Estados ligados

Física de Partículas Elementares

Prof. Marcelo A. Leigui de Oliveira

Centro de Ciências Naturais e Humanas Universidade Federal do ABC Av. dos Estados, 5001 09210-580 Santo André-SP

20 de março de 2025

- Teoria dos estados ligados:
 - ▶ hidrogênio: p + e (física atômica);
 - deutério: p + n (física nuclear).
- Com a teoria de quarks:
 - ▶ mésons: qq;
 - ▶ bárions: qqq;

os estados ligados passaram a ter maior importância na física de partículas elemementares.

• O caso mais simples é o não relativístico (*v* << *c*), regido pela equação de Schrödinger:

$$-rac{\hbar^2}{2m}
abla^2\Psi(ec{r},t)+V(ec{r},t)\Psi(ec{r},t)=i\hbarrac{\partial\Psi(ec{r},t)}{\partial t},$$

válida para sistemas cuja energia de ligação é pequena comparando-se com a

energia de repouso dos constituintes:

- hidrogênio: $E_{lig} = 13, 6 \text{ eV} << m_e c^2 = 511 \text{ keV};$
- hádrons de quarks pesados (c, b e t): $E_{lig} \sim 100 \text{ MeV} << mc^2$.

• Na física clássica, a energia mecânica é a soma da energia cinética com a potencial:

$$E=\frac{\vec{p}^2}{2m}+V;$$

$$\frac{\hbar^2 \vec{k}^2}{2m} + V = \hbar\omega.$$

As derivadas das funções de onda $\Psi = \Psi(\vec{k} \cdot \vec{r}, \omega t)$ podem ser associadas a *operadores*:

$$\nabla^2 \Psi = -\vec{k}^2 \Psi = -\frac{\vec{p}^2}{\hbar^2} \Psi \Rightarrow \vec{p}^2 \Psi = -\hbar^2 \vec{k}^2 \Psi \Rightarrow \boxed{\hat{p} = \frac{\hbar}{i} \vec{\nabla}} = -i\hbar(\partial_x, \partial_y, \partial_z);$$

$$\frac{\partial}{\partial t}\Psi = -i\omega\Psi = -i\frac{E}{\hbar}\Psi \Rightarrow E\Psi = \hbar\omega\Psi \Rightarrow \boxed{\hat{E} = i\hbar\frac{\partial}{\partial t}} = i\hbar\partial_t,$$

que substituídos na equação da energia mecânica, vem a equação de Schrödinger:

$$\left[-\frac{\hbar^2}{2m}\nabla^2+V(\vec{r},t)\right]\Psi(\vec{r},t)=i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}.$$

Física de Partículas Elementares

• Esta é a equação de Schrödinger dependente do tempo:

$$\left[-\frac{\hbar^2}{2m}\nabla^2+V(\vec{r},t)\right]\Psi(\vec{r},t)=i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}.$$

- Suas soluções Ψ(k · r, ωt) descrevem uma partícula de massa m na presença de um potencial V(r, t);
- O valor $|\Psi(\vec{k} \cdot \vec{r}, \omega t)|^2 dx dy dz$ é a probabilidade de encontrar-se a partícula em $d^3x = dx dy dz$ no intervalo dt, normalizada com:

$$\int |\Psi|^2 d^3 x = 1.$$

 Separação de variáveis. Seja:

$$\Psi(x,y,z,t)=\psi(x,y,z)f(t),$$

então:

$$\frac{1}{\psi}\left(-\frac{\hbar^2}{2m}\nabla^2+V\right)\psi=\frac{i\hbar}{f}\frac{df}{dt}\equiv E,$$

onde a constante de separação E representa a energia total da partícula.

