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Abstract We revisit Holstein’s polaron model to derive an
extension of the expression for the thermal dependence of
the electrical resistivity in the non-adiabatic small-polaron
regime. Our analysis relaxes Holstein’s assumption that the
vibrational-mode energies �ωk are much smaller than the
thermal energy kBT and substitutes a fifth-order expansion
in powers of �ωk/kBT for the linear approximation in the
expression for the quasiparticle hopping probability in the
original treatment. The resulting expression for the electri-
cal resistivity has the form ρ(T ) = ρ0T

3/2 exp(Ea/kBT −
C/T 3 + D/T 5), where C and D are constants related to
the molecule–electron interaction energy, or alternatively to
the polaron binding energy, and the dispersion relation of
the vibrational normal modes. We show that experimen-
tal data for the La1−xCaxMnO3 (x = 0.30, 0.34, 0.40,
and 0.45) manganite system, which are poorly fitted by
the conventional non-adiabatic model, are remarkably well
described by the more accurate expression. Our results sug-
gest that, under conditions favoring high resistivity, the
higher-order terms associated with the constants C and D in
the above expression should taken into account in compar-
isons between theoretical and experimental results for the
temperature-dependent transport properties of transition-
metal oxides.
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1 Introduction

The transport properties divide materials into three cate-
gories: metallic, insulator, and semiconducting. The electri-
cal conductivity depends primary on the Fermi-level density
of states N(EF ). In metals, the Fermi-level density of states
is nonzero because one or more bands are partially filled [1,
2]. Conduction depends on electronic states near the Fermi
level and is affected by interactions with phonons and impu-
rities. In insulators and semiconductors, on the other hand,
the Fermi level lies within a band gap [2], so that N(EF ) =
0. Quantum tunneling or thermal excitation across the gap
is then necessary to conduct electricity. In insulators, con-
duction is associated with electronic diffusion [2], and in
semiconductors, with thermal activation [3, 4].

Not all metals are good conductors. The states that would
be available for conduction can become localized or trapped
if, for example, disorder distorts the otherwise periodic
lattice potential. The electronic states near EF can then
become localized, even though N(EF ) is nonzero. As in
insulators, conduction is still possible via hopping between
localized states [5]. Electrical transport is then controlled
by the energy splittings separating the localized states and
by the hopping distances. In these materials, commonly
called Fermi Glasses [5], two electrical transport processes
become possible: (1) if the states are strongly localized, the
overlap between wavefunctions decreases rapidly with dis-
tance, and electrons can only transition to the nearest states,
i. e., they can only undergo nearest-neighbor hopping; (2)
if the states are more weakly localized, and the thermal
energy is insufficient to allow charge transfer to the closest
states, hopping between randomly positioned states can be
energetically favorable. In this variable-range hopping sce-
nario, the electron exchanges energy with a phonon while
hopping between the two overlapping localized states. This
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will only be possible if the Fermi-level density of states
N(EF ) is nonzero, a condition satisfied by weak Anderson
localization [5].

In several doped transition-metal oxides, optical mea-
surements reveal a gap [6–8], within which the density
of states vanishes, so that N(EF ) = 0. In manganese
doped oxides, in particular, the electrical resistivity has been
shown to follow the variable-range hopping model; at low
temperatures, however, the gap closes and N(EF ) becomes
finite. Doped transition metal oxides, by contrast, have been
recognized to show strongly correlated physical properties,
due to interplay between lattice, spin, charge, and orbital
degrees of freedom [9].

The interplay between lattice distortion and charge trans-
port gives rise to a number of effects. The interaction
between the electron charge and lattice-atom dynamics,
first studied by Holstein [10], gives rise to a quasiparticle
called the polaron. In Holstein’s polaronic model an electron
travels slowly along a one-dimensional molecular crystal
constituted by N diatomic molecules. The n-th molecule has
a single vibrational degree of freedom, represented by the
deviation from equilibrium xn of the internuclear separation.
The system Hamiltonian is the sum of three terms, HS =
He +HL+Hint . The electronic contribution He consists of
the electronic kinetic energy and effective one-electron peri-
odic potential. The lattice Hamiltonian HL accounts for the
kinetic and potential energies of the lattice particles. Finally,
Hint describes the local interaction between the electron and
the molecules.

