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Abstract
A scaling behavior between heat capacity C∗

P and thermal expansion coefficient times
temperature �Tλ, where λ is a scale factor, is obtained for ferromagnetic La1−xCax MnO3 with
x = 0.20, 0.25, 0.30, 0.34, 0.40, and 0.45 compounds. The pressure derivative of the magnetic
phase transition temperature obtained through a scaling method is in good agreement with
experimental results for all samples. The critical exponents associated with the specific heat (α)
for x = 0.25, 0.30, and 0.34 are very close to the phase boundary where continuous phase
transitions become discontinuous. This is attributed to strong coupling among the spin, charge,
and lattice degrees of freedom, which indicates that the magnetization alone would be a poor
choice for the order parameter in these systems. Based on thermodynamic arguments, a phase
diagram with diverging, cusp-like, near first order, and first order phase transitions is presented.

1. Introduction

The theory of phase transitions and critical phenomena is one
of the most important topics of condensed matter physics. In
general, phase transitions are brought about by cooperative
interaction between spins, charge, and phonons and they range
from magnetization of ferromagnets and boiling of water to
superconductivity [1, 2]. A change in the order parameter (OP)
magnetization in ferromagnets, defining a phase transition, can
be induced by thermodynamic parameters such as temperature,
pressure, or magnetic field, and leads to a long-range ordering
of the system.

According to thermodynamics, a first order phase
transition leads to a discontinuity in the first derivative of
the Gibbs free energy with respect to some thermodynamic
variable. At the phase transition point, two phases have
equal free energies but different entropy values. A latent
heat is necessary to convert one phase into another phase
by increasing the entropy of the system. Simultaneously,
the two phases are separated by an energy barrier in a
way they can coexist within a certain temperature interval.
As a consequence, the correlation length remains finite and
universality is no longer observed in discontinuous phase
transitions [1, 2].

On the other hand, continuous phase transitions exhibit
critical phenomena and they can be characterized by
parameters known as critical exponents. The behavior of the

system near the phase transition is described by divergences
in the correlation length which leads to variation in physically
measurable quantities. It has been shown that, for continuous
phase transitions, the molar heat capacity at constant pressure
CP is an asymptotically linear function of the volumetric
thermal expansion coefficient times the temperature �T [3].
Accordingly, a continuous phase transition must exhibit good
overlap between C∗

P and �T λ data, where λ is a scale
factor [3, 4]. An estimate of the pressure derivative of the
phase transition temperature involving these parameters may
also be done. Furthermore, in the vicinity of a continuous
phase transition, C∗

P and �T scale with the same critical
exponent [3, 4].

We applied this scaling method to diverging transi-
tions [3, 5, 6] (α > 0) using a high-resolution thermal
expansion technique [7]. Afterward, we showed that it
can be extended to cusp-like continuous phase transitions
(α < 0) observed in the antiferromagnets LaMnO3 and
CaMnO3 revealing exponents α = −0.13(3) and −0.12(2),
respectively [4]. Here, we apply this method for spin–charge–
lattice coupled ferromagnetic La1−x Cax MnO3, with x = 0.20,
0.25, 0.30, 0.34, 0.40, and 0.45 compounds, where the colossal
magnetoresistance effect is pronounced. The critical exponents
of the samples with x = 0.25, 0.30, and 0.34 are very close to
the first order boundary. We have shown on a thermodynamic
basis a phase diagram where diverging, cusp-like, near first
order, and first order phase transitions are present.
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Figure 1. (a) Linear thermal expansion �l/l , normalized to its value
at 6 K, (b) linear thermal expansion coefficient μ(T ) = d(�l/l)/dT ,
and (c) heat capacity CP for La1−x Cax MnO3.

2. Experimental details

The doped samples, La1−xCax MnO3, were prepared by the
sol–gel method. The x-ray powder diffraction confirmed
the single-phase nature of all samples. Heat capacity
was measured using a Quantum Design physical properties

measurement system (PPMS) employing a thermal relaxation
technique. High-resolution thermal expansion measurements
were performed using a fused quartz capacitive cell with a
sensitivity [7] in �l of 0.1 Å.

