

Ferromagnetism in CuO nanowires on the top of CuO nanograins

Prof. José Antonio Souza, F. E. N. Ramirez, A. Zuniga, and D. Criado

Universidade Federal do ABC - Santo André, SP, Brazil

2014 MRS Fall Meeting & Exhibit November 30 - December 5, 2014 Boston, Massachusetts

General Properties of Bulk Cupric oxide (CuO)

Cupric oxide is a p-type semiconductor with a narrow band gap.

Semiconducting properties along with FM ordering functionality have been the focus of great attention;

➢ Different magnetism is observed in nanosize materials.

Outline

CuO nanowires preparation

Structural and Morphological Characterization

Magnetization Susceptibility Results

Conclusions

Nanowires production

✤Metal wires of Cu with 99.99% purity

✤The synthesis of nanowires was carried out by resistive heating and thermal oxidation methods

✤The as-received pure metal wires, suspended by two electric contacts, were heated by direct electric current or just put into a furnace.

Power Supplies

Furnace

Scanning electron microscopy

Several kinds of nanostructure of transition metal oxide can be produced by these methods

Scanning electron microscopy

The electrical current magnitude and exposed time play an important role regarding the morphology and number of nanowires.

> CuO nanowires 60-120 nm of diameter 1-2 µm in length

CuO nanowires Thin layer of CuO Cu₂O layer

First sample: $Cu_2O + CuO$ grains

Majority phase $Cu_2O - 86\%$

≻Minority phase CuO - 14 %

Second sample: Cu2O layer + CuO nanograins + CuO nanowires

SEM and TEM

X-ray Powder Diffraction

X-ray Powder Diffraction

► Majority phase Cu₂O - 77 %

≻Minority phase CuO - 23 %

Electronic Structure of Cu₂O and CuO

Cu [Ar] 3d¹⁰ 4s¹

Diamagnetic Negative contribution

Paramagnetic

> Bulk CuO: PM to AFM phase transition at T = 230 K

Magnetic Properties: First sample

Magnetic Properties

≻Increased the phase CuO to 23 %

Majority phase $Cu_2O - 77 \%$

AFM transition is induced at H = 5 kOe !!!

✓ The antiferromagnetic phase transition is observed at T = 230 K ✓ A huge paramagnetic-like contribution is also observed at low T

Magnetization Susceptibility M(T,H)

At low field a ferromagnetic-like contribution is observed;
At high field the diamagnetic contribution starts to be pronounced;
The results suggest ferromagnetic alignment in a AFM matrix.

The ferromagnetic-like contribution remains present up to 350 K regardless the onset of AFM transition at T = 230 K!

✓ Presence of AFM ordered core and a FM-like contribution coming from uncompensated spins at the surface of nanostructures.

✓ Presence of defects throughout the sample: lattice mismatch, crystalline boundary, formation of a twin boundary in CuO nanowires

Scanning electron microscopy

X-ray Powder Diffraction

Phase	CuO
Space Group	C2/c (monoclinic)
a (Å)	4.6842 (1)
b (Å)	3.4202 (1)
c (Å)	5.1279 (1)
V (Å ³)	81.044 (1)
X ²	3.017
α	90
β	99.44 (1)
Ý	90
wRp	3.57
Rp	2.79

► Majority phase CuO 99 %

CuO nanowires CuO thin layer Cu₂O thick layer

CuO bulk (thick layer)

Magnetization Susceptibility M(T,H)

Heat treated in air at 900 °C for 90 minutes

The same sample!

✓ The AFM transition is more pronounced;
✓ The paramagnetic-like contribution is still there;
✓ We suggest that it may come from uncompensated charge - Cu³⁺

Hysteresis M vs. H at several temperatures

The AFM transition shows coercive field !
 Several papers claim that coercive field comes from FM contribution in nanostructured systems.

Effective Magnetic Moment

✓ Saturation magnetization for both samples

✓ Bohr magneton at low temperature

Conclusions

The AFM phase transition is suppressed in nanograins;

✓ The AFM phase transition shows up in nanowires at H = 5 kOe;

✓ A FM-like effect is observed in an AFM matrix;

✓ The effective magnetic moment is robust;

✓ The huge paramagnetic-like contribution is not related to nanoscale phenomena; it may come from uncompensated charge - Cu^{3+} .

Condensed Matter Laboratory at UFABC - Students

Dr. Gabriel – Post-doc

Fabian - PhD student

Cesar - PhD student

Emersson – Master student

João – Undergrad student

Cynthia - Master student

Gustavo - Undergrad student

Thank you for attention!

Acknowledgements

