Capítulo 3

Ensemble Microcanônico

3.1 Ensembles estacionários

Vamos analisar um sistema macroscópico de N partículas e volume V, com N muito grande. Uma idealização possível seria considerar que o sistema está perfeitamente isolado, ou seja, a sua energia total E é uma constante de movimento; i.e. H(q, p) = E, onde H(q, p) é o Hamiltoniano clássico do sistema de N partículas. Porém, para levar em consideração o fato de que o isolamento pode ser imperfeito, ou ainda, de que E pode mudar por causa de medirmos o sistema, vamos considerar que o sistema pode ter flutuações de energia dentro de um certo limite:

$$E - \frac{1}{2}\Delta < H(q, p) < E + \frac{1}{2}\Delta.$$
 (3.1)

onde $\Delta \ll E$.

Descrição microscópica: O estado microscópico clássico do sistema é descrito por 3N coordenadas $\{q_i\}$ e 3N momentos $\{p_i\}$. O estado do sistema pode ser visualizado no espaço das fases, ou espaço Γ (veja Figura 3.1). Nesse espaço, o sistema é representado por apenas um ponto em um espaço de 6N dimensões. À medida que o tempo transcorre, esse ponto se movimenta entre as curvas $E - \frac{1}{2}\Delta$ e $E + \frac{1}{2}\Delta$. A curva é bastante irregular já que as colisões mudam permanentemente a direção das partículas e, consequentemente, a trajetória no espaço Γ (temos um random walk no espaço Γ). O movimento das partículas, e a evolução do sistema no espaço das fases, são descritos pelas equações de Hamilton,

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial H}{\partial q_i},$$
(3.2)

onde pode haver certas restrições sobre as coordenadas e momentos. Por exemplo, a condição de V finito limita os valores das coordenadas q_i dentro de certos valores, e a condição $E - \frac{1}{2}\Delta < H(q, p) < E + \frac{1}{2}\Delta$ limita as trajetórias dento de uma "hiper-casca" no espaço das fases.

Ensemble estatístico: O estado microscópico do sistema é completamente caracterizado pelo conjunto de 6N coordenadas e momentos $\{q_i, p_i\}$. O estado macroscópico é caracterizado apenas pelas variáveis N, V, e a energia total dentro do intervalo definido pela Eq. (3.1). Claramente, existe um número muito grande de estados microscópicos que correspondem a um estado macroscópico dado. Podemos considerar um conjunto de cópias mentais do sistema de forma que todos eles correspondam ao mesmo estado macroscópico definido anteriormente. Este conjunto infinito recebe

Figura 3.1: Espaço das fases Γ . O estado microscópico do sistema é representado por um ponto que, a medida que o tempo passa, realiza um caminho aleatório dentro da região determinada pela condição $E - \frac{1}{2}\Delta < H(q,p) < E + \frac{1}{2}\Delta$.

o nome de ensemble estatístico. Em geral, o conjunto será infinito porque cada coordenada e cada momento pode adotar infinitos valores. No espaço das fases o ensemble estatístico ocupa uma "hipercasca" cuja localização depende de V, $N \in E \pm \frac{1}{2}\Delta$. Os elementos do ensemble formam um "enxame" ou "nuvem" de pontos que se movem continuamente nessa hipercasca.

Função densidade e média no ensemble: Podemos definir a função de distribuição no espaço das fases ou função densidade de estados $\rho(q, p, t)$ da seguinte maneira:

$$\rho(q, p, t)d^{3N}qd^{3N}p \equiv \text{número de pontos representativos no volume } d^{3N}qd^{3N}p \qquad (3.3)$$

localizado em (q, p) no instante t.

