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We apply a method for analyzing phase transitions to the well-known antiferromagnets LaMnO3 and
CaMnO3 using high-resolution thermal-expansion data. The critical exponents associated with the specific heat
��� are obtained. Within experimental error, the results suggest that LaMnO3 and CaMnO3 belong to the same
universality class. An additional byproduct of our analysis is estimates for the pressure derivative of the
magnetic phase transition temperature.
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I. INTRODUCTION

For the majority of systems, a thermodynamic phase tran-
sition results in a change in the order parameter �OP�.1,3 Co-
operative interaction between magnetic spins, in the special
case of a magnetic transition, leads to long-range ordering of
the spins and the OP is generally taken to be the magnetiza-
tion in ferromagnets �M�, or the sublattice magnetization in
the case of antiferromagnets. Its nonzero value in the ordered
phase corresponds to symmetry breaking of the system. In a
so-called continuous �i.e., second-order� phase transition, the
OP rises continuously from zero at the critical temperature
�Tc�, while for those discontinuous transitions �i.e., first or-
der�, for which an OP can be defined, a jump is observed.1 In
both cases, an anomaly appears in basic thermodynamic
quantities at Tc. Continuous phase transitions are character-
ized by the buildup of fluctuations in the OP near Tc and the
subsequent divergence of them at Tc. The fluctuations corre-
spond to short-range clusters of the ordered phase, which are
not correlated with regard to their mutual position. The be-
havior of the system near Tc is described by divergences in
the correlation length ���, which in turn leads to divergences
in physically measurable quantities such as the magnetic sus-
ceptibility. The molar heat capacity at constant pressure �CP�
either diverges or experiences a jump or exhibits a cusp at Tc.
In contrast, at a discontinuous phase transition � remains
finite and CP exhibits a spike2 at Tc.

For continuous phase transitions, which are the subject of
this work, the behavior of physical quantities such as spon-
taneous magnetization �M =M�H=0��, magnetic susceptibil-
ity ��= ��M /�H�H→0�, �, and CP obey power laws of the
reduced temperature, t��T−Tc� /Tc, governed by the critical
exponents, �, �, �, and �, respectively, near Tc.

1,3 Herein, we
are primarily interested in the critical exponent �. The vol-
ume thermal-expansion coefficient times temperature ��T�
and isothermal compressibility coefficient ��� scale with the
same critical exponent4 as CP, ��t�−��. The critical region is
loosely defined by the reduced temperature range which is
dominated by a power-law behavior characterized by a single
critical exponent �. Empirical observation has shown that for
magnetic systems, the critical region begins around log�t��
−1, which coincides approximately with the break down of
molecular-field theory at about the same point.5

The critical exponents are universal in the sense that a
wide range of materials exhibit the same exponents.1,3 These
universality classes depend on the spatial dimensionality of
the system, its symmetry, the number of components which
comprise the OP, and the range of the microscopic interac-
tion responsible for the phase transition.1

In previous work,4 we proposed a method for the simul-
taneous analysis of CP and the volumetric thermal expansion
coefficient � at constant applied magnetic field B. This
method reveals that CP is an asymptotically linear function
of �T and for continuous phase transitions they scale ac-
cording to

CP = T� �S

�T
	

c

+ v�T� �P

�T
	

c

. �1�

In this equation, S is the molar entropy, v is the molar vol-
ume, and the derivatives ��S /�T�c and ��P /�T�c are along the
transition line. This relation holds for temperatures in the
vicinity of Tc and reveals that in this region, CP

� and �T scale
with the same critical exponent. In practice, CP

� is defined as
CP

� �CP− �a+bT+T��S /�T�c�. The linear term reflects con-
tributions from degrees of freedom decoupled from the lat-
tice expansion associated with the phase transition. Accord-
ing to Eq. �1�, a continuous phase transition must exhibit
good overlap between CP

� and �T	, where 	 is a scale fac-
tor; note that v does not change significantly in the region
where the overlap is physically significant. After subtraction
of the linear term, Eq. �1� may be rewritten as4

dTc

dP
=

v�T

CP
� . �2�

Thus, this method can predict the pressure derivative
dTc /dP.

Near Tc, CP
� and �T	 can be fitted by the expression

�T	 
 CP
� = �A�/����t�−�� + B� + Dt , �3�

where �A� /���t�−� represents the leading contribution to the
singularity of CP and the linear term B�+Dt represents a
background contribution. The one-parameter scaling theory
requires that �−=�+ for continuous phase transition. If �
�0, CP shows a cusplike transition, remains finite, and has
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the value of B at Tc. In this case, B should be the same above
and below Tc, �B+=B−�. On the other hand, if �
0, CP

shows diverging behavior, becoming infinite at Tc. In that
case, one should consider corrections to scaling due to non-
linear scaling fields at t=0.6 In essence, this arises because
the second derivative of the free energy is not required, from
a theoretical standpoint, to be continuous in the absence of
the magnetic field. Therefore, the constant B may contain
contributions associated with the phase transition �or decou-
pled from the regular background� and it may acquire differ-
ent values6–8 above and below Tc. When �=0, CP can show
a simple discontinuity or a logarithmic divergence at Tc, with
no power-law dependence.1

We applied this method to magnetic transitions4,9,10 on
three occasions to determine � using a high-resolution
thermal-expansion technique.11 In those cases, � was found
to be positive ��
0�. Here, we apply it to the antiferromag-
nets LaMnO3 and CaMnO3 revealing exponents �=
−0.13�3� and −0.12�2�, respectively.