If the electron-molecule interaction is sufficiently strong,
the lattice atoms are displaced to new equilibrium posi-
tions and define a potential well for the electrons. A polaron
is formed when the electron occupies a bound state of
this potential well. The motion of the electron will then
be dressed by the induced lattice-deformation. If the size
of the deformation is comparable to the lattice spacing a,
the quasiparticle is called a small polaron. In this model,
the energy of the molecule-electron local interaction grows
linearly with the deviation xn: E(xn) = −Axn [10]. Hol-
stein used the tight-binding approach to describe electronic
motion in the molecular crystal and wrote the electronic
wave function �(r, xn) as a superposition of local molecu-
lar functions �(r − na, xn) [11].

The time-dependent Schrodinger equation i�∂�/∂t =
HS� then yields a non-vanishing electronic-overlap J [11],
which is related to the polaron binding energy by the equal-
ity Ep = −2J+A2/(2Mω0)

2, whereM is the reduced mass
and ω0 is the optical-phonon frequency. Ep is the energy
needed to dissociate the small polaron, i. e., to create a free
electronic state in a band whose width WB is determined
by the overlap integral: WB = 2J . At high tempera-
tures, T > �D/2, the overlap J allows electronic hopping
via off-diagonal transitions [11]. In such transitions, a few

vibrational quantum numbers Nk change by one or two
when the electron hops to a neighboring site, so that the ini-
tial and final states have different vibrational energies, and
transport must be thermally activated, the electronic motion
consisting of random hops between neighboring sites. The
electrical conductivity σ is then proportional to the ther-
mally averaged probability WT of an electron jumping to a
neighboring site [11, 12],

σ = ne2a2WT

kBT
, (1)

where a is the hopping distance, kB is the Boltzmann
constant, and n is the carrier density.

The probability WT takes different forms and values
depending on the physical regime. In the adiabatic regime,
an electron can hop more than once to the neighboring
sites in the period of the relevant optical vibration. In other
words, the hopping frequency 	0, i. e., the average fre-
quency of hop attempts to neighboring sites, is larger than
the optical phonon frequency ω0. The hopping probability
for the polaron is then high, and the electrical resistivity
ρ ≡ 1/σ is given by the expression

ρ(T ) = ρ0T exp(Ea/kBT ). (2)

Here, Ea is the activation energy, and the prefactor is given
by the expression ρ0 = 2πkB/gdna2e2ω0, where gd is a
hopping-geometry factor [13].

In the non-adiabatic regime, the hopping frequency is
smaller than the optical-phonon frequency, 	0 < ω0,
and the hopping probability for the polaron is small. This
regime is activated when the overlap integral constant J is
very small. Conventional time-dependent perturbation the-
ory then yields the following expression for the hopping
probability WT [11]:

WT = J 2

�2

⎛
⎜⎜⎝

2π
1

π

∫ π

0 2γkωk
2 csch

(
�ωk

2kBT

)
dk

⎞
⎟⎟⎠

1

2

× exp

(−1

π

∫ π

0
2γk tanh

[
�ωk

4kBT
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)
, (3)

where

γk = A2 1 − cos k

2Mωk
3�

, (4)

and

ωk
2 = ω0

2 + ω1
2 cos k. (5)

The frequency ω1 depends on the coupling between the
local vibrational modes and the normal-mode wavenumber
k = 2π�/N , where N is the number of molecular sites, and
� is an integer.
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Equation (3) can be analytically solved in the clas-
sical limit �ωk/kBT << 1. The hyperbolic cosecant is
then approximately equal to the inverse of its argument,
csch(�ωk/kBT ) ≈ kBT/�ωk , while the hyperbolic tangent
is approximately equal to its argument, tanh(�ωk/kBT ) =
�ωk/kBT . With these approximations, the hopping prob-
ability can be computed analytically, and the electrical
resistivity is given by the equality

ρ(T ) = ρ0T
3/2 exp(Ea/kBT ), (6)

with a prefactor ρ0 that is related to the hopping frequency
	0 by the following equation [14]:

ρ0 = kB

na2e2	0T 1/2 (7)

Equations (2) and (6) have been used to interpret electri-
cal resistivity data from numerous systems, including man-
ganites[13, 15–18]. In many compounds, however, neither
the adiabatic (2) nor the non-adiabatic (6) polaronic model
are adequate to describe electrical transport [18–24]. In such
cases, one usually looks for other mechanisms to derive
expressions that fit the experimental data better. In certain
cases, the polaron model was discarded in favor of alter-
native mechanisms and entirely different physics because
small deviations separated the theoretical predictions from
experimental results.