A média no ensemble de qualquer grandeza física f(q, p), é dada por:

$$\langle f \rangle_{ens} = \frac{\int f(q,p)\rho(q,p,t)d^{3N}qd^{3N}p}{\int \rho(q,p,t)d^{3N}qd^{3N}p}$$
(3.4)

onde as integrais devem ser realizadas ao longo de toda a região do espaço das fases ocupada pelo ensemble estatístico (e.g. ao longo da hipercasca). Em geral, $\langle f \rangle_{ens}$ pode depender do tempo.

Teorema de Liouville: Este teorema estabelece que a evolução da função densidade $\rho(q, p, t)$ é descrita por:

$$\frac{\partial \rho}{\partial t} + [\rho, H] = 0, \qquad (3.5)$$

onde o *colchete de Poisson* $[\rho, H]$ é definido por:

$$[\rho, H] \equiv \sum_{i=1}^{3N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right).$$
(3.6)

Ensemble estacionário: Um ensemble é estacionário se a função densidade não depende explicitamente do tempo, i.e. $\rho = \rho(q, p)$; portanto:

$$\frac{\partial \rho}{\partial t} = 0,$$
 ou equivalentemente $[\rho, H] = 0.$ (3.7)

Da Eq. (3.4) vemos claramente que $\langle f \rangle_{ens}$ não depende do tempo se o ensemble for estacionário. Assim, estes ensembles são apropriados para descrever sistemas termodinâmicos em equilíbrio, nos quais, as grandezas macroscópicas não mudam com o tempo. Para termos um ensemble estacionário podemos adotar:

- $\diamond \rho = \text{constante:}$ Neste caso, os sistemas que compõem o ensemble estão sempre uniformemente distribuídos na região permitida do espaço das fases.
- $\diamond \rho = \rho(H(q, p))$: Neste caso, temos:

$$[\rho, H] \equiv \sum_{i=1}^{3N} \left(\frac{\partial \rho(H)}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho(H)}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \sum_{i=1}^{3N} \left(\frac{\partial \rho}{\partial H} \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial H} \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = 0, \quad (3.8)$$

i.e., qualquer função $\rho(H(q, p))$ representa um ensemble estacionário. Em particular, veremos mais adiante que $\rho(H(q, p)) \propto \exp(-H(q, p)/(kT))$ para o ensemble canônico.

3.2 Ensemble microcanônico

Definição: Consideremos um sistema macroscópico de N partículas e volume V com energia definida no intervalo $E - \frac{1}{2}\Delta < H(q,p) < E + \frac{1}{2}\Delta$. O ensemble microcanônico é definido de acordo com a hipótese de *igual probabilidade a priori*, segundo a qual todos os microestados compatíveis com o macroestado considerado, devem ter igual probabilidade. Portanto, a densidade de estados no espaço das fases é:

$$\rho(q,p) = \begin{cases}
\text{constante} & \text{se } E - \frac{1}{2}\Delta < H(q,p) < E + \frac{1}{2}\Delta \\
0 & \text{em qualquer outro caso}
\end{cases}$$
(3.9)

De acordo com a discussão anterior, este ensemble é estacionário, e portanto, permite descrever sistemas termodinâmicos em equilíbrio.

Teorema ergódico: Para estabelecer a conexão entre o ensemble microcanônico e a termodinâmica, consideremos novamente uma grandeza física f(q, p). Quando analisamos um sistema físico real, podemos pensar que lidamos apenas com um certo membro do ensemble estatístico. O estado microscópico do sistema real muda rapidamente, e, ao medirmos as suas propriedades macroscópicas, estamos em geral realizando uma média temporal da grandeza f(q, p). Por exemplo, a pressão exercida por um gás nas paredes de um recipiente tem a sua origem microscópica no impacto das partículas nas paredes. O número, posição e momento das partículas que colidem muda rapidamente com o tempo e a pressão do gás reflete a taxa média de transferência de momento das partículas às paredes durante um certo tempo. Assim, a média temporal de f para um dado sistema é essencialmente o valor experimental dessa grandeza:

$$\langle f \rangle_t = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau f(q(t), p(t)) dt$$
(3.10)

