
Power Efficient Error Control for Bluetooth-based Sensor Networks 

     João H. Kleinschmidt, Walter C. Borelli                                        Marcelo E. Pellenz 

School of Electrical and Computer 

Engineering

State University of Campinas - UNICAMP 

{joaohk, borelli}@dt.fee.unicamp.br 

Graduate Program in Computer Science 

Pontifical Catholic University of Paraná - 

PUCPR

marcelo@ppgia.pucpr.br

Abstract

This paper studies different error control schemes in 

wireless sensor networks with Bluetooth technology. The 
tradeoff between reliability and energy consumption of 

Bluetooth packets are analyzed, using different error 

control techniques, such as retransmission and channel 
coding The AUX1 packet is utilized for custom coding 

and also are proposed adaptive techniques based on the 
number of hops of the network. The wireless channel is 

modeled with Rayleigh fading. The results obtained may 

be used as references to determine the packet type in a 
sensor application. 

1. Introduction 

Bluetooth [2] is a low cost wireless radio technology 

designed to eliminate wires and cables between mobile 

and fixed devices over short distances, allowing the 

formation of ad hoc networks. The lower layers of 

Bluetooth became the IEEE 802.15 standard for wireless 

personal area networks (WPANs). It operates on the 2.4 

GHz ISM (Industrial, Scientific and Medical) band 

employing a frequency-hopping spread spectrum 

(FHSS) technique. The transmission rate is up to 1 

Mbps, using GFSK (Gaussian Frequency Shift Keying) 

modulation. The devices can communicate with each 

other forming a network (called piconet) with up to eight 

nodes. Within a piconet, one device is assigned as a 

master node and the others act as slave nodes. Devices 

in different piconets can communicate using a structure 

called scatternet. The channel is divided in time slots of 

625 s. A time-division duplex (TDD) scheme is used 

for full-duplex operation. 

The recent advances in wireless communications and 

digital electronics led to the implementation of low 

power and low cost wireless sensors. A sensor node must 

have components for sensing, data processing and 

communication. These devices can be grouped to form a 

sensor network [1]. Some of the applications of sensor 

networks are monitoring disaster areas, managing 

inventory, monitoring product quality, environmental 

observation, monitoring of human physiological data and 

so on. The network protocols, such as formation 

algorithms, routing and management, must have self-

organizing capabilities. In general, sensor networks differ 

from ad hoc networks in some aspects [1], namely, the 

number of sensor nodes can be very high; sensor nodes 

are prone to failures; sensor nodes are densely deployed; 

the topology of the network can change frequently; 

sensor nodes are limited in computational capacities, 

memory and energy.  

Topics like the development of new medium access 

control (MAC) protocols for sensor networks and how to 

use the existing ones, have received great attention 

recently. The MAC protocol is responsible for the 

creation of the network infrastructure and to share 

communication resources between the nodes.  

The Bluetooth MAC protocol was designed to 

facilitate the formation of ad hoc networks. This 

characteristic makes the Bluetooth technology attractive 

for sensor networks applications, together with its low 

cost, multi-hop capabilities, device discovery process 

and energy saving modes. In [3] and [4] sensor networks 

were implemented using Bluetooth as the MAC 

protocol. Some of the important issues are the scatternet 

formation and routing in order to achieve the multi-hop 

communication. Although many protocols have been 

proposed in the literature, few of them consider sensor 

applications, which have hard energy requirements. 

Some proposals were presented in [5], [6] and [7]. 

The wireless channels can have high bit error rates 

due to interference and the multipath propagation that 

characterizes the radio channel, leading to energy waste. 

In order to improve the reliability of the data sent in the 

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



wireless channel, many techniques can be employed,

such as automatic repeat request (ARQ), forward error

correction (FEC) or transmission power control.

In this paper we analyze the performance of 

Bluetooth data packets in terms of energy consumption

and reliability. Some previous works analyze the

performance of the packets [8], but consider the

throughput as the performance metric, that is a secondary

parameter in sensor networks, that have low data rates.

The Bluetooth packets used in data transmission have

different types of error correction, as retransmission

strategy or Hamming codes. The structure of these

standard packets is briefly presented in Section 2. It is

also discussed custom coding [9] in Bluetooth and is

proposed an adaptive scheme of error control. In Section

3 is showed the simulation model. Section 4 presents the

results obtained and Section 5 gives the final

considerations.