In order to better understand these deviations, we have
gone back to Holstein’s derivation of the non-adiabatic
polaron model. Since the hopping probability is especially
sensitive to changes in the argument of the exponential on
the right-hand side of (3), first-order truncation of the series
expansion for the hyperbolic tangent in the integrand is only
justified for very small �ωk/kBT . For larger ratios, addi-
tional terms must be included. We have, therefore, kept the
first-, third-, and fifth-order contributions to the series, with
the following result:

tanh

(
�ωk

4kBT

)
≈ �ωk

4kBT
− 1

3

(
�ωk

4kBT

)3

+ 2

15

(
�ωk

4kBT

)5

(8)
Substitution of (8) into (3) leads to an integrable expres-

sion for the argument of the exponential in the right-hand
side. The integral in the denominator of the first factor
on the right-hand side can be computed to first order in
�ωk/kBT . To this end, we substitute the inverse of the argu-
ment for the hyperbolic cosecant in the integrand, which
leads to the expression:

I1 ≡ 1

π

∫ π

0
2γkωk

2 csch

[
�ωk

2kBT

]
dk

≈ 4kBT

�π

∫ π

0
γkωk dk, (9)

which we rewrite in the form

I1 = 8EakBT

�2
, (10)

with the activation energy Ea defined by the equality [11]

Ea = 1

π

∫ π

0

γk�ωk

2
dk

= 1

π
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0
(A2/4Mωk

2)(1 − cos k) dk (11)

With the right-hand side of (8) substituted for the hyper-
bolic tangent, the integral within the argument of the expo-
nential function on the right-hand side of (3) can be written
in the form:

I2 =−2
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∫ π
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dk + 2
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Given the definition (11) of the activation energy, we can
rewrite 12 in the form:

I2 =− Ea

kBT
+ 2
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We can now substitute (4) and (5) for γk and ω2
k ,

respectively, on the right-hand side of (13) to obtain the
expression:

I2 = − Ea

kBT
+ �
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We then substitute (11) and (14) for the integrals in (3) to
obtain a closed expression for the hopping probability:

WT =J 2

�2

[
2π�2

8EakBT

]1/2

exp

[−Ea

kBT
+ C

T 3
− D

T 5

]
(15)

where the parameters C and D are given by the expressions

C = A2
�

2

192MkB
3
, (16)
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and

D = A2
�

4

15360MkB
5
(2ω0

2 − ω1
2), (17)

and we recall that A is the constant in Holstein’s expres-
sion for the deformation energy E(xn) = −Axn, which
determines the polaron binding energy Ep = −2J +
(A2/2Mω0

2) and the activation energy in (11).
Equation (15) yields the following generalization of (6):

ρ(T ) = ρ0T
3/2 exp

(
Ea

kBT
− C

T 3 + D

T 5

)
. (18)

The prefactor ρ0 on the right-hand side of (18) is still
expressed by (7), with a temperature-dependent hopping
frequency expressed by the equality

	0 = kβT

na2e2ρ(T )
exp

(
Ea

kBT
− C

T 3
+ D

T 5

)
(19)

Equations (16) and (17) show that the two extra terms
C/T 3 and D/T 5 on the right-hand sides of (18) and (19) are
proportional to A2. The corrections C/T 3 and D/T 5 may
become important when the deformation energy E(xn) and,
consequently, the polaron binding and activation energies
Ep and Ea increase sharply due to, for example, doping or
disorder, which tend to raise the high electrical resistivity.
The term fifth-order D/T 5 also tends to grow in proportion
to the squares of the optical frequency ω0 and dispersion
coefficient ω1.

2 Results and discussion

Equation (18) is a refined version of (6), more accurate
because terms up to fifth-order have been kept in the expan-
sion of the hyperbolic tangent in the argument of the expo-
nential on the right-hand of (3). To highlight the significance
of the improvement, we now compare our expression for
the temperature-dependent resistivity in the non-adiabatic
regime with experimental results. More specifically, we
fit electrical resistivity data for La1−xCaxMnO3 (x =
0.30, 0.34, 0.40, and 0.45) with (18).

The sample preparation and electrical resistivity mea-
surements have been described in detail elsewhere [25]. The
family under study undergoes a structural phase transition
from rhombohedral (R3̄c) to orthorhombic (Pnma) at the
high temperatures TRO = 715 and 800 K, for x = 0.30 and
0.45, respectively. The room temperature electrical resistiv-
ities are ρ = 0.013, 0.0095, 1.1, and 18	cm for x = 0.30,
0.34, 0.40, and 0.45, respectively. The resistivity is there-
fore minimum for x = 0.34 and rises rapidly for higher
concentrations. At low doping (x = 0.30 and 0.34), the

non-adiabatic regime expression (6) proves reliable in the
Pnma phase, below TRO ∼ 715 K, while the adiabatic
regime is activated above TRO , in the R3̄c phase [26].

