + fo3,123 f1o+13.0

Forces tmp_pos || $1.83 SO, S
tmp_forces || —fo1, —fp3 — 13 — 13 0, —fp — 112




Computation of Forces in Ring Pass (2)

Time Variable Process 0 Process 1
After loc_pos || Sg.82 S1.S3
Second loc_forces || fo1 +foo +fo3, 123 fio +113,0
Comm tmp_pos || Sp,$2 S1.S3
tmp_forces || 0, —fp —fi2 —fo1. —fo3 —f13 — 13
After loc_pos || Sg.82 S1.S3
COITIP of || loc_forces | fo; + g + o3, —fop —F10 +13 | —fpy + 10 +113, —fp3 — F13 — 153
Forces tmp_pos || Sp,S2 S1.S3
tmp_forces || 0, —fpr —f12 —fo1. —fo3 — 13 — 153




Pseudo-code for the MPI implementation of the
reduced n-body solver

source = (my_rank + 1) % comm_sz;

dest = (my_rank — | + comm_sz) % comm_szZ;
Copy loc_pos into tmp_pos:

loc_forces = tmp_forces = 0;

Compute forces due to interactions among local particles;
for (phase = 1; phase < comm_sz; phase++) {
Send current tmp_pos and tmp_forces to dest:
Receive new tmp_pos and tmp_forces from source;
/+ Owner of the positions and forces we're receiving =/
owner = (my_rank + phase) % comm_sz;
Compute forces due to interactions among my particles
and owner'’s particles;

}

Send current tmp_pos and tmp_forces to dest;
Receive new tmp_pos and tmp_forces from source;




Loops iterating through global particle indexes

for (loc_partl = 0, glb_partl = my_rank;
loc_partl < loc_n—1;
loc_partl++, glb_partl += comm_sz)
for (glb_part?2 = First_index(glb_partl, my_rank, owner, comm_sz),

loc_part2 = Global_to_local(glb_part2, owner, loc_n);
loc_part2 < loc_n;

loc_part2++, glb_part2 += comm_sz)

Compute_force(loc_pos|[loc_partl]. masses|[glb_partl],
tmp_pos|loc_part2], masses|[glb_part2],
loc_forces|loc_partl]., tmp_forces|[loc_part2]):

VI
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Performance of the MPI n-body solvers

Processes || Basic | Reduced
| 17.30 8.68
2 8.65 4.45
4 4.35 2.30
8 2.20 1.26
16 1.13 0.78

(in seconds)




Run-Times for OpenMP and MPI N-Body

Solvers
Processes/ OpenMP MPI
Threads Basic | Reduced || Basic | Reduced
1 15.13 8.77 17.30 8.68
2 7.62 4.42 8.65 4.45
4 3.8 2.26 4.35 2.30

(in seconds)
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Tree search problem (TSP)

= An NP-complete problem.

= No known solution to TSP that is better in
all cases than exhaustive search.

= Ex., the travelling salesperson problem,
finding a minimum cost tour.




A Four-City TSP




Search Tree for Four-City TSP

0,0

0—=>1, 1 0=2, 3 0—=>3,8

0->1-=2,3 0->1-3,7 021,21 0-2-3,13 0-=3->1,12 0—=3->2,

X 20 x
0-1-2-3-=0, 20 0=2—-1-3-=0, 0=3=>1-=2-=0,
34 x 15
0>1>3->2->0, 0>2->3->1->0, 0>3—=2->1-=0,

20 22 43 X




Pseudo-code for a recursive solution to TSP

using depth-first search

void Depth_first_search(tour_t tour) {
city_t city:

if (City_count(tour) == n) {
if (Best _tour(tour))
Update_best_tour(tour);
} else |
for cach neighboring city
if (Feasible(tour, city)) {
Add_city(tour, city);:
Depth_first_search(tour);:
Remove_last_city(tour );:

}
|

} /% Depth_first_search =/




Pseudo-code for an implementation of a depth-first

solution to TSP without recursion

for (city = n—1; city >= 1|; city——)
Push(stack. city):
while (!Empty(stack)) {
city = Pop(stack):
if (city == NO_CITY) // End of child list, back up
Remove_last_city(curr_tour);

else |
Add_city(curr_tour, citv);
if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour))
Update_best_tour(curr_tour);

Remove_last_city(curr_tour);

} else |

Push(stack. NO _CITY);:

for (nbr = n—1; nbr >= 1; nbr——)
if (Feasible(curr_tour. nbr))

Push(stack, nbr);