2. Bluetooth error control strategies 

The Bluetooth specification [2] defines seven data

packets (asynchronous). Each packet has three fields: the

access code (72 bits), header (54 bits) and payload (0-

2745 bits). The access code is used for synchronization 

and the header has information such as the packet type, 

flow control and acknowledgement. The access code is 

error robust, because the synchronization words have a 

large Hamming distance (dmin = 14). The header contains 

a (n,k)=(3,1) repetition code for error verification. The

payload carries the data bytes that usually are protected

by an ARQ stop-and-wait strategy based in a CRC

(Cyclic Redundancy Check) code. The receiver indicates 

in the next return packet if the transmission was

successful or not. The DMx packets have the data

protected by a Hamming code (15,10) with rate 2/3. This

code corrects all the single bit errors and detects all two

bits errors in a code word. Table 1 shows this information

for each asynchronous packet.

Table 1. Asynchronous packet types

Packet
Time

Slots

Payload

(bytes)
FEC

CRC

and

ARQ

DM1 1 0-17 Yes Yes

DH1 1 0-27 No Yes

DM3 3 0-121 Yes Yes

DH3 3 0-183 No Yes

DM5 5 0-224 Yes Yes

DH5 5 0-339 No Yes

AUX1 1 0-29 No No

A received packet is not accepted when anyone of the 

five events happen: (A) the destiny fails to synchronize

with the access code of the received packet; (B) the 

header of the received packet is corrupted (after the 

repetition code is decoded); (C) the data of the received 

packet are corrupted after the Hamming code is decoded,

causing the CRC check to fail; (D) the source is unable to

synchronize with the access code of the return packet and

(E) the header of the return packet is corrupted. In [8], 

the probabilities of these events were derived and are

adapted to be used in this paper.

The synchronization is made correlating the

demodulator output with a stored copy of the access

code. A packet is synchronized if the correlator output

exceeds a given threshold T. The frame is synchronized if

at least T of the 72 bits of the access code were properly

demodulated (T = 65 in this work). The synchronization

with the received packet occurs if there are no more than 

(72 – T) errors in the received access code: 

,)(1)(][
72

0

7272
T

k

k

f

k

f ppAP
k (1)

where )( fp is the symbol error probability of the

forward channel as a function of the average received

signal-to-noise ratio (SNR) . Since the return packet 

also has an access code of 72 bits, the probability for the

event D has the same form of event A,

,)(1)(][
72

0

7272
T

k

k

r

k

r ppDP
k    (2)

where )( rp is the symbol error probability of the

reverse channel. The forward channel is used to send data

packets and the reverse channel indicates the success or

not of the transmission of a packet (for unidirectional

transmission). The events B or E occur if any of the eight 

triples of the repetition code (3,1) were incorrectly

decoded,
1832 )](1[)](1)[(3][ fff pppBP  (3)
1832 )](1[)](1)[(3][ rrr pppEP  (4)

The most probable error is that defined by event C.

For DHx packets it occurs when any of the data bytes 

were received with error: 

,)(1][
b

fpCP (5)

where b is the size of the payload in bits. For DMx

packets the data are protected by a Hamming code, where

B is the number of blocks with 10 bits. The probability of

event C for the DMx packets is:

)](1[)](1)[(15][ 1514 B

fff pppCP    (6)

Bluetooth uses GFSK modulation with time-

bandwidth product BT=0.5 and modulation index

between 0.28 and 0.35. The error symbol probability

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



)(p  for the GFSK modulation must be applied in

equations (1) and (6) and is given by [11]:

)(
2

1
),()( 2/)(

1

22

abIebaQp o

ba
(7)

Q1 (a,b) is the Q-Marcum function, Io is the modified

Bessel function of first kind and a e b are constants that 

depend on the signal-to-noise ratio [11]. Thus, the packet

error probability of the forward channel, PERf, and 

reverse, PERr, can be defined [12] as:

0
)(1 fff dC]P[B]P[A]P[fPER    (8) 

0
)(1 rrr dE]P[D]P[fPER    (9) 

where f( f) and f( r) are the probability density functions

of the forward and reverse channels, respectively.