At higher doping levels, x = 0.40 and 0.45, how-
ever, we have found that neither the mathematical expres-
sion describing the temperature-dependent resistivity of the
small polaron model in the non-adiabatic regime nor the
expression describing the resistivity in the adiabatic regime
fit the experimental data. In view of the discrepancies,
we have revisited the non-adiabatic regime and turned to
(18) to interpret the experimental results. For completeness
and comparison, we have fitted the data for all samples,
(x = 0.30, 0.34, 0.40, and 0.45) with both the conventional
equality (6) and the more accurate expression (18).

Figure 1 shows the thermal dependence of the electri-
cal resistivity, fitted by (18), for x = 0.30 and 0.34. The
insets show fits with (6). Both equations describe very well
the electrical resistivities of the two samples. The polaron
activation energies Ea extracted from the fits with (6) are
132(5) meV and 100(5) meV for x = 0.30 and 0.34,
respectively. The fits with (18) yield the activation ener-
gies Ea = 128(4)meV and 111(4) meV for x = 0.30
and 0.34, respectively. The excellent fits and the nearly
equal activation energies indicate that the linear approxima-
tion tanh(�ωk/4kBT ) ≈ �ωk/(4kBT ) is adequate for the
low-resistivity samples.

Figure 2 shows analogous fits for x = 0.40 and 0.45. As
in Fig. 1, the main plots show that (18) displays excellent
fits of the temperature-dependent resistivity. By contrast, the
red solid lines representing (6) in the insets fail to describe

Fig. 1 (Colored online) Electrical resistivity as a function of temper-
ature for x = 0.30 and 0.34. The red solid lines in the main plots
represent fits with (18), while the insets show fits with (6)
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Fig. 2 (Colored online) Electrical resistivity as a function of temper-
ature for x = 0.40 and 0.45. The solid red lines represent fits to the
data using the (18). The insets show fits of (6) to the same data

ρ(T ).1 These results indicate that the high-resistivity sam-
ples satisfy poorly the condition �ωk � 4kBT , so that
the higher-order terms cannot be neglected in the expan-
sion of the hyperbolic tangent, and call for discussion of the
influence of the cubic and fifth-order terms.

The temperature dependencies of C/T 3 and D/T 5 for
the four studied concentrations are displayed in Fig. 3. Both
terms C/T 3 and D/T 5 are much larger for x = 0.40
and 0.45 than for the lower concentrations and both decay
rapidly with temperature. We see that the two corrections to
the conventional treatment are only important in the high-
resistivity regime, at sufficiently low temperatures and high
concentrations. In the temperature range in our study, the
x = 0.30 and 0.34 samples always lie outside that regime
and are therefore well described by the linear-expansion
leading to (6). To check that terms of order above five need
not be taken into account, we have carried out a similar
analysis including the seventh-order term. The resulting cor-
rection being very small, we conclude that our fifth-order
expansion is sufficiently accurate.

Figure 4 shows the activation energy Ea , deformation
coefficient A, and fifth-order coefficient D resulting from
the fittings. All three parameters rise sharply as the con-
centration grows above x = 0.35. Larger A’s imply larger
electron-molecule local-interaction energies and polaron

1For better visualization, the supporting information shows plots of
log(ρ/T )s as a function of 1/T

binding energies. The enhanced activation energies at larger
concentrations point to more localized charge carriers, i. e.,
to larger electrical resistivities.

The fitting parameters also give access to the frequen-
cies ω0 and ω1 that define the vibrational frequencies ωk .
We only have to assume that ω1 < ω0 to evaluate the inte-
gral on the right-hand side of (11) and obtain the following
result:

Ea = A2

2M

(
1

ω0
2 − ω1

2 +
√
ω0

4 − ω1
4

)
. (20)

We can now invert the system of (16), (17), and (20) to
determine ω0 and ω1 as functions of the fitting parameters
Ea , C, and D. The result is the following quartic equation:

4ω0
4 + bω0

2 + c = 0. (21)

where b = 2N − 4L and c = L2 +N2, with the shorthands
L ≡ (80kB2/�2)(D/C) and N ≡ (96kB3/�2)(C/Ea)− L.