3. Results and discussion

Figure 1 shows the linear thermal expansion, linear thermal
expansion coefficient, and heat capacity for La1−x Cax MnO3

with x = 0.20, 0.25, 0.30, 0.34, 0.40, and 0.45. A contraction
in the volume across the phase transition temperature Tc due
to a ferromagnetic ordering leads to a diverging behavior in
CP and μ in all of these compositions. For the samples with
x = 0.25, 0.30, and 0.34, the peak in CP and μ is very high
and narrow while for x = 0.20, 0.40, and 0.45, it is smaller
and broad. This is illustrated in figure 2, where it is clearly
shown that the width at half maximum decreases, passing
through x = 0.33 which is the narrowest, and increases again
as charge carriers are introduced. The very narrow transition
of x = 0.33 indicates that the fluctuation-induced ordered
domains grow to macroscopic size very close to Tc. This
overall behavior is inversely proportional to the Tc values that
increase to Tc = 265 K (x = 0.33) and decrease as revealed
by the phase diagram [8]. On the other hand, the change in the
unit-cell volume across Tc decreases monotonically as shown
in figure 2. As we shall see, the pressure derivative dTc/dP
follows the same trend as charge carriers are introduced.

In order to apply the scaling method, we first subtract a
linear contribution (a + b′T ) [where b′ = (b + (∂S/∂T )c)]
from CP (T ) mimicking a conventional background and find a
rough value for the scale factor λ. By doing that C∗

P and μT λ

will be collapsed onto one curve. Afterwards, the constant a,
linear coefficient b′, and λ values are refined to enlarge the
overlap range between C∗

P and μTλ.
Figure 3 shows the good overlap between C∗

P and μTλ,
suggesting a continuous phase transition for all doped samples.
It is important to mention that thermal hysteresis is absent in
these samples which suggests a second order nature of the
phase transition. The values for λ are shown in figure 4.
The predicted dTc/dP values, using the scaling method (v =
3.57 × 10−5 m3 mol−1), for each sample are also plotted
in figure 4. They are in good agreement with experimental
values for all samples [9]. We note that the overlap between

Figure 2. The width at half maximum, obtained from thermal expansion data, and �V/V across Tc as a function of Ca concentration.
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Figure 3. C∗
P (open symbols) and μT λ (solid symbols) for

La1−x Cax MnO3 samples at the indicated doping levels illustrating
the overlap between them.

C∗
P and μT λ close to Tc for x = 0.25, 0.30, and 0.33 is

not as good for these compositions as for the others. Note
that the x = 0.33 composition has the sharpest transition
in μ. For example, the full width at half maximum for
x = 0.33 is �T = 1.3 K while the CP data reveal a
width of 5.3 K. Indeed, figure 3 reveals that the sharpness
of the feature at Tc for these samples observed through high-
resolution thermal expansion is not detected by heat capacity
measurements. The rounding of the peak in CP measurements
can be associated with sample inhomogeneity. Experimental
contributions to the rounding of the peaks include the large
measuring heat pulses in the relaxation technique [10]. This
is absent in our thermal expansion measurements. Therefore,
we have found the thermal expansion technique superior to CP

measurements in revealing this divergent behavior because it is
less susceptible to finite-size effects [3, 11]1.

The critical exponent for the samples with x = 0, 0.30,
and 1 was previously obtained [3, 4]. In order to estimate for
the other samples x = 0.20, 0.25, 0.34, 0.40, and 0.45 we
have used the same procedure as described elsewhere [3, 4].
Thermal expansion data which have higher density of points
and exhibit less rounding of the transition than the heat
capacity data were used. The behavior of α as a function of
Ca concentration is illustrated in figure 5. The doped samples
exhibit positive values with diverging behavior in CP and μ

1 In the thermal expansion measurement, temperature is changed at
0.2 K min−1, and any thermal averaging is associated with the derivative of
�L/L , which has a spacing of 0.2 K. In the heat capacity measurement, a
heat-pulse technique is employed with a typical temperature rise of 1%.

Figure 4. Scaling factor and the pressure derivative of dTc/dP and
critical exponent (b) as a function of Ca concentration.