An adaptive scheme can be used to verify the

importance of a packet and choose an efficient error

control for that particular packet. In Bluetooth case, to

change the error correction signifies to change the packet 

type to be transmitted. In order to apply an adaptive

scheme in a sensor network, where the most important

issue is to reduce the energy consumption, it was used an 

approach based on [10].

The packets defined by the standard have specific

error control, but custom coding can be implemented

using the AUX1 packets [9]. Using this packet, the ARQ

is turned off and the Bluetooth device delivers the

received bits independently if they are correct or not. 

While the six asynchronous packets with ARQ maintain

a reliable link with random delay (which approaches 

infinity for low values of SNR), the AUX1 packet 

provides an unreliable link with delay of one time slot.

The remaining packets cannot be used to implement

other error correcting codes without modification in the

specification [2]. In [9] is proposed the use of BCH codes

with the CRC code for error detection. In this case, as the

ARQ is turned off in the device, it must be implemented

at the application layer. The coder is implemented

inserting in the payload of the AUX1 packet a (232, k)

BCH code. The inputs of the BCH coder are the data and

two CRC bytes, resulting in a packet with K=k-16 data

bits. In order to accept the packet, the events A, B and C

must not occur. Only the payload decoding probability

(event C) is different, and is given by equation (10). The 

code considered in this paper was a (232, 156) binary

BCH code that can correct up to t=10 errors [9].

)(1)(][
0

232232
t

k

k

f

k

f ppCP
k

 (10) 

We propose other modification in the AUX1 packet:

apply in the payload the same Hamming code of the

DMx packets, but without the use of CRC. Although this

strategy can decrease the reliability of transmitted

packets, in terms of energy consumption can be very

useful, because is not necessary to send a return packet to

indicate the success of the transmission. Table 2 shows 

the information of error control for the two new packet 

types.

Using the same error control scheme for the whole

network can be a good choice for some cases, but not

always. In some situations if a packet gets lost is not a

big problem, but sometimes the loss of a packet cannot

be tolerated.

Table 2. Packet types with custom control
coding

Packet
Time

slots

Payload

(bytes)
FEC

CRC

and

ARQ

HAM 1 0-18
Hamming

(15,10) No

BCH 1 0-17
BCH

(232,156)
Yes

The importance of a packet is determined using the

multi-hop principle, as show in Fig. 1. The packet utilized 

and consequently, the error control technique applied, will 

be based on the number of hops that the packet had in the

network. The sensor node sends a data packet containing

the information of the temperature of an environment, for 

example, to the collector node. The collector is a node

that receives the data of all the nodes of the network or of 

some area of the network.

However, before the packet reaches the collector node, 

it must flow through the other nodes of the network that

can be sensors or another type of node with routing

capacity. If the packet gets lost at the first hop, only the

energy to send the packet from sensor to node 1 was lost.

If the packet is corrupted after node 4 sends it to the

collector, more energy was spent to send the packet 

through the network. Thus, a packet is more important as

more hops it had in the network. An adaptive scheme can 

use stronger error control techniques for packets that have

more hops and less error control for the first hops.

collectorsensor node 1 node 2 node 3 node 4

Figure 1. Example of a multi-hop
sensor network

3. Simulation model 

In order to evaluate the energy consumption of the

packets, simulations were implemented using the Matlab

software and are described in the sequence. The network

considered is showed in Fig. 1, where a sensor must send

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



data to the collector node. This structure is only one of 

many routes of the sensor network that can have different

topologies. Fig. 1 represents one path of many that can 

exist in the sensor network. It is being assumed that the

Bluetooth scatternet was formed and that the scheduling

policy and the routes are also defined, using protocols as 

the proposed in [5], [6] and [7]. The packet data is

generated by the sensor node, that sends it to node 1, and

so on, until it reaches the collector node. The wireless 

channel was modeled using the Rayleigh fading, whose 

probability density function is given by:

0for,exp
1

)(f (11)

where is the average received SNR and  is the

instantaneous SNR.