LaMnO3 and CaMnO3 samples were prepared using the
conventional solid-state method. Heat capacity was mea-
sured using a Quantum Design physical properties measure-
ment system employing a thermal relaxation technique.12

High-resolution thermal-expansion measurements were per-
formed using a fused quartz capacitive cell with a
sensitivity11 in �l of 0.1 Å. The relative sensitivity is at least
3 orders of magnitude better than that of diffraction methods.
This resolution provides the high-quality data required for
critical analysis. The average manganese valence was mea-
sured using iodometric titration. Under the assumption that
La, Ca, and O have the valences of +3, +2, and −2, respec-
tively, we found the oxygen content of LaMnO3 to be
3.04�0.01 and CaMnO3 to be 3.00�0.01.

Heat capacity at constant pressure CP and linear thermal-
expansion coefficient �= �1 /L�300 K���d�L /dT�, where L
is the sample length �we have assumed that for our polycrys-
talline samples �=3��, for LaMnO3 and CaMnO3, are
shown in Fig. 1. A distinct peak with 	 shape in both CP and
� is observed at the paramagnetic to antiferromagnetic �AF�
phase transition occurring at the Néel temperatures TN

=135.5 K and 122.6 K for LaMnO3 and CaMnO3, respec-
tively. A 	-shaped peak �or cusp� along with the absence of
hysteresis13 suggest a continuous phase transition. The
rounding of the peak, most pronounced for LaMnO3 �see
Fig. 1�, can be associated with sample inhomogeneity. This
effect is observed even in single crystals and is likely attrib-
utable to Mn, La, and/or oxygen defects.14,15 Experimental
contributions to the rounding of the peaks include the large
measuring heat pulses in the relaxation technique.12 Al-
though this is absent in our thermal-expansion measure-
ments, the temperature spacing between data points also con-
tributes to rounding when we calculate � by numerical,
point-by-point differentiation, from our sample length versus
T data. However, we have found the thermal-expansion tech-
nique superior to CP measurements in revealing this diver-
gent behavior because it is less susceptible to finite-size
effects.

To apply Eq. �1�, we first subtract a linear contribution
�a+b�T� �where b�= �b+ ��S /�T�c�� from CP�T� �mimicking
a conventional background� and find a rough value for the
scale factor 	 to collapse CP

� and �T	 onto one curve. Af-
terwards, the constant a, linear coefficient b�, and 	 values
are refined to enlarge the overlap range between CP

� and
�T	. Figure 2 shows the resulting overlap between CP

� and
�T	 suggesting a continuous phase transition for LaMnO3
and CaMnO3. The scale factors 	 are found to be
27 000�300 J /mol K and 26 000�300 J /mol K, respec-
tively. Using Eq. �2� �v=3.57�10−5 m3 /mol�, values of
dTN /dP=3.9�6� K /GPa and 4.1�6� K/GPa are obtained for
CaMnO3 and LaMnO3, respectively. These pressure deriva-
tives obtained using our scaling method are in agreement
with those measured experimentally �3.4 K/GPa and 5.4
K/GPa for CaMnO3 and LaMnO3, respectively�.16

The critical exponent for each sample is obtained using
the thermal-expansion data which have higher density of
points and exhibit less rounding of the transition than the
heat-capacity data. This difference is likely associated with
finite-size effects.4,12,17,18 Although more complicated fitting
may be employed, we allow only a background subtraction
using ��T	−B�−Dt�= �A� /���t�−�. First, we assume that
�
0 �CP diverging transition� for LaMnO3 and CaMnO3
and choose B�, D, and Tc that maximize the power-law fit-
table temperature range of �T	 versus �t� on a log10-log10

FIG. 1. Linear thermal-expansion coefficient �=� /3 �solid
symbols� and heat capacity CP �open symbols� for CaMnO3 and
LaMnO3. Dashed lines indicate phase transition temperatures.