Once (21) is solved for ω0, the frequency ω1 can be
obtained from the equality

ω2
1 = 2ω0

2 − L. (22)

The four solutions of (21) have the forms:

ω0 = ±
√

2

4

√
−b +

√
b2 − 16c (23)

and

ω0 = ±
√

2

4

√
−b −

√
b2 − 16c (24)

Given Ea , C, and D, it is a simple matter to compute the
right-hand sides of (23) and (24). Out of the four solutions,
only one yields real positive frequencies ω0 and ω1. For x =
0.30, 0.34, 0.4, and 0.45, we find ν0 = ω0/2π = 9.177 ×
1013 Hz, 3.538 × 1013 Hz, 4.985 × 1013 Hz and 4.859 ×
1013 Hz, and ν1 = ω1/2π = 9.175 × 1013 Hz, 3.438 ×
1013 Hz, 4.772×1013 and 4.668×1013 Hz, respectively. For
all concentrations, ω1 is close to ω0, an indication that the
coupling between local vibrational modes play an important
role in the transport dynamics of the studied manganites.

Alternatively, to obtain order of magnitude estimates
for the frequencies, we can divide (17) by (16). While
nominally less accurate, this procedure is in practice more
reliable for it is less sensitive to the uncertainties associated
with the extraction of parameters from fits to experimental
data. The division leads to an expression for the frequency
ω∗ = √

2ω0
2 − ω1

2 that depends only on the parameters C
and D:

ω∗ =
√

80kB2D

�2C
. (25)
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Fig. 3 (Colored online)
Temperature dependencies of
the C/T 3 and D/T 5 terms on
the right-hand side of (18) for all
studied samples

In the limit of decoupled local modes, ω1 → 0, we would
have ω∗ = √

2ω0. From (21), however, we have found that
ω1 ≈ ω0, so that ω0 ≈ ω∗, and from (25), we find ν0 =
ω0/2π = 9.175×1013 Hz and 5.039×1013 Hz for x = 0.30
and 0.45, respectively.

For comparison, Fig. 4d shows Raman spectroscopic
results [25] for the frequencies ν2 and ν3 of the activated
distortions, i. e., of the bending and stretching vibrational
modes, respectively. The frequencies obtained from our
analysis of the electrical resistivity—a macroscopic prop-
erty—are close to the spectroscopic results, even though our
estimate for the frequency ω0 at x = 0.45 is substantially
smaller than at x = 0.30, while Fig. 4d shows frequencies
at x = 0.45 that are slightly larger than at x = 0.30. One
cannot expect frequency estimates derived from resistivity
measurements to be as accurate as spectroscopic results,
and one expects the uncertainties arising in comparisons
between transport properties measured at different concen-
tration levels to be especially large, since we cannot account
for the contribution of the grain boundaries in our samples,
which are polycrystalline.

We have also calculated the room temperature hopping
frequency 	0, from (19), for each concentration x. To deter-
mine the factor n in the denominator of the prefactor on the
right-hand side, we relied on the equality n = (2/V )x(1 −
x), where V is the unit cell volume; to determine the fac-
tor a2, we used the nearest-neighbor Mn separation as an
approximation for a. The resulting 	0’s range from 1.51 ×
1014 Hz to 7.10 × 1014 Hz close to the computed ω∗’s.
This order of magnitude agreement reinforces confidence
in (18).

3 Conclusions

In summary, a new expression was derived for thermal
dependence of the electrical resistivity for the small-polaron
model in the non-adiabatic regime. In contrast with Hol-
stein’s analysis, which assumed the ratio between the energy
�ωk of the vibrational modes and the thermal energy kBT

to be so small that expansions to linear order of the
hyperbolic functions on the right-hand side of (3) become

Fig. 4 (Colored online)
Activation energy Ea ,
deformation coefficient A,
fifth-order coefficient D, and
frequencies ν2 and ν3 of the
bending and stretching vibration
modes as functions of the
dopant concentration x
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appropriate, our formulation includes third- and fifth-order
terms in the expansion of the hyperbolic tangent in the
dominant term.

Comparison with experiment showed that such higher-
order terms become important at low temperatures in sam-
ples with enhanced electrical resistivities, due to higher
doping. Higher activation energies Ea and polaron binding
energies Ep were found for the samples with x = 0.40
and 0.45, an indication that the quasiparticles are more
localized.