A hipótese ergódica conjectura que a média temporal de uma grandeza f(q, p) é igual à media realizada no ensemble. De acordo com esta hipótese, se considerarmos um tempo longo o suficiente,

o sistema passaria por todos os estados microscópicos possíveis, i.e. passaria por todos os estados que constituem o ensemble estatístico. Logo,

$$\langle f \rangle_t = \langle f \rangle_{ens},\tag{3.11}$$

onde $\langle f \rangle_t$ é dada pela Eq. (3.10) e $\langle f \rangle_{ens}$ é dada pela Eq. (3.4). Como a média temporal está associada à média experimental, a hipótese ergódica fornece o fundamento para utilizar os ensembles estatísticos na descrição de sistemas físicos reais.

3.3 Conexão entre o ensemble microcanônico e a termodinâmica

A conexão entre o ensemble microcanônico e a termodinâmica é obtida a partir da definição de entropia S. Para definir S, vamos introduzir antes alguns volumes no espacio das fases.

3.3.1 Número de estados no espaço das fases

Seja Γ o número de estados microscópicos no espaço das fases compatíveis com um número N de partículas, volume V, e energia definida no intervalo $E - \frac{1}{2}\Delta < H(q, p) < E + \frac{1}{2}\Delta$; i.e.

$$\Gamma(E) \equiv \frac{1}{h^{3N}} \int_{E - \frac{1}{2}\Delta < H(q,p) < E + \frac{1}{2}\Delta} d^{3N} q \, d^{3N} p, \qquad (3.12)$$

onde Γ depende também de $N, V \in \Delta$.

A integral determina o volume do espaço das fases ocupado por todos os estados. A constante h^{3N} representa o volume do espaço das fases ocupado por um sistema do ensemble, e tem unidades de momento angular elevado à potencia 3N. Sackur (1911) e Tetrode (1912) determinaram experimentalmente a entropia de um gás ideal monoatômico e mostraram que essa constante é de fato a constante de Planck. Em 1922, Bose chegou a uma conclusão similar analisando o gás de fótons. Também podemos utilizar o argumento de que o volume ocupado por uma partícula no espaço das fases não pode ser menor que o limite estabelecido pelo principio de incerteza.

Vamos definir também o número de estados no espaço das fases com energia menor que E:

$$\Sigma(E) = \frac{1}{h^{3N}} \int_{H(q,p) < E} d^{3N} q \, d^{3N} p.$$
(3.13)

Se $\Delta \ll E$ temos:

$$\Gamma(E) = \Sigma(E + \Delta/2) - \Sigma(E - \Delta/2) \approx \frac{\partial \Sigma}{\partial E} \Delta.$$
(3.14)

Finalmente, definimos $\omega(E)$ como:

$$\omega(E) = \frac{\partial \Sigma}{\partial E}.$$
(3.15)

Temos então, $\Gamma(E) = \omega(E)\Delta$.

3.3.2 Definições de entropia

Existem na literatura diferentes definições de entropia envolvendo as grandezas introduzidas acima [1, 2]:

$$S = k \ln(\Gamma(E)), \tag{3.16}$$

$$S = k \ln(\Sigma(E)), \tag{3.17}$$

$$S = k \ln(\omega(E)), \tag{3.18}$$

onde ainda deve ser introduzida uma constante no argumento do logaritmo na Eq. (3.18) para este ficar adimensional. A definição mais utilizada na bibliografia moderna [1, 2] é $S = k \ln(\omega(E))$, que chamaremos de entropia de Boltzmann, S_B :

$$S_B \equiv k \ln(\omega(E)). \tag{3.19}$$

No entanto, foi demonstrado recentemente [3], que essa definição de entropia é inconsistente tanto matemáticamente quanto termodinamicamente. Os problemas conceituais que surgem da definição anterior, podem ser contornados se se adota $S = k \ln(\Sigma(E))$. Esta definição foi obtida por Gibbs em 1902 (Ref. [4], Cap. XIV) e por isso a chamaremos de entropia de Gibbs, S_G :