• Assim teremos 2 equações diferenciais:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi = E\psi$$
$$i\hbar\frac{df}{dt} = Ef.$$

A solução da segunda equação é trivial:

$$f(t)=e^{-iEt/\hbar};$$

A primeira é a equação de Schödinger independente do tempo. Definindo-se o operador hamiltoniano (entre parêntesis):

$$\hat{H} \equiv -\frac{\hbar^2}{2m}\nabla^2 + V,$$

vem que:

$$\hat{H}\psi=E\psi.$$

► A solução geral é (por enquanto):

$$\Psi(x, y, z, t) = \psi(x, y, z)e^{-iEt/\hbar}$$

- Caso de um potencial *central* (ou esfericamente simétrico), V = V(r).
 - ▶ O laplaciano em coordenadas esféricas é:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2},$$

que também pode ser separado nas coordenadas, usando-se:

$$\Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\varphi)$$

e assim temos agora 3 equações diferenciais:

$$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d}{dr} R(r) \right] = \left\{ \frac{2m}{\hbar^2} [V(r) - E] + \frac{\ell(\ell+1)}{r^2} \right\} R(r),$$
$$\sin \theta \frac{d}{d\theta} \left[\sin \theta \frac{d}{d\theta} \Theta(\theta) \right] = \left[m^2 - \ell(\ell+1) \sin^2 \theta \right] \Theta(\theta),$$
$$\frac{d^2}{d\varphi^2} \Phi(\varphi) = -m^2 \Phi(\varphi).$$

• • A solução da equação na variável φ é trivial:

$$\Phi(\varphi) = e^{im\varphi};$$

 A solução da equação na variável θ é dada pelas funções associadas de Legendre:

$$\Theta(heta)\equiv P_\ell^m(\cos heta)=rac{(\sin heta)^{|m|}}{2^\ell !}\left[rac{d}{d(\cos heta)}
ight]^{\ell+|m|}(\cos^2 heta-1)^\ell,$$

onde o produto das funções, $\Theta(\theta)\Phi(\varphi)$, normalizadas, são os harmônicos esféricos:

$$Y^m_\ell(heta,\phi)=\sqrt{rac{(2\ell+1)}{4\pi}rac{(\ell-m)!}{(\ell+m)!}}(-1)^m P^m_\ell(\cos heta)e^{imarphi}.$$

Exemplos de harmônicos esféricos:

$\ell = 0$	<i>m</i> = 0	$Y_0^0 = \sqrt{\frac{1}{4\pi}}$
$\ell = 1$	m = 1	$Y_1^1 = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\varphi}$
	<i>m</i> = 0	$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta$
	m = -1	$Y_1^{-1} = \sqrt{\frac{3}{8\pi}} \sin \theta e^{-i\varphi}$
$\ell = 2$	<i>m</i> = 2	$Y_2^2 = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{2i\varphi}$
	m = 1	$Y_2^1 = -\sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta e^{i\varphi}$
	<i>m</i> = 0	$Y_2^0 = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$
	m = -1	$Y_2^{-1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{-i\varphi}$
	<i>m</i> = -2	$Y_2^{-2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{-2i\varphi}$

A solução da equação radial é simplificada defindo-se:

$$u(r)=rR(r),$$

que torna a equação diferencial em:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2}+\left[V(r)+\frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right]u=Eu.$$

E podemos definir um potencial efetivo, centrífugo, denominado "*barreira de momento angular*":

$$V_{ef}=\frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}.$$

Daqui para frente, temos que especificar V(r).

• Seja um elétron orbitando um próton no átomo de hidrogênio.

Energy E^r E^r r E_n $V(r) = -\frac{kZ\sigma^2}{r}$

O elétron está sujeito a um potencial coulombiano:

$$V(r)=-k\frac{Ze^2}{r},$$

onde Z = 1 para o hidrogênio e k = 1 no sistema gaussiano.

(E' indica um estado de energia positiva de uma partícula não ligada e E_n o nível de energia de um estado ligado.)

Da parte radial da equação diferencial, temos os valores permitidos:

$$E_n = -\frac{me^4}{2\hbar^2 n^2} = -\alpha^2 mc^2 \frac{1}{2n^2} = -\frac{13,6 \text{ eV}}{n^2}$$
, onde $n = 1, 2, 3, ...$

e α é a constante de estrutura fina:

$$\alpha \equiv \frac{e^2}{\hbar c} \approx \frac{1}{137,036}.$$

► As soluções da equação radial para o potencial coulombiano são:

$$R_{n\ell}(r) = A_{n\ell} e^{-r/na} r^\ell \mathcal{L}_{n\ell}(r/a),$$

onde $a = \frac{\hbar^2}{me^2}$ é o raio de Bohr e $\mathcal{L}_{n\ell}(r/a)$ são os *polinômions associados de Laguerre*.