Using equation (11) in (8) and (9) we calculate the

error probabilities of each packet. These probabilities are

given as a function of the signal-to-noise ratio. When a

node receives a packet it is verified if errors occurred in 

the reception. If there were no errors the packet is sent o

to the next node. In the packets with ARQ, a packet is

sent to the transmitter indicating the success of the 

transmission (a Bluetooth NULL packet). If errors are 

detected, the packet is discarded (in the case of packets 

without ARQ) or is sent to the transmitter a NULL

packet indicating the unsuccessful transmission, so the

packet will be sent again. It is important to note that the

NULL packet used to acknowledge a transmission can 

also be corrupted, although do not carry any data (it has

only the fields of access code and header).

For the simulation of the energy consumption was

used a simplified model. Since any specific hardware is

being used, the energy consumption is expressed only in

normalized terms. The energy considered are the energies 

spent in the transmission and reception of the packets, 

which are the tasks with more energy consumption. The 

energy to code or decode a packet was not considered.

The coding is generally simpler and has less consumption

than decoding [10][13]. It is also considered that the

Bluetooth device is in the connected state. Energy 

savings can be made during idle times using the power

management schemes of Bluetooth (hold, park and sniff). 

Considering that the reception of a determined number of

bits consume approximately 75 per cent of the energy

spent to transmit the same number of bits, as stated in

[10], the total energy consumed E is given by:

                   E = nbits*T*1 + nbits*R*0.75 +

                         nack*Ta*1+ nack*Ra*0.75                     (12) 

being nbits the total number of bits of a packet (access 

code, header and payload), T the total number of

transmitted packets (including retransmissions), R the

total number of received packets (including 

retransmissions), nack the total number of bits of the

return packet (NULL) and Ta and Ra the number of the

return packets transmitted and received, respectively.

The reliability is given by the percentage of the sent

packets that arrive correct at the collector node. Let npac

be the total number of packets transmitted by the sensor

and nerror the number of packets that arrive with error at

the collector node, the reliability C is given by:

                  C = ((npac – nerror)/ npac) * 100 (13)

For the adaptive error control, each packet must have 

a counter with the number of hops that packet traversed

in the network. This can be implemented as a field in the 

payload of the packet. Two different adaptive schemes

were used: ADP1 and ADP2. A packet with less error

control is used in the first hop and a packet with more

powerful coding in the others. For the case with two

hops, the first scheme (ADP1) uses the AUX1 packet in

the half of the transmissions of the first hop and BCH in

the second hop. In the second adaptive scheme the AUX1 

packet is used in the first hop and DH1 in the second hop.

For the five hops case, ADP1 uses AUX1 in the first hop 

and BCH in the next hops. In the second scheme ADP2, 

the first hop uses AUX1, the second hop HAM and BCH 

for the others. 

In the simulation the sensor sends 10000 packets to

the collector, with four different channel conditions. The

first simulation is an error free environment. In other

cases the channel is modeled with Rayleigh fading with

30dB, 20dB and 10dB of average received signal-to-

noise ratio. The data size to be transmitted has 17 or 32

bytes. The data can be sent in regular intervals and can 

indicate the temperature of an environment or other

variable that can be transmitted with few bytes. The

value of 17 bytes was chosen because is the maximum

number of data bytes that the DM1 and BCH packets can 

transmit.

In order to transmit 32 information bytes, two packets

are needed for the DM1, DH1, AUX1, HAM and BCH.

While the first packet has the maximum number of data

bytes, the second contains only the number of bytes to

complete the 32 data bytes. In the simulations with 17

bytes the packets DM3, DH3, DM5 and DH5 are not

used because these packets with few bytes would be 

reduced to DM1 or DH1. With 32 bytes the DM3 and 

DH3 packets are used and need only one packet to send 

the data.

4. Results 

Fig. 2 to 12 show the results obtained of energy

consumption and reliability of received packets. In the 

packets with retransmission is being considered that the

CRC code detects all errors. It is for this reason that these

packets always reach 100 per cent of reliability, at the 

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



cost of a higher energy consumed. The results are mean

values obtained with several simulations.

For a channel without errors (Fig. 2 and 9), the AUX1 

packet always has advantages in comparison with others,

independently of the number of hops or data size,

because it reaches the same 100 per cent of reliability 

with the less energy consumption. In this condition, the

worst packet is the DM1, because the redundancy 

inserted by the Hamming code and the return packet adds 

bits to be transmitted without necessity. However, a free-

error channel does not occur in practice. For a Rayleigh 

channel with 30 dB of signal-to-noise ratio (Fig. 3, 6 and

10) some errors begin to appear in the transmitted bits.