Additional study along the line of reasoning pre-
sented in this paper seems necessary, since the frequencies
extracted from fitting our expression to the temperature-
dependent measured resistivities only approximately match
the Raman-spectroscopic results for the same samples, and
since our fits involved two additional adjustable parameters,
the coefficients C and D in (12). Nonetheless, the excel-
lent agreements in the main plots of Fig. 2 suggest that at
least a fraction of the deviations from (6) reported in the lit-
erature may be due to the higher-order terms neglected in
Holstein’s derivation of that equation. The more accurate
expression for ρ(T ) derived in this paper should be consid-
ered before alternative physical mechanisms are proposed
to explain discrepancies between the polaron model and the
experimental data.

Acknowledgments This material is based upon work supported
by the Brazilian agencies CNPq Grants No. 485405/2011-3 and
305772/2011-2 and FAPESP under Grants No. 2009/18618-5 and
2010/18364-0.

References

1. C. Kittel. Introduction to solid states physics, 8th (Berkeley,
California, 2005)

2. N. W. Ashcroft, N. D. Mermin. Solid state physics (Orlando,
Florida, 1976)

3. D. K. Ferry. Semiconductor transport, Taylor and Francis,1st ed.
(London, 2000)

4. B. Askerov, Electron transport phenomena in semiconductors.
Singapore: World Scientific, 1st ed. (1994)

5. N. F. Mott, E. A. Davies. Electron processes in non-crystalline
materials (Clarendon, Oxford, 1979)

6. K. Tobe, T. Kimura, Y. Okimoto, Y. Tokura. Phys. Rev. B. 64,
184421 (2001)

7. H. L. Liu, M. A. Quijada, A. M. Zibold, Y.-D. Yoon, D. B. Tanner,
G. Cao, J. E. Crow, H. Berger, G. Margaritondo, L. Forr, B. Hoan,
J. T. Markert, R. J. Kelly, M. Onellion. J. Phys: Condens. Matter.
11, 239 (1999)

8. A. S. Moskvin, Phys. Rev. B. 84, 075116 (2011)
9. E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001)

10. T. Holstein. Ann. Phys. 8, 325 (1959)
11. T. Holstein. Ann. Phys. 8, 343 (1959)
12. R. Raffaelle, H. U. Anderson, D. M. Sparlin, P. E. Parris. Phys.

Rev. B. 43, 7991 (1991)
13. M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P.

Dorsey, D. Emin. Phys. Rev. Lett. 78, 951 (1997)
14. J. H. Zhao, H. P. Kundel, X. Z. Zhou, G.wyn. Williams. J. Phys:

Condens. Matter. 13, 5785 (2001)
15. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S.

Horwitz, D. B. Chrisey. Phys.Rev. B. 54, 11914 (1996)
16. P. Mandal, B. Bandyopadhyay, B. Ghosh. Phys. Rev. B. 64,

180405R (2001)
17. T. Chatterji, D. Riley, F. Fauth, P. Mandal, B. Ghosh. Phys. Rev.

B. 73, 094444 (2006)
18. S.-W. Cheong, H. Y. Hwang, ed. by Y. Tokura. In colossal

magnetoresistance oxides (Gordeon &amp; Breach, London,
1999)

19. G. Huo, D. Song, Q. Yang, F. Dong. Ceram. Int. 34, 497 (2008)
20. A. Karmakar, S. Majumdar, S. Giri. Phys. Rev. B. 79, 094406

(2009)
21. A. Neetikam, I. Das, A. K. Dhiman, A. K. Nigam, D. Yadav,

Bhattacharyya, S. S. Meena. J. Appl.Phys. 112, 123913
(2012)

22. X. J. Chen, C. L. Zhang, J. S. Gardner, J. L. Sarrao, C. C. Almasan.
Phys. Rev. B. 68, 064405 (2003)

23. Yu. Kh. Vekilov, Ya. M. Mukovskii. Solid State C. 152, 1139
(2012)

24. M. Viret, L. Ranno, J. M. D. Coey. J. Appl. Phys. 81, 4964 (1997)
25. F. E. N. Ramirez, F. F. Ferreira, W. A. Alves, J. F. Q. Rey, J. A.

Souza. J. Magn. Magn. Mater. 324 (2012)
26. J. A. Souza, H. Terashita, E. Granado, R. F. Jardim, N. F. Jr.

Oliveira, R. Muccillo. Phys.Rev. B. 78, 054411 (2008)


	The Non-Adiabatic Polaron Model Revisited
	Abstract
	Introduction
	Results and discussion
	Conclusions
	Acknowledgments
	References