As soluções
$$R_{n\ell}(r)$$
 são:

$$n = 1 \quad \ell = 0 \qquad R_{10} = \frac{2}{\sqrt{a^3}} e^{-r/a}$$

$$n = 2 \quad \ell = 0 \qquad R_{20} = \frac{1}{\sqrt{2a^3}} \left(1 - \frac{r}{2a}\right) e^{-r/2a}$$

$$\ell = 1 \qquad R_{21} = \frac{1}{2\sqrt{6a^3}} \frac{r}{a} e^{-r/2a}$$

$$n = 3 \quad \ell = 0 \qquad R_{30} = \frac{2}{3\sqrt{3a^3}} \left(1 - \frac{2r}{3a} + \frac{2r^2}{27a^2}\right) e^{-r/3a}$$

$$\ell = 1 \qquad R_{31} = \frac{8}{27\sqrt{6a^3}} \frac{r}{a} \left(1 - \frac{r}{6a}\right) e^{-r/3a}$$

$$\ell = 2 \qquad R_{32} = \frac{4}{81\sqrt{30a^3}} \frac{r^2}{a^2} e^{-r/3a}$$

As soluções gerais são:

$$\psi_{n\ell m}(r,\theta,\varphi) = C_{n\ell m} R_{n\ell}(r) \Theta_{\ell m}(\theta) \Phi_m(\varphi),$$

onde $C_{n\ell m}$ são constantes de normalização e, além disso:

- ▶ *n*: número quântico principal (quantização da energia): *n* = 1, 2, 3, ...;
- ▶ l: número quântico orbital (quantização do momento angular): l = 0, 1, 2, ..., n - 1;
- ► m: número quântico magnético (quantização da projeção z do momento angular): m = -l, -l + 1, ..., l.

A degenerescência do nível de energia n é:

$$\sum_{\ell=0}^{n-1} (2\ell+1) = n^2$$

A energia do fóton emitido é dada pela diferença dos níveis de energia:

$$E_{\gamma}=h\nu=E_{i}-E_{f}=-\frac{me^{4}}{2\hbar^{2}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right),$$

com comprimento de onda:

$$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right),\,$$

1

onde R é a constante de Rydberg:

$$R=\frac{me^4c}{4\pi\hbar^3}.$$

Física de Partículas Elementares

Estrutura fina

- Com o aumento na precisão na espectroscopia, as linhas de emissão/absorção foram resolvidas em dubletos, tripletos, etc;
- Devidas a 2 correções:
 - Relativística;
 - Acoplamento spin-órbita dos elétrons;
- Teoria de perturbação: sejam soluções da equação de Schrödinger para um dado hamiltoniano Ĥ:

 ψ_i , para E_i ;

e seja uma pequena mudança no hamiltoniano ΔH , tal que:

$$\hat{H'} = \hat{H} + \Delta H.$$

Então, os níveis de energia se alterarão de:

$$\Delta E_j = \langle \Delta H \rangle_j = \int \psi_j^* (\Delta H) \psi_j d^3 x.$$

Estrutura fina - correção relativística

• Tomando-se a expansão da fórmula relativística da energia cinética, vem:

$$\begin{split} & \mathcal{K} = \mathcal{E} - \mathcal{E}_0 = \sqrt{\vec{p}^2 c^2 + m^2 c^4} - mc^2 = mc^2 [\sqrt{1 + (\vec{p}/mc)^2} - 1] \approx \\ & \approx mc^2 [1 + \frac{1}{2} (\vec{p}/mc)^2 - \frac{1}{8} (\vec{p}/mc)^4 + \dots - 1] = \frac{\vec{p}^2}{2m} - \frac{\vec{p}^4}{8m^3 c^2} + \dots \end{split}$$

A correção relativística de ordem mais baixa é então:

$$\Delta H_{rel} = -\left(rac{1}{8m^3c^2}
ight)ec{p}^4$$

e para o seu valor médio, precisamos de < \vec{p}^4 >. Como:

$$\frac{\vec{p}^2}{2m}=E_n-V,$$

vem que:

$$\Delta E_{rel} = -\left(\frac{1}{2mc^2}\right) (E_n^2 - 2E_n < V > + < V^2 >).$$