Again the AUX1 packet has the least consumption, but

the reliability decreases. Even though it is not 100 per 

cent, it is very high, usually above 90 per cent. This loss

is not always a problem, because in many applications 

several sensors collect redundant information of an 

environment. If some data get lost, the remaining sensors 

can still give reliable measures. The HAM packet is more

reliable, but also with higher energy consumption. The

adaptive scheme 2 had a good efficiency for the 2-hop 

case (Fig.3 and 10), consuming just a little more energy

than the no ARQ packets and reached almost 100 per

cent of reliability.

In channels with 20dB of SNR (Fig. 4, 7 and 11), 

several changes can be noted. Since the channel 

conditions are not good, with more errors, the packets

with error control begin to have a better performance.

The AUX1 packet still reaches almost 80 per cent of 

reliability for 2 hops and 17 bytes (Fig. 4), but with 5

hops (Fig. 7) the reliability decreases considerably, 

because the error probability is accumulated on each hop. 

The adaptive schemes ADP1 and ADP2 have a good

improvement at these conditions because the use of more

efficient error control contains the accumulation of error

probability. The packets with retransmission have a 

significant improvement in the energy consumption if

compared with 30dB. Another important observation is

that for packets with 32 data bytes (Fig. 9, 10, 11 and 

12), the DH3 packet has high reliability and consumption

almost equal to the no ARQ packets. This occurs because 

while the others need two packets to send the data

(adding one more header and access code), the DH3 (and 

DM3) send all information in only one packet. It already

can be noted that increasing the number of data bytes,

these packets always will have advantage compared to

the others. For higher data-rate sensor networks the

packets with custom coding and the adaptive schemes

will not have good efficiency, because more packets are 

needed to send the same amount of data.

When the signal-to-noise ratio is only 10dB (Fig. 5, 8 

and 12), the channel will have many errors and the

energy consumption have a great increase for the packets 

with ARQ, due to the great number of retransmissions.

At the same time, the packets without ARQ have its

reliability almost reduced to zero. From all of the ARQ

packets, the BCH is that have the least energy

consumption for packets with 17 bytes (Fig. 5 and 8) and 

for 32 bytes (Fig. 12) the DM3 packet. As it expected,

coding gives better results when the channel conditions

are worse. The adaptive schemes give a little 

improvement at the energy consumption, but the

reliability is not high.

From the results obtained can be noted that for each

channel condition a different packet has a better

performance and a method to estimate the signal-to-noise

ratio would be very useful. However, this requires that

the device has this characteristic and estimates the SNR 

for each received packet. Each application can have 

different requirements and if the reliability demanded is

not very high, a lot of energy can be saved. The number

of hops also directly affects the choice of the packet. For 

the Bluetooth case, if the data size is more than 32 bytes

it is not interesting to use the AUX1 packet or the HAM

and BCH, leaving the choice of the packet between DM3 

and DH3 or DM5 and DH5.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e
d

 (
u

n
it

s
)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

Figure 2. Error-free, 17 bytes, 2 hops

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

u
n

it
s

)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

Figure 3. Rayleigh 30 dB, 17 bytes, 2 hops

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

u
n

it
s

)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
  
(u

n
it

s
)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

Figure 4. Rayleigh 20 dB, 17 bytes, 2 hops Figure 7. Rayleigh 20 dB, 17 bytes, 5 hops

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

u
n

it
s

)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e
d

 (
u

n
it

s
) DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

Figure 8. Rayleigh 10 dB, 17 bytes, 5 hops
Figure 5. Rayleigh 10 dB, 17 bytes, 2 hops

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e
d

 (
u

n
it

s
) DM1

DH1

AUX1

HAM

DM3

DH3

BCH

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e
d

 (
u

n
it

s
)

DM1

DH1

AUX1

HAM

BCH

ADP1

ADP2

Figure 6. Rayleigh 30 dB, 17 bytes, 5 hops Figure 9. Error-free, 32 bytes, 2 hops

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e
d

 (
u

n
it

s
)