$$S_G \equiv k \ln(\Sigma(E)). \tag{3.20}$$

As diferenças entre as definições dadas acima, são desprezíveis para a maioria dos sistemas macroscópicos (já que diferem por uma constante de ordem $\ln N$, enquanto a entropia é proporcional a N (extensividade)). No entanto, para sistemas pequenos, ou para sistemas com um limite superior no espectro de energia, a utilização de S_B leva a diversos problemas, como por exemplo o aparecimento de sistemas com temperaturas absolutas negativas (daremos maiores detalhes nos capítulos seguintes). Por esses motivos, adotaremos a definição de entropia dada por Gibbs.

3.3.3 Definições de temperatura

As definições de entropia dadas acima levam a definições diferentes das grandezas termodinâmicas derivadas da entropia. Por exemplo, temos a temperatura de Boltzmann definida como

$$T_B(U, V, N) \equiv \left(\frac{\partial S_B}{\partial U}\right)^{-1} = \frac{1}{k} \frac{\omega}{\omega'} = \frac{1}{k} \frac{\Sigma'}{\Sigma''}$$
(3.21)

e a temperatura de Gibbs, definida como

$$T_G(U, V, N) \equiv \left(\frac{\partial S_G}{\partial U}\right)^{-1} = \frac{1}{k} \frac{\Sigma}{\Sigma'}$$
(3.22)

onde o símbolo ' indica a derivada em relação à energia. Para deduzir uma relação entre ambas temperaturas, calculamos a capacidade calorifica de Gibbs C:

$$\frac{1}{C} \equiv \frac{\partial T_G}{\partial E} = \frac{1}{k} \frac{\partial}{\partial E} \left(\frac{\Sigma}{\Sigma'}\right) = \frac{1}{k} \frac{\Sigma' \Sigma' - \Sigma \Sigma''}{\Sigma'^2} = \frac{1}{k} \left[1 - \frac{\Sigma \Sigma''}{\Sigma' \Sigma'}\right] = \frac{1}{k} \left[1 - \frac{T_G}{T_B}\right], \quad (3.23)$$

de onde se segue que

$$T_B = \frac{T_G}{1 - k/C}.$$
 (3.24)

Esta relação é válida independentemente do número de partículas do sistema; a única condição necessária é a existência das derivadas de $\Sigma(E)$ em relação à energia até segunda ordem. A equação mostra que as diferenças entre $T_B \in T_G$ são relevantes quando C é da mesma ordem ou menor que a constante de Boltzmann k. Na imensa maioria dos casos de interesse temos $C \gg k$ e portanto ambas temperaturas ficam equivalentes. No entanto, devemos sempre lembrar que podem surgir diferenças em alguns casos. Em particular, T_B pode ficar negativa se 0 < C < k.

3.4 Gás ideal clássico

Nesta seção vamos utilizar o ensemble microcanônico para obter as propriedades termodinâmicas de um gás ideal a partir do Hamiltoniano clássico de um sistema de N partículas não-interagentes. O Hamiltoniano é:

$$H(q,p) = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m}.$$
(3.25)

Em primeiro lugar, calcularemos o volume do espaço das fases com energia menor que E:

$$\Sigma(E) = \frac{1}{h^{3N}} \int_{H(q,p) < E} d^3 q_1 \cdots d^3 q_N d^3 p_1 \cdots d^3 p_N$$
(3.26)