FIG. 2. CP
� �solid symbols� and �T	 �open symbols� versus T

illustrating the overlap between them.
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scale constraining �−=�+. Figures 3�a� and 3�b� display
��T	−B�−Dt� versus �t� on a log10-log10 scale above and
below Tc for LaMnO3 and CaMnO3, respectively. Careful
inspection of Fig. 3 reveals poor linearity for T�Tc and a
small linear temperature range. Since the above analysis with
�
0 is not so convincing, we let ��0 implying �−�T	
+B�+Dt�= �A� / �����t���� and repeat the same procedure
choosing B, D, and Tc that maximize the linear temperature
range. In this case, B is constrained to be the same above and
below Tc. Figures 4�a� and 4�b� show the �−�T	+B�+Dt�
versus �t� on a log10-log10 scale above and below Tc for
LaMnO3 and CaMnO3, respectively. The agreement of �+
=�− and the linear T range with one-parameter scaling
theory is better. Notable is the improved linearity below Tc
and a larger region of linearity �especially for T�Tc in the
case of CaMnO3�. The resulting parameters are, B�

=45�4� J /mol K and D=44�3� J /mol K for LaMnO3 and
B�=60�4� J /mol K and D=50�3� J /mol K for CaMnO3.
The critical exponent is determined as the slope of the linear
region. Therefore, the inherent rounding of the transition
close to Tc and the deviation from linearity are not included
in determination of the slope. Though the reduced tempera-
ture range wherein our experimental data obey the critical
behavior expression is small, it is inside of the �t��−1
boundary where the observation of true critical behavior is
expected.5 From the y intercept and the slope, we obtained
the critical parameters: �=−0.13�3� and A+ /A−=1.01�2� for
LaMnO3 and �=−0.12�2� and A+ /A−=1.06�2� for CaMnO3.
As discussed below, the values of � and A+ /A− suggest that
both compounds are of the same universality class.

The negative values of � imply that CP
� is finite at Tc �i.e.,

CP
� =B�. The experimental values of CP

� at Tc shown in Fig. 2
are 29.4 J /mol K and 39.4 J /mol K which have the same
order of magnitude as those obtained through the scaling
analysis 45�4� J /mol K and 60�4� J /mol K for LaMnO3
and CaMnO3, respectively. We expect this agreement would
be better if the inherent rounding were absent. The critical
exponent for LaMnO3 is in agreement with that obtained
from thermal diffusivity ��=−0.11�1�� measurements.15 This
is the first time that � is obtained for CaMnO3. At present,
there are no analytical calculations of critical exponents for
antiferromagnetic systems with which to compare our results
but the three-dimensional ferromagnetic Heisenberg model

was determined1 to have �=−0.11 and A+ /A−=1.5.
Numerous experimental determinations have been
made including MnF2 ��=−0.103�0.03�,19 Co3O4
��=−0.15�0.06�,20 RbMnF3 ��=−0.11�0.01�,21

Sr2FeMoO6 ��=−0.12�0.01�,22 CrO2 ��=−0.17�,23

La0.9Ag0.1MnO3 ��=−0.127�,24 NiO ��=−0.118�0.006�,25

and Ni ��=−0.1�0.03�.26 Comparing our results to these
reveals that all values are negative and in the vicinity of
−0.1.

CaMnO3 orders with an isotropic G-type structure
whereby each Mn magnetic moment is ordered antiferromag-
netically with its nearest neighbor via superexchange inter-
actions between Mn4+ ions.27 The ordering in LaMnO3 is
more complex because Mn3+ has 4d electrons which leads to
a Jahn-Teller effect and a tendency toward ferromagnetic or-
der via the superexchange interaction.27–29 It exhibits A-type
AF order where the Mn magnetic moments in the a-b plane
are ferromagnetically ordered but successive planes are
coupled antiferromagnetically. Thus, our findings reveal that
despite the difference in the antiferromagnetic structures27,28

exhibited by LaMnO3 and CaMnO3, the critical exponents
for both compounds, within experimental error, are identical
as are the values of A+ /A−. This indicates that LaMnO3 and
CaMnO3 belong to the same universality class. On the other
hand, another antiferromagnetic manganese oxide10

CaMn2O4 exhibits �=0.082�0.007 suggesting a different
universality class.

In summary, we have applied a method for analyzing con-
tinuous phase transitions to cusplike phase transitions ��
�0� where the heat capacity is finite at Tc. The critical ex-
ponents are determined for LaMnO3 and CaMnO3. Within
experimental error, both belong to the same universality
class. This is somewhat surprising, given the differences in
the antiferromagnetic ordered structures of the two com-
pounds. Values for dTc /dP were also determined.
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FIG. 3. �T	−B�−Dt as a function of the reduced temperature
�t� on a log10-log10 scale above and below Tc for �a� LaMnO3 and
�b� CaMnO3 assuming that � is positive. Values of B and D are in
J /mol K.

FIG. 4. −�T	+B�+Dt as a function of the reduced temperature
�t� on a log10-log10 scale above and below Tc for �a� LaMnO3 and
�b� CaMnO3 assuming that � is negative. Values of B and D are in
J /mol K.
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