Topologia Geral - SEMINÁRIO - 30/06

Cálculo de Partições

(6) $\rightarrow(3)_{2}^{2}$: "Em qualquer festa com seis pessoas, existem 3 que se conhecem mutuamente ou existem 3 que se desconhecem mutuamente."

Notação Se I é conjunto, denotamos por $[I]^{n}$ o conjunto $\{A \subseteq I:|A|=n\}$. Usare$\operatorname{mos} \kappa, \lambda, \sigma$ para cardinais (não necessariamente infinitos, por enquanto).

1. Definição. Seja $n<\omega$. Chamamos $c:[I]^{n} \rightarrow \sigma$ uma coloração. Dizemos que $H \subseteq I$ é homogêneo se c é constante sobre $[H]^{n}$.

Notação

$$
\kappa \rightarrow(\lambda)_{\sigma}^{n}
$$

significa que para todo conjunto X de cardinalidade κ e para toda coloração $c:[X]^{n} \rightarrow \sigma$ existe $H \subseteq X$ tal que $|H|=\lambda$ e H é homogêneo para c.

2. Teorema (Ramsey'30 \& Erdős - Szekeres'35). Para quaisquer $n, \sigma \in \omega$,

$$
(\omega) \rightarrow(\omega)_{\sigma}^{n}
$$

3. Teorema (Ramsey - versão finita). Para quaisquer $n, \sigma, l \in \omega$ existe $k \in \omega$ tal que $(k) \rightarrow(l)_{\sigma}^{n}$.

Demonstração do Teorema de Ramsey para $n=2$.
Dado uma colaração $c:[\omega]^{2} \rightarrow \sigma$ tome $S_{0}=\omega$ e defina S_{i} e n_{i}, recursivamente sobre $i<\omega$:

1. fixado S_{i} escolha arbitrariamente $n_{i} \in S_{i}$,
2. escolhido $n_{i} \in S_{i}$, tome

$$
T_{j}=\left\{u \in S_{i}: c\left(\left\{n_{i}, u\right\}\right)=j\right\}
$$

e observe que os T_{j} 's particionam $S_{i} \backslash\left\{n_{i}\right\}$ infinito. Portanto, existe j^{\prime} tal que $T_{j^{\prime}}$ é infinito. Defina $S_{i+1}=T_{j^{\prime}}$ (observe que $S_{i+1} \subseteq S_{i}$).

Então, para todo $i<j, k$ vale que $c\left(\left\{n_{i}, n_{j}\right\}\right)=c\left(\left\{n_{i}, n_{k}\right\}\right)$ pois $n_{j} \in S_{j} \subseteq S_{i+1} \mathrm{e}$ $n_{k} \in S_{k} \subseteq S_{i+1}$ e para todo $u \in S_{i+1}, c\left(\left\{n_{i}, u\right\}\right)$ é constante.

Portanto, está bem definida a coloração f da sequência $\left\{n_{i}\right\}_{i \in \omega}$, dada por

$$
f\left(n_{i}\right)=c\left(\left\{n_{i}, n_{j}\right\}\right), \text { para todo } j>i
$$

Como f é uma partição de um conjunto infinito em finitas partes (o número de cores é finito), existe $j \in \sigma$ e uma subsequência $\left\{n_{i_{j}}\right\}_{j \in \omega}$ tal que $f\left(n_{i_{s}}\right)=j$, para todo $s \in \omega$. Agora, para todo $0 \leq s<t$ temos $c\left(\left\{n_{i_{s}}, n_{i_{t}}\right\}\right)=f\left(n_{i_{s}}\right)=j$, portanto, $A=\left\{n_{i_{s}}: s \in \omega\right\}$ é homogêneo.

Observe que pelo teorema acima temos $(\omega) \rightarrow(l)_{\sigma}^{2}$ para todo $l<\omega$.
Demonstração do Teorema de Ramsey - versão finita - para $n=2$.
Suponha que não, i.e. para todo natural n, existe $c_{n}:[n]^{2} \rightarrow \sigma \operatorname{sem} A \subseteq n,|A|=l$ e A homogêneo. Denote por F_{n} o conjunto das funções de $[\omega]^{2}$ em σ tais que para $f \upharpoonright[n]^{2}$ não existe $A \subseteq n$ de cardinalidade l e homogêneo. Então, por hipótese, $F_{n} \neq \emptyset$.

Note que se $\bigcap F_{n} \neq \emptyset$ temos uma contradição pois, neste caso, temos uma f, coloração de $[\omega]^{2}$, tal que para todo n natural $f \upharpoonright[n]^{2}$ não admite A de cardinalidade l e homogêneo, contra $(\omega) \rightarrow(l)_{\sigma}^{2}$.