Se as N partículas do gás se encontram dentro de um recipiente de volume V, as integrais em relação às coordenadas q resultam em um fator V^N . Temos então,

$$\Sigma(E) = \frac{V^N}{h^{3N}} \int_{\sum_{i=1}^{3N} p_i^2 < 2mE} dp_1 \cdots dp_{3N} = \frac{V^N}{h^{3N}} \times \mathcal{V}_{3N}(\sqrt{2mE}), \qquad (3.27)$$

onde $\mathcal{V}_n(R)$ é o volume de uma esfera de raio R no espaço de n dimensões (ver Apêndice ao final deste capítulo). Portanto, temos:

$$\Sigma(E) = \frac{V^N}{h^{3N}} \times \frac{\pi^{3N/2} (2mE)^{3N/2}}{\frac{3N}{2} \Gamma(\frac{3}{2}N)}.$$
(3.28)

A conexão com a Termodinâmica é estabelecida através da Eq. (3.20):

$$S = k \ln [\Sigma(E)] = k \ln \left[\frac{V^N}{h^{3N}} \frac{(2\pi m E)^{3N/2}}{\frac{3N}{2} \Gamma(\frac{3}{2}N)} \right]$$
(3.29)

$$= k \ln\left[\frac{V^{N}}{h^{3N}}(2\pi mE)^{\frac{3}{2}N}\right] - k \ln[\Gamma(\frac{3}{2}N)] - k \ln(\frac{3}{2}N).$$
(3.30)

Esta expressão pode ser simplificada usando a fórmula de Stirling, $\ln N! \approx N \ln N - N$, já que o número de partículas N é muito grande:

$$\ln[\Gamma(\frac{3}{2}N)] = \ln[(\frac{3}{2}N-1)!] \underset{\text{Stirling}}{\approx} (\frac{3}{2}N-1)\ln(\frac{3}{2}N-1) - (\frac{3}{2}N-1) \underset{N\gg1}{\approx} \frac{3}{2}N\ln(\frac{3}{2}N) - \frac{3}{2}N.$$
(3.31)

Obtemos então:

$$S(E, V, N) \approx kN \ln \left[\frac{V}{h^3} (2\pi m E)^{3/2} \right] - \frac{3}{2}Nk \ln(\frac{3}{2}N) + \frac{3}{2}Nk - k \ln(\frac{3}{2}N)$$
(3.32)

$$= kN\ln\left[\frac{V}{h^3}(2\pi mE)^{3/2}\right] - (\frac{3}{2}N+1)k\ln(\frac{3}{2}N) + \frac{3}{2}Nk$$
(3.33)

$$\underset{N\gg1}{\approx} kN \ln\left[\frac{V}{h^3} \left(\frac{4\pi mE}{3N}\right)^{3/2}\right] + \frac{3}{2}Nk.$$
(3.34)

Agora podemos deduzir a equação de estado:

$$\frac{1}{T} = \frac{\partial S}{\partial E}\Big|_{V,N} = \frac{3kN}{2E} \qquad \Rightarrow \qquad E = \frac{3}{2}NkT, \tag{3.35}$$

$$\frac{P}{T} = \frac{\partial S}{\partial V}\Big|_{E,N} = \frac{kN}{V} \qquad \Rightarrow \qquad PV = NkT.$$
(3.36)

Como esperado, a equação de estado ficou independente da constante h. Substituindo $E = \frac{3}{2}NkT$ na equação da entropia temos $S = kN \ln[V(2\pi mkT)^{3/2}/h^3] + 3Nk/2$, ou

$$S(E, V, N) = kN \ln\left[\frac{V}{\lambda^3}\right] + \frac{3}{2}Nk, \qquad (3.37)$$

onde definimos o comprimento de onda térmico:

$$\lambda = \frac{h}{\sqrt{2\pi m k T}}.$$
(3.38)

A expressão para S apresentada na Eq. (3.37) não é extensiva, o qual está em contradição com o comportamento observado em gases rarefeitos. A solução a este problema é apresentada na próxima seção.

3.5 O paradoxo de Gibbs

3.5.1 O paradoxo

A expressão para a entropia deduzida acima não é extensiva, i.e. $S(\alpha E, \alpha V, \alpha N) \neq \alpha S(E, V, N)$ sendo α uma constante arbitrária. Isto representa um problema bastante importante já que a extensividade da entropia é comprovada experimentalmente para gases reais diluídos ¹. O problema fica mais evidente se analisamos a mistura de dois gases ideais.