Dado que $V = -e^2/r$, calcula-se:

$$\left\langle \frac{1}{r} \right\rangle = \frac{1}{n^2 a}, \quad \left\langle \frac{1}{r^2} \right\rangle = \frac{1}{(\ell + 1/2)n^3 a^2}$$
$$\Rightarrow \boxed{\Delta E_{rel} = -\alpha^4 mc^2 \frac{1}{4n^4} \left[\frac{2n}{(\ell + 1/2)} - \frac{3}{2} \right]} << E_n^{Bohr} = -\alpha^2 mc^2 \left(\frac{1}{2n^2} \right).$$

Estrutura fina - acoplamento spin-órbita

• No referencial do elétron, é o próton que está orbitando e este gera um campo magnético:

$$B = rac{ev}{cr^2} \Rightarrow \vec{B} = rac{e\vec{L}}{mcr^3},$$

onde L = rmv é o momento angular do elétron.

A energia potencial de um dipolo magnético $\vec{\mu}$ na presença de um campo magnético \vec{B} é:

$$W = -\vec{\mu} \cdot \vec{B}$$

e um elétron girando tem dipolo magnético:

$$\vec{\mu} = rac{e}{2mc}\vec{S}.$$

Assim:

$$\Delta H_{so} = \frac{e^2}{2m^2c^2r^3}(\vec{L}\cdot\vec{S}).$$

Estrutura fina - acoplamento spin-órbita

No acoplamento spin-órbita, $\vec{L} \in \vec{S}$ não são conservados, mas \vec{J} , o momento angular total, é conservado. Quadrando-se:

$$J^2 = L^2 + S^2 + 2\vec{L}\cdot\vec{S},$$

de onde podemos concluir que os autovalores de $\vec{L} \cdot \vec{S}$ são:

$$ec{L} \cdot ec{S} = rac{1}{2} \hbar^2 [j(j+1) - \ell(\ell+1) - s(s+1)],$$

onde j, $\ell \in s$ são os números quânticos correspondentes. Agora, calculando-se os valores esperados:

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{1}{\ell(\ell+1/2)(\ell+1)n^3a^3}$$

$$\Rightarrow E_{so} = \alpha^4 mc^2 \left[\frac{[j(j+1) - \ell(\ell+1) - 3/4]}{4n^3 l(\ell+1/2)(\ell+1)} \right]$$

Usando que $\ell - 1/2 \le j \le \ell + 1/2$ (Probl. 5.9):

$$E_{so} = -\alpha^4 mc^2 \frac{1}{4n^4} \left[\frac{2n}{(j+1/2)} - \frac{3}{2} \right] << E_n^{Bohr} = -\alpha^2 mc^2 \left(\frac{1}{2n^2} \right).$$

Estrutura fina - acoplamento spin-órbita

Quebra de degenerescência nos níveis do hidrogênio, devida ao acoplamento spin-órbita:

O desvio Lamb

• Note, na figura anterior, que há vários pares de estados com valores degenerados de energia:

$$2S_{1/2} (j = 0 + 1/2 = 1/2), \ 2P_{1/2} (j = 1 - 1/2 = 1/2), ...$$

- Em 1947, Lamb e Retherford notaram que o estado *S* tinha energia ligeiramente superior à do estado *P*, devido à *quantização do campo elétrico*;
- O desvio Lamb é uma correção radiativa (QED):

com resultados:

$$\begin{split} \ell &= 0: \quad \Delta E_{Lamb} = \alpha^5 m c^2 \frac{1}{4n^3} \{k(n,0)\}, \\ \ell &\neq 0: \quad \Delta E_{Lamb} = \alpha^5 m c^2 \frac{1}{4n^3} \left\{k(n,\ell) \pm \frac{1}{\pi(j+1/2)(\ell+1/2)}\right\}, \text{ para: } j = \ell \pm 1/2, \\ \text{onde } 12, 7 < k(n,0) < 13, 2 \in k(n,\ell) < 0, 05, \text{ ambos variando lentamente.} \end{split}$$

(

,

Há uma correção bem menor (×10⁻³) nos níveis de Bohr, devida ao spin do núcleo. O próton também é um pequeno magneto com um momento magnético bem menor:

$$\vec{\mu}_p = \gamma_p \frac{e}{m_p c} \vec{S}_p,$$

onde $\gamma_p = 2,7928$ é um fator numérico (experimental) que dá conta da estrutura interna do próton¹.