Tome o espaço topológico σ com a topologia discreta e $X={ }^{[\omega]^{2}} \sigma$ com a topologia produto. Então, pelo Teorema de Tychonoff, X é compacto. Observe que para todos $n_{1}, \ldots, n_{j} \in X$ e para todos $r_{1}, \ldots, r_{j} \in \sigma$, o conjunto $\left\{f \in X: f\left(n_{i}\right)=r_{i}, i=1, \ldots, j\right\}$ é fechado, e que F_{n} é reunião finita de conjuntos dessa forma, i.e. F_{n} é fechado. Ainda, a família de fechados $\left\{F_{n}\right\}_{n \in \omega}$ tem a propriedade da intersecção finita (segue de $F_{n_{1}} \cap \cdots \cap$ $F_{n_{j}} \supseteq F_{\bigcup n_{i}}$ e $F_{\cup n_{i}} \neq \emptyset$ por hipótese).

Como X é compacto, $\bigcap F_{n} \neq \emptyset$. Absurdo.
4. Proposição. Para qualquer κ infinito

$$
\left(2^{k}\right) \nrightarrow(3)_{\kappa}^{2} .
$$

Demonstração Identifique $2^{\kappa} \operatorname{com}^{\kappa} 2$. Defina $c(\{f, g\})=\min \{\alpha: f(\alpha) \neq g(\alpha)\}$.
5. Teorema (Erdős - Rado'56). Para todo $\kappa \geq \omega$

$$
\left(\left(2^{\kappa}\right)^{+}\right) \rightarrow\left(\kappa^{+}\right)_{\kappa}^{2}
$$

Aplicações

Seja X um espaço topológico. Dizemos que X é c.c.c. se toda família de abertos nãovazios 2 -a-2 disjuntos é enumerável.
6. Teorema (Hajnal - Juhász). Todo espaço topológico Hausdorff, c.c.c. que satisfaz o primeiro axioma de enumerabilidade tem cardinalidade $\leq 2^{\omega}$.

Demonstração Suponha $|X|>2^{\omega}$ e tome $\left\{V_{x}^{n}: n<\omega\right\}$ base enumerável decrescente em x. Como X é Hausdorff, para quaisquer x, y distintos de X, existem $m, n<\omega$ tais que V_{x}^{n} e V_{y}^{m} são disjuntos. Supondo, sem perda de generalidade, que $n>m$ temos $V_{x}^{n} \cap V_{y}^{n}=\emptyset$. Defina uma coloração

$$
\begin{aligned}
c:[X]^{2} & \rightarrow \omega \\
\{x, y\} & \rightsquigarrow n \text { onde } n=\min \left\{m: V_{x}^{m} \cap V_{y}^{m}=\emptyset\right\} .
\end{aligned}
$$

De $|X|>2^{\omega}$ e $\left(\left(2^{\omega}\right)^{+}\right) \rightarrow\left(\omega_{1}\right)_{\omega}^{2}$ temos que existe $H \subseteq X$ tal que $c \upharpoonright[H]^{2}=\{k\}$ e $|H|=\omega_{1}>\omega$. Agora, basta notar que $\left\{V_{x}^{k}: x \in H\right\}$ é uma família de abertos 2-a-2 disjuntos de cardinalidade $>\omega$.

Uma família \mathcal{V} de abertos de X é uma pseudo-base para $p \in X$ se para todo $V \in \mathcal{V}$ $p \in V$ e $\bigcap \mathcal{V}=\{p\}$.
7. Teorema (Hajnal - Juhász). Se X é um espaço topológico T_{1} tal que todo subespaço discreto é enumerável e todo ponto admite pseudo-base enumerável, então $|X| \leq 2^{\omega}$.

Demonstração Suponha $|X|>2^{\omega}$ e tome $\left\{V_{x}^{n}: n<\omega\right\}$ pseudo-base enumerável decrescente em x. Então, para quaisquer x, y distintos de X, existem $m, n<\omega$ tais que $y \notin V_{x}^{n}$ e $x \notin V_{y}^{m}$. Supondo, sem perda de generalidade, que $n>m$ temos $y \notin V_{x}^{n}$ e $x \notin V_{y}^{n}$. Defina uma coloração

$$
\begin{aligned}
c:[X]^{2} & \rightarrow \omega \\
\{x, y\} & \rightsquigarrow n \text { onde } n=\min \left\{m: y \notin V_{x}^{m} \text { e } x \notin V_{y}^{m}\right\} .
\end{aligned}
$$

De $|X|>2^{\omega}$ e $\left(\left(2^{\omega}\right)^{+}\right) \rightarrow\left(\omega_{1}\right)_{\omega}^{2}$ temos que existe $H \subseteq X$ tal que $c \upharpoonright[H]^{2}=\{k\}$ e $|H|=\omega_{1}>\omega$. Agora, basta notar que para todo $x \in H$ temos $H \cap V_{x}^{k}=\{x\}$, portanto, H é um subespaço discreto de cardinalidade maior que ω. Absurdo.