Consideremos primeiramente a mistura de dois gases diferentes, A e B, à mesma temperatura T (ver Figura 3.2). A entropia do estado inicial corresponde a uma configuração com N_A partículas ocupando o volume V_A e N_B partículas no volume V_B . De acordo com a Eq. (3.37), temos:

$$S^{inicial} = S^{inicial}_A + S^{inicial}_B = kN_A \ln\left[\frac{V_A}{\lambda^3}\right] + \frac{3}{2}N_A k + kN_B \ln\left[\frac{V_B}{\lambda^3}\right] + \frac{3}{2}N_B k.$$
(3.39)

¹A extensividade da entropia é amplamente comprovada em um número imenso de sistemas físicos, mas existem sistemas que podem ser bem descritos por formulações não extensivas da termodinâmica. Para mais detalhes veja *Introduction to nonextensive statistical mechanics* de C. Tsallis, Spinger 2009.

Gás A	Gás B	Mistura de A + B
N _A V _A	N _B V _B	$N_{A^+} N_B = V_{A^+} V_B$

Figura 3.2: Mistura de dos gases ideais. A esquerda o estado inicial, antes da mistura. A direita o estado final, após a mistura.

No estado final temos N_A partículas no volume $V_A + V_B$ e N_B partículas no volume $V_A + V_B$ (ou, equivalentemente, $N_A + N_B$ partículas no volume $V_A + V_B$):

$$S^{final} = S^{final}_{A} + S^{final}_{B} = kN_{A}\ln\left[\frac{V_{A} + V_{B}}{\lambda^{3}}\right] + \frac{3}{2}N_{A}k + kN_{B}\ln\left[\frac{V_{A} + V_{B}}{\lambda^{3}}\right] + \frac{3}{2}N_{B}k.$$
 (3.40)

O variação de entropia após a mistura é:

$$\Delta S = S^{final} - S^{inicial} = kN_A \ln\left[\frac{V_A + V_B}{V_A}\right] + kN_B \ln\left[\frac{V_A + V_B}{V_B}\right] > 0, \qquad (3.41)$$

a qual é positiva já que o processo é irreversível.

O problema surge quando analisamos a mistura de dois gases idênticos, com a mesma densidade de partículas, $N_A/V_A = N_B/V_B$. A entropia do estado inicial é dada pela Eq. (3.39). No estado final temos $N_A + N_B$ partículas no volume $V_A + V_B$ e a variação de entropia fica igual ao caso da mistura de gases diferentes:

$$\Delta S = kN_A \ln\left[\frac{V_A + V_B}{V_A}\right] + kN_B \ln\left[\frac{V_A + V_B}{V_B}\right] > 0.$$
(3.42)

Neste caso a variação ΔS deveria ser nula já que os estados inicial e final são iguais macroscopicamente. O fato de não obtermos $\Delta S = 0$ para a mistura de gases idênticos, com a mesma densidade de partículas, constitui o chamado *paradoxo de Gibbs*.

3.5.2 Solução do paradoxo: o fator de Gibbs N!

Para resolver o paradoxo consideremos a seguinte configuração microscópica de um gás de N partículas:

Partícula	coordenada e momento	(3.43)
1:	(q_1,p_1)	
2:	(q_2, p_2)	
3:	(q_3,p_3)	
N:	(q_N, p_N)	
		(3.44)

Como as partículas são indistinguíveis a configuração anterior é idêntica às configurações seguintes