DM1

DH1

AUX1

HAM

DM3

DH3

BCH

ADP2

Figure 10. Rayleigh 30 dB, 32 bytes, 2 hops

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

u
n

it
s

)

DM1

DH1

AUX1

HAM

DM3

DH3

BCH

ADP1

ADP2

Figure 11. Rayleigh 20 dB, 32 bytes, 2 hops

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80 90 100

Reliability (%)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

u
n

it
s

)

DM1

DH1

AUX1

HAM

DM3

DH3

BCH

ADP1

ADP2

Figure 12. Rayleigh 10 dB, 32 bytes, 2 hops

5. Conclusion 

In this paper was studied the issue of energy

consumption in Bluetooth sensor networks using

different techniques of error control, based on 

retransmission and channel coding. The AUX1 packet 

can be useful in sensor networks because it do not use 

ARQ and permits that specific strategies of error control 

be employed. The utilization of BCH code and Hamming

code without CRC was proposed using the AUX1 packet. 

Adaptive schemes ADP1 and ADP2 that change packet 

type accordingly to the number of hops were also

proposed. Other similar adaptive techniques can be

proposed to decrease the energy consumption in bad 

channel conditions. In a channel with good conditions the 

packets without ARQ have low consumption and high

reliability. Although the energy spent to code and decode 

was not considered, the AUX1 packets and the adaptive 

schemes cam have additional benefits, because have less

coding and will spent less energy. The results obtained

can serve as indications of the packet type to be used in a 

sensor application for a given reliability.

6. References 

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. 

Cayirci, “A survey on sensor networks”, IEEE

Communications Magazine, pp. 102-114, August 2002. 

[2] Bluetooth SIG, “Specifications of the Bluetooth system”,

Core Version 1.2, November 2003. 

http://www.bluetooth.com

[3] O. Kasten and M. Langheinrich, “First experiences with

Bluetooth in the smart-its distributed sensor network”,

Workshop on Ubiquitous Computing and Communications, 

Barcelona, Spain, September 2001. 

[4] M. Leopold, M.D. Dydensborg and P. Bonnet, “Bluetooth 

and sensor networks: a reality check”, 1st ACM Conference

on Sensor Systems, Los Angeles, CA, USA, November 

2003.

[5] V. Mehta and M. El Zarki, “Bluetooth based sensor network 

for civil infrastructure health monitoring”, Wireless

Networks, Kluwer Academic Publishers, vol. 10, pp. 401-

412, July 2004. 

[6] S. Saginbekov and I. Korpeoglu, “An energy efficient 

scatternet formation algorithm for Bluetooth-based sensor 

networks”, 2nd European Workshop on Wireless Sensor

Networks, Istanbul, Turkey, February 2005. 

[7] H. Mathias, D. Jan and T. Dirk, “Energy-efficient data 

collection for Bluetooth-based sensor networks”, IEEE 

Instrumentation and Measurement Technology Conference, 

Italy, May 2004. 

[8] M.C. Valenti, M. Robert and J.H. Reed, “On the throughput 

of Bluetooth data transmissions”, IEEE Wireless

Communications and Networking Conference, Orlando, 

USA, March 2002. 

[9] M.C. Valenti and M. Robert, “Custom coding, adaptive rate 

control and distributed detection for Bluetooth”, Proc. IEEE

Vehicular Technology Conference, Vancouver, BC, 

September 2002. 

[10] J. Meer, M. Nijdam and M. Bijl, “Adaptive error control in 

a wireless sensor network using packet importance 

valuation”, Hardware/software co-design, Enschede,

Netherlands, May 2003. 

[11] J. Proakis, Digital Communications, New York, NY:

McGraw-Hill, 4th edition, 2001. 

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



[12] J.H. Kleinschmidt, M.E. Pellenz and L.A.P. Lima Jr., 

“Evaluating and improving Bluetooth piconet performance 

over Nakagami-m fading channels”, Proc. of the Ninth 

IEEE International Symposium on Computers and 

Communications, Alexandria, Egypt, July 2004. 

[13] C. Desset and A. Fort, “Selection of channel coding for 

low-power wireless systems”, Proc. IEEE Vehicular 

Technology Conference, Jeju, Korea, April 2003.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) 
0-7695-2421-4/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