!
} /= if Feasible =/
+ /+ while !Empty =/




Pseudo-code for a second solution to TSP that
doesn’t use recursion

Push_copv(stack, tour):; // Tour that visits only the hometown
while (!Empty(stack)) {

curr_tour = Pop(stack):

if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour))
Update_best_tour(curr_tour);
| else |
for (nbr = n—1; nbr >= 1; nbr——)
if (Feasible(curr_tour. nbr)) {
Add_city(curr_tour, nbr);:
Push_copy(stack, curr_tour);
Remove_last_city(curr_tour);

}

|

Free_tour(curr_tour):




Using pre-processor macros

/¥ Find the ith city on the partial tour =*/
int Tour_city(tour_t tour, int i) {

return tour—>cities|1];
} /% Tour_city =/

=\

/¥ Find the ith city on the partial tour =*/
#define Tour_city(tour, i) (tour—>cities|[i])




Run-Times of the Three Serial
Implementations of Tree Search

Recursive | First Iterative | Second Iterative
30.5 29.2 32.9

(in seconds)

The digraph contains 15 cities.

All three versions visited

approximately 95,000,000 tree
nodes.




Making sure we have the “best tour” (1)

=" \WWhen a process finishes a tour, it needs to
check if it has a better solution than
recorded so far.

" The global Best_ tour function only reads
the global best cost, so we don’t need to tie
it up by locking it. There's no contention
with other readers.

" |f the process does not have a better
solution, then it does not attempt an update.




Making sure we have the “best tour” (2)

= |f another thread is updating while we
read, we may see the old value or the new
value.

® The new value is preferable, but to ensure
this would be more costly than it is worth.




Making sure we have the “best tour” (3)

" |n the case where a thread tests and decides it
has a better global solution, we need to ensure
two things:

1) That the process locks the value with a mutex,
preventing a race condition.

2) In the possible event that the first check was against
an old value while another process was updating, we
do not put a worse value than the new one that was
being written.

= \We handle this by locking, then testing again.




Fir nari

__________________________

process X global processy
. tour value
local i i local
tour value/,7 3 <\t0ur value
22 27
3. test 1. test
6. lock 2 lock
/. test again 4. update
8. update 5. unlock

9. unlock




__________________________

process X global processy
. tour value
local i i local
tour value/,7 3@ <\t0ur value
29 27
3. test 1. test
6. lock 2 lock
/. test again 4. update

8. unlock 5. unlock




Pseudo-code for a Pthreads implementation of a

—.statically parallelized solution to TSP

Partition_tree(my_rank, my_stack);

while (!Empty(my_stack)) |

curr_tour = Pop(my_stack);
if (City_count(curr_tour) == n) {

if (Best_tour(curr_tour)) Update_best_tour(curr_tour);
} else {

for (city = n—1; city >= 1; city——)
if (Feasible(curr_tour, city)) {
Add_city(curr_tour, city);
Push_copy(my_stack, curr_tour);
Remove_last_city(curr_tour)

}

}

Free tour(curr_tour);




Dynamic Parallelization of Tree Search
Using Pthreads

® Termination issues.

= Code executed by a thread before it splits:

= |t checks that it has at least two tours In its
stack.

" |t checks that there are threads waliting.

= |t checks whether the new_stack variable is
NULL.




Pseudo-Code for Pthreads Terminated Function (1)

-

if (my_stack_size >= 2 && threads_in_cond_wailt > 0 &&

new_stack == NULL) {
lock term_mutex;
if (threads_in_cond_wait > 0 && new_stack == NULL) {

Split my_stack creating new_stack;
pthread_cond_signal(&term_cond_var);
}
unlock term_mutex;
return 0; /% Terminated = False; don’t quit =/
b else if (!Empty(my_stack)) { /+« Stack not empty, keep working +/
return 0; /% Terminated = false; don’t quit */
I else { /+ My stack is empty =/
lock term_mutex;
if (threads_in_cond_wait == thread_count —1) { /+ Last thread %/
/% running */

threads_1in_cond _walt ++;
pthread_cond_broadcast(&term_cond_var);
unlock term_mutex:

return 1: /« Terminated = true; quit */




Pseudo-Code for Pthreads Terminated Function (2)

b else { /+ Other threads still working, wait for work x/
threads _in_cond wailt ++;
while (pthread_cond_wait(&term_cond_var, &term_mutex) != 0);
/+ We've been awakened =+/
if (threads_in_cond_wait < thread_count) { /+ We got work %/
my_stack = new_stack;
new_stack = NULL;
threads_in_cond _wait ——;
unlock term_mutex;
return 0; /% Terminated = false */
} else { /x All threads done */
unlock term_mutex;
return 1; /+ Terminated = true; quit */

|

b /x else wait for work =/
} /+ else my_stack is empty */




Grouping the termination variables

typedef struct {
my_stack_t new_stack;
int threads _in _cond wait:
pthread_cond_t term_cond_var;:
pthread_mutex_t term_mutex:

} term_struct;

typedef term_structx term_t:

term_t term: // global variable




Run-times of Pthreads tree search programs

15-city problems

First Problem Second Problem
Threads || Serial | Static | Dynamic Serial | Static | Dynamic
I 329 | 327|347 (0) 26.0 | 258|275 (0)
2 279 | 28.9 (7) 258 1 19.2 (6)
4 25.7 1259 47) 258 | 9.3 (49)
8 23.8 | 224 (180) 240 | 5.7 (256)

(in seconds) V\ /7

numbers of times
stacks were split




Parallelizing the Tree Search Programs
Using OpenMP

= Same basic issues implementing the static
and dynamic parallel tree search programs
as Pthreads.

= A few small changes can be noted.

666
Q%«a if (my_rank == whatever)

N .

,O@/)
# ragma omp single
prag p g Lo,




OpenMP emulated condition wait

[+ Global vars =/
int awakened thread = —1;
work _remains = 1; /% true =/

omp_unset_lock(&term_lock):
while (awakened_thread != my_rank && work_remains):
omp_set_lock(&term_lock):




Performance of OpenMP and Pthreads

implementations of tree search

First Problem

Second Problem

Static Dynamic Static Dynamic
Th || OMP | Pth OMP Pth OMP | Pth OMP Pth
1 32.5 | 32.7 || 33.7 (0) 347 (0) 25.6 | 25.8 || 26.6 (0) 27.5 (0)
2 27.7 1 27.9 | 28.0 (6) 28.9 (7) 256 | 25.8 || 18.8 (9) 19.2 (6)
4 254 25.7 | 33.1 (75) | 259 (47) 256 | 258 || 9.8 (52) 9.3 (49)
8 28.0 | 23.8 || 19.2 (134) | 224 (180) || 23.8 240 | 6.3 (163)| 5.7 (256)

(in seconds)




IMPLEMENTATION OF TREE
SEARCH USING MPI AND
STATIC PARTITIONING
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Sending a different number of objects to each
process Iin the communicator

int MPI Scatterv(

void * sendbuf /x in =/,
int: sendcounts [ in =/,
int displacements /% in %/,
MPI_Datatype sendtype /[ in %/,
void * recvbuf /= out */,
int recvcount /= in =/,
MPI_Datatype recvtype /[ in  x/,
int root [+ in =/,

MPI_Comm comm [+ in  *x/)




Gathering a different number of objects from
each process in the communicator

int MPI_Gatherv(

void * sendbuf e In =¥,
int sendcount % In =f,
MPI_Datatype sendtype fd in  *f,
void * recvbuf {4 ot =+
intx recvcounts f+ In &5
intx* displacements F¥ In &5
MPI_Datatype recvtype f% mn w{
int root T In %

MPI_Comm comm FE m  wr)




Checking to see if a message is available

int MPI_Iprobe(

int source e In =¥,
int tag /x in  x/,
MPI_Comm comm f& in =i,
intx msg_avail_p f4 ot =+ .

MPI_Status* status_p f+ out *LY);




if (My_avail tour_count{my_stack) >= 2) {
Fulfill request(my_stack);
return false; J/+ Still more work =/
} else { 7+ At most 1 available tour =/
Send_rejects(); /+ Tell everyone who’'s requested =/
/= work that I have none w/
if (!Empty_stack(my_stack)) {
return false; /= Srill more work =/
} else { 7+ Empty stack =/

if (comm_sz == 1) return true;
Out_of_work();
work_request_sent = false;
while (1) {
Clear_msgs(); /* Messages unrelared to work, termination =/
if (No_work_left()) {
return true; J+ No work lefr. Quit =/

} else if (!work_request_sent) {
Send_work_request (); /% Reguest work from someone =/
work_request_sent = true;
} else |
Check_for_work(&work_request_sent, &work_avail);
if (work_avail) {
Receive_work(my_stack):

; S false; Terminated Function for
! a Dynamically
} 7+ while «/ Partitioned TSP solver
} /= Empty stack =/
} /+ At most 1 available tour «/ that Uses MPI.