(This figure is in colour only in the electronic version)

Figure 5. Critical exponent as a function of Ca concentration. The
value for x = 0.30 is from [3] and for x = 0 and 1 [4]. The dashed
line illustrates the boundary between first and second order phase
transitions. The solid line is a guide to the eye.

at Tc. For the samples with x = 0.25, 0.30, and 0.34, the
exponents are exceptionally large with magnitudes close to
one, revealing an anomalous critical behavior of the continuous
phase transition near Tc. The extremely large value of α near
x = 0.30 implies smaller exponents for the magnetization
(β) and magnetic susceptibility (γ ) if the exponent identity
α + 2β + γ = 2 holds [12].

From a thermodynamic point of view, the significance of
α → 1 can be appreciated by considering the leading power-
law term ((A±/α)|t|−α where t ≡ (T − Tc)/Tc) for CP in
the vicinity of the phase transition. In order to calculate the
entropy difference between the state at T1 < Tc and T2 → T −

c ,
one may integrate CP/T from T1 to T2. The sign (+) means
coming from above Tc and (−) coming from below Tc. When
T1 is close enough to Tc, the integral is given by

δS ∝ A−
Tc

∫ T2

T1

(Tc − T )−α dT

= A−
Tc

[
(Tc − T1)

1−α − (Tc − T2)
1−α

1 − α

]
. (1)
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When α → 1−, δS diverges. This makes the criterion
for continuous transition (S being continuous across Tc)
impossible and suggests instead a first order phase transition.

When α < 1, the phase transition is continuous and the
entropy difference from a paramagnetic state (T3 > Tc) to a
ferromagnetic state (T1 < Tc) �S ≡ S(T3 > Tc)− S(T1 < Tc)

may be obtained as

�S ∝ 1

Tc

∫ T3

T1

(Tc − T )−α dT

= 1

Tc

[
(Tc − T3)

1−α − (Tc − T1)
1−α

1 − α

]
(2)

which vanishes when T1 → T −
c and T3 → T +

c . That is,
there will be no discontinuity of entropy across Tc. This is
the fundamental requirement for a continuous phase transition
(�S = 0). This analysis indicates that a phase transition with
an exponent close to one is in close proximity to the phase
boundary where second order (continuous) transitions become
first order, as illustrated in figure 5. In general, this close
proximity to first order can induce a first order interpretation
of phase transitions. On the other side of the phase diagram
(figure 5) when α = −1, the phase transition is continuous.
An exponent α = −1 is predicted in the three-dimensional
spherical model [13] for a ferromagnet and is expected to occur
in the extreme disorder limit [14].

We believe that the large α values reported herein reflect
that the order parameter is more complex than typically
assumed. In the clean limit of an ideal system (without
disorder), the competing order parameters coming from the
spin, charge, and lattice degree of freedom would produce
a fluctuation-induced first order phase transition [15]. Other
studies have shown that introducing an infinitesimal amount
of disorder, inherent in solid solutions, drives the system to
a continuous phase transition [16]. A general discussion of
phase transitions for strongly correlated systems indicates that
phase transitions in such systems may exhibit unusual critical
behavior that is not simple to interpret in terms of the Landau–
Ginzburg–Wilson paradigm [17]. They argue that many phase
transitions thought to be first order are actually continuous. We
believe that once an appropriate order parameter is found, a
better understanding of the thermodynamic quantities near the
phase transition will emerge.

4. Conclusion

In summary, we have applied a scaling method for analyzing
continuous phase transitions in ferromagnets La1−x Cax MnO3

with 0.2 � x � 0.45. The dTc/dP are obtained for all

samples. The critical exponent for x = 0.25, 0.30, and
0.34 is exceptionally large reflecting the close proximity to the
boundary where second order (continuous) transitions become
first order. It is suggested that the large α exponents may
be associated with strong coupling between spin, lattice, and
charge degrees of freedom that must be described through
an order parameter that is more complex than just the
magnetization. We have illustrated on a thermodynamic basis a
phase diagram where diverging, cusp-like, near first order, and
first order phase transitions are present.
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