Existem N! permutações dessas partículas que resultam em configurações microscópicas idênticas. Essas N! configurações correspondem a um único ponto no espaço das fases, e deveriam ser contabilizadas apenas uma única vez. Isso sugere a introdução de um fator N! na expressão para o número de estados $\Sigma(E)$:

$$\Sigma(E) = \frac{1}{N!} \times \frac{1}{h^{3N}} \int_{H(q,p) < E} d^3 q_1 \cdots d^3 q_N \, d^3 p_1 \cdots d^3 p_N.$$
(3.46)

Utilizando a expressão anterior podemos recalcular a mistura de gases. O fator $N! \text{ em } \Sigma(E)$ faz aparecer um termo $-k \ln N!$ na equação (3.37):

$$S(E, V, N) = kN \ln\left(\frac{V}{\lambda^3}\right) + \frac{3}{2}Nk - k\ln N!$$

$$\underset{Stirling}{\simeq} kN \ln\left(\frac{V}{N\lambda^3}\right) + \frac{5}{2}Nk.$$
(3.47)

A expressão anterior é extensiva já que o argumento do logaritmo depende agora das grandezas intensivas $N/V \in \lambda$. A variação de entropia na mistura de gases diferentes leva a mesmo resultado obtido na Eq. (3.41):

$$\Delta S = kN_A \ln\left(\frac{V_A + V_B}{N_A \lambda^3}\right) + \frac{5}{2}N_A k + kN_B \ln\left(\frac{V_A + V_B}{N_B \lambda^3}\right) + \frac{5}{2}N_B k$$
$$-kN_A \ln\left(\frac{V_A}{N_A \lambda^3}\right) - \frac{5}{2}N_A k - kN_B \ln\left(\frac{V_B}{N_B \lambda^3}\right) - \frac{5}{2}N_B k =$$
$$= kN_A \ln\left[\frac{V_A + V_B}{V_A}\right] + kN_B \ln\left[\frac{V_A + V_B}{V_B}\right].$$
(3.48)

Na mistura de gases idênticos, temos

$$\Delta S = k(N_A + N_B) \ln\left(\frac{V_A + V_B}{(N_A + N_B)\lambda^3}\right) + \frac{5}{2}(N_A + N_B)k$$
$$-kN_A \ln\left(\frac{V_A}{N_A\lambda^3}\right) - \frac{5}{2}N_Ak - kN_B \ln\left(\frac{V_B}{N_B\lambda^3}\right) - \frac{5}{2}N_Bk$$
$$= (N_A + N_B) \ln\left(\frac{V}{N\lambda^3}\right) - kN_A \ln\left(\frac{V}{N\lambda^3}\right) kN_B \ln\left(\frac{V}{N\lambda^3}\right) = 0 \qquad (3.49)$$

já que neste caso temos $N_A/V_A = N_B/V_B = (N_A + N_B)/(V_A + V_B) \equiv N/V$.

O fator de Gibbs N! não deve ser utilizado quando temos objetos que são distinguíveis, e.g. átomos localizados em uma rede cristalina.

3.6 Osciladores harmônicos clássicos

Consideremos um sistema de N osciladores harmônicos clássicos, localizados, distinguíveis, unidimensionais, todos com a mesma frequência ω . Estes osciladores podem representar, por exemplo, os sitios de uma rede cristalina onde estão localizados átomos que podem oscilar em torno de sua posição de equilibrio. O Hamiltoniano do sistema é:

$$H(q_i, p_i) = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 q_i^2.$$
(3.50)

O número de estados no espaço das fases com energia menor que E é:

$$\Sigma(E) = \frac{1}{h^N} \int_{\sum_{i=1}^N \frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 q_i^2 \le E} dq^N dp^N = \frac{1}{(hm\omega)^N} \times \int_{\sum_{i=1}^N p_i^2 + x_i^2 \le 2mE} dx^N dp^N$$
$$= \frac{1}{(hm\omega)^N} \mathcal{V}_{2N}(\sqrt{2mE}) = \frac{E^N}{(\hbar\omega)^N N\Gamma(N)} = \frac{1}{(\hbar\omega)^N} \frac{E^N}{N(N-1)!} = \frac{1}{N!} \left(\frac{E}{\hbar\omega}\right)^N. (3.51)$$