VI
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Modes and Buffered Sends

= MPI provides four modes for sends.
= Standard
= Synchronous
= Ready
= Buffered




Printing the best tour

struct {
int cost:
int rank:
} loc_data, global_data;

loc_data.cost = Tour_cost(loc_best_tour);
loc_data.rank my_rank;

MPTI_Allreduce(&loc_data, &global_data, 1, MPI_2INT, MPI_MINLOC, comm);

if (global_data.rank == 0) return: /« 0 already has the best tour =/
if (my_rank == 0)

Receive best tour from process global_data.rank;:
else if (my_rank == global_data.rank)

Send best tour to process 0;

VI
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Terminated Function for a Dynamically
Partitioned TSP solver with MPI (1)

if (My_avail_tour_count(my_stack) >= 2) {
Fulfill_request(my_stack):
return false: /= Srtill more work =/

} else { /+« At most | available tour */

Send_rejects (). /= Tell everyvone who's requested =/
/% work that [ have none x/

if (!Empty_stack(my_stack)) {

return false: /% Still more work =/
} else { /« Empty stack =/

if (comm_sz == 1) return true;:

Out_of_work ():

work_request_sent = false;

while (1) {

Clear_msgs (). /% Messages unrelated to work, termination =/

if (No_work_left()) {
return true: /x No work left. Quit =/




Terminated Function for a Dynamically
Partitioned TSP solver with MPI (2)

} else if (!work_request_sent) {

Send_work_request (): /* Request work from someone =/
work_request_sent = true;
} else {

Check_for_work(&work_request_sent, &work_avail):
if (work_avail) {

Receive_work(my_stack):

return false:

h
}

b /% while #/
} /= Empty stack =/
b/« At most I available tour =/




Packing data into a buffer of contiguous

memory

int MPI_Pack(

void = data_to_be_packed / *
int to_be_packed_count / *
MPI_Datatype datatype / *
void = contig_buf /
int contig_buf_size /
intx position_p / *
MPI Comm comm / *

In

In

in

out

In
in/out
In

*/
x/

x/
x/
x/
x/")



Unpacking data from a buffer of contiguous

memory

int MPI_Unpack(
void *
int
intx
void *
int
MPI_Datatype
MPI Comm

contig_buf
contig_buf_size
position_p
unpacked_data
unpack_count
datatype

comm

/ %
/ %
/ *
/ *
/ *
/ *
/ %

I n

I n
in/out
out



VI

MORGAN KAUFMANN

Table 6.10 Termination Events that Result in an Error

Time

0

Process 0
Out of Work
Notify 1, 2
oow = 1
Send request to 1
opow = 1
opow = 1
oow = 1
oow = 1
oow = 1
oow = 1
Recv notify fr 2
oow = 2
Recv 1st notify fr 1
oow = 3
Quit

Process 1

Out of Work
MNotify O, 2

oow = 1

Send Request to 2
oow = 1

Recv notify fr O
oow = 2

oow = 2

Recv work fr 2
oow = 1
MNotify O

oow = 1

Recv request fr O
oow = 1

Send work to O
oow = 0
Recv notify fr 2
oow = 1

Recv request fr 2
oow = 1

Process 2

Working
oow = 0

Recv notify fr 1

oow =1

Recv request fr 1
oow = 1

Send work to 1
oow = 0

Recv notify fr O
oow =1
Working

oow =1

QOut of work
Notify O, 1

oow = 2

Send request to 1
oow = 2

oow = 2

oow = 2




Performance of MPI and Pthreads
implementations of tree search

First Problem Second Problem
Static Dynamic Static Dynamic
Th/Pr || Pth | MPI Pth MPI Pth | MPI Pth MPI

1 3581409 | 41.9 (0) | 56.5 (0) 274 1 31.5 ) 32.3 (0) |43.8 (0)

2 2991349 | 343 (9) | 556 (5) 274 1 315 220 (8) |37.4 (9)

4 27.2 1 31.7 || 30.2 (55) | 52.6 (85) | 27.4 | 31.5| 10.7 (44) | 21.8 (76)
8 35.7 45.5 (165) 35.7 16.5 (161)
16 20.1 10.5 (441) 17.8 0.1 (173)

(in seconds)




Concluding Remarks (1)

" In developing the reduced MPI solution to
the n-body problem, the “ring pass”
algorithm proved to be much easier to
iImplement and is probably more scalable.

" |In a distributed memory environment in
which processes send each other work,
determining when to terminate is a
nontrivial problem.




Concluding Remarks (2)

" \When deciding which API to use, we
should consider whether to use shared- or
distributed-memory.

= \We should look at the memory
requirements of the application and the
amount of communication among the
processes/threads.




Concluding Remarks (3)

= |[f the memory requirements are great or
the distributed memory version can work
mainly with cache, then a distributed
memory program is likely to be much
faster.

= On the other hand if there is considerable
communication, a shared memory program
will probably be faster.




Concluding Remarks (3)

" |[n choosing between OpenMP and
Pthreads, if there’'s an existing serial
program and it can be parallelized by the
insertion of OpenMP directives, then
OpenMP is probably the clear choice.

=" However, if complex thread
synchronization is needed then Pthreads

will be easier to use.
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