A entropia é:

$$S = k \ln[\Sigma(E)] = k \ln\left[\frac{1}{N!} \left(\frac{E}{\hbar\omega}\right)^{N}\right] = Nk \ln\left(\frac{E}{\hbar\omega}\right) - k \ln N!$$

$$\approx Nk \ln\left(\frac{E}{\hbar\omega}\right) - Nk \ln N + Nk = Nk \left[1 + \ln\left(\frac{E}{N\hbar\omega}\right)\right]$$
(3.52)

As equações de estado são:

$$\frac{1}{T} = \left[\frac{\partial S}{\partial E}\right]_{V,N} = \frac{kN}{E} \quad \Rightarrow \quad E = NkT,$$

$$\frac{P}{T} = \left\lfloor \frac{\partial S}{\partial V} \right\rfloor_{E,N} = 0 \quad \Rightarrow \quad P = 0$$

A pressão do sistema é nula porque as partículas não possuem energia cinética translacional. A capacidade calorifica é

$$C = \frac{\partial E}{\partial T} = Nk.$$

3.7 Apêndice: Volume de uma esfera em n dimensões

Consideremos uma esfera de raio R em um espaço de n dimensões. O volume $\mathcal{V}_n(R)$ é proporcional a R^n :

$$\mathcal{V}_n(R) \equiv \int d\mathcal{V}_n \equiv \int_{\sum_{i=1}^n x_i^2 < R^2} dx_1 \cdots dx_n = R^n \int_{\sum_{i=1}^n y_i^2 < 1} dy_1 \cdots dy_n \equiv R^n C_n \quad (3.53)$$

onde o coeficiente C_n depende apenas da dimensão do espaço. Este coeficiente pode ser determinado calculando a integral $I \equiv \int_{-\infty}^{+\infty} e^{-(y_1^2 + \dots + y_n^2)} dy_1 \cdots dy_n$ em coordenadas cartesianas e em coordenadas esféricas. Em coordenadas cartesianas temos um produto de *n* integrais gaussianas

$$I = \left(\int_{-\infty}^{+\infty} e^{-y^2} dy\right)^n = (\sqrt{\pi})^n.$$
 (3.54)

Em coordenadas esféricas, usamos $R^2 = y_1^2 + \dots + y_n^2$:

$$I = \int_{0}^{\infty} e^{-R^{2}} \frac{d\mathcal{V}_{n}}{dR} dR = \int_{0}^{\infty} e^{-R^{2}} \frac{d(C_{n}R^{n})}{dR} dR = nC_{n} \int_{0}^{\infty} e^{-R^{2}} R^{n-1} dR$$

$$= \frac{1}{2} nC_{n} \int_{0}^{\infty} e^{-t} t^{n/2-1} dt = \frac{1}{2} nC_{n} \Gamma(\frac{n}{2})$$
(3.55)

Igualando as Eqs. (3.54) e (3.55) obtemos $C_n = \frac{\pi^{n/2}}{\frac{n}{2}\Gamma(n/2)}$ e usando a Eq. (3.53) obtemos

$$\mathcal{V}_n(R) = \frac{\pi^{n/2} R^n}{\frac{n}{2} \Gamma(n/2)}.$$
(3.56)

Referências Bibliográficas

- Huang, Kerson (1963). Statistical mechanics. New York: Wiley. ISBN 0-471-41760-2.
 2ed. (1987) New York: Wiley ISBN 0-471-81518-7
- [2] R K Pathria & Paul D. Beale, Statistical Mechanics, Academic Press; Third edition (March 14, 2011)
- [3] J. Dunkel and S. Hilbert, Nature Physics 10, 1 (2013).
- [4] Gibbs, J. W. Elementary Principles in Statistical Mechanics (Dover, 1960) (Reprint of the 1902 edition).