• Assim, a interação spin-órbita (próton-elétron) é calculada:

$$\Delta H_{pso} = \frac{\gamma_{p} e^{2}}{m m_{p} c^{2} r^{3}} (\vec{L} \cdot \vec{S}_{p});$$

• O campo magnético de um dipolo é:

$$\vec{B}(\vec{r}) = \frac{1}{r^3} \left[3 \frac{(\vec{\mu} \cdot \vec{r})\vec{r}}{r^2} - \vec{\mu} \right] + \frac{8\pi}{3} \vec{\mu} \delta^3(\vec{r});$$

• E a hamiltoniana completa da interação spin-spin $(\vec{S}_p - \vec{S}_e)$ é:

$$\Delta H_{\rm ss} = \frac{\gamma_{\rm p} e^2}{m m_{\rm p} c^2} \left\{ \frac{1}{r^3} \left[3(\vec{S}_{\rm p} \cdot \hat{r})(\vec{S}_{\rm e} \cdot \hat{r}) - (\vec{S}_{\rm p} \cdot \vec{S}_{\rm e}) \right] + \frac{8\pi}{3} (\vec{S}_{\rm p} \cdot \vec{S}_{\rm e}) \delta^3(\vec{r}) \right\};$$

• ΔH_{pso} e ΔH_{ss} dão a estrutura hiperfina do hidrogênio.

 $^{1}\mathrm{Uma}$ partícula elementar verdadeiramente puntual teria $\gamma_{\mathrm{e}}=1.$

• Caso $\vec{L} = 0$:

Para os estados com *l* = 0, obviamente, *L* = 0 e Δ*H*_{pso} = 0 e, como estes estados são esfericamente simétricos, todo o termo entre colchetes em Δ*H*_{ss} dá zero, sobrando somente o termo da δ³(*r*):

$$\Delta E_{hf} = \frac{8\pi\gamma_{\rho}e^2}{3mm_{\rho}c^2}(\vec{S}_{\rho}\cdot\vec{S}_{e})|\psi_{n00}(0)|^2, \quad \text{onde (Probl. 5.13):} \quad |\psi_{n00}(0)|^2 = \frac{1}{\pi n^3 a^3}.$$

$$ec{\mathsf{F}} = ec{\mathsf{L}} + ec{\mathsf{S}}_e + ec{\mathsf{S}}_
ho = ec{\mathsf{J}} + ec{\mathsf{S}}_
ho$$

o momento angular total com números quânticos f e m_f .

Para $\vec{L} = 0$: $F^2 = S_e^2 + S_\rho^2 + 2\vec{S}_e \cdot \vec{S}_\rho \Leftrightarrow \vec{S}_e \cdot \vec{S}_\rho = \frac{1}{2}(F^2 - S_e^2 - S_\rho^2)$ $\Rightarrow \vec{S}_e \cdot \vec{S}_\rho = \frac{\hbar^2}{2}[f(f+1) - s_e(s_e+1) - s_p(s_p+1)] = \frac{\hbar^2}{2}\left[f(f+1) - \frac{3}{2}\right]$

 \rightarrow

• Caso
$$L = 0$$
:

$$\Rightarrow \vec{S}_e \cdot \vec{S}_p = \frac{\hbar^2}{2} \left[f(f+1) - \frac{3}{2} \right]$$

$$\Rightarrow \boxed{\Delta E_{hf} = \left(\frac{m}{m_p}\right) \alpha^4 mc^2 \frac{4\gamma_p}{3n^3} \left[f(f+1) - \frac{3}{2} \right]} \sim o(\alpha^4 m/m_p).$$

Ademais, $f = \frac{1}{2} - \frac{1}{2} = 0$ (singleto) ou $f = \frac{1}{2} + \frac{1}{2} = 1$ (tripleto), portanto, temos a divisão em 2 níveis, com:

$$\epsilon = E_{trip} - E_{sing} = \frac{32\gamma_p E_1^2}{3m_p c^2}$$

e um fóton de:
$$\lambda = \frac{2\pi\hbar c}{\epsilon} = 21.1 \text{ cm (linha famosa na astronomia).}$$

Triplet

- 2 Caso $\vec{L} \neq 0$:
 - Agora, é o termo da $\delta^3(\vec{r})$ quem não contribui:

$$\psi(r) \sim r^{\ell} \Rightarrow \psi(0) = 0$$
, quando $\ell > 0$.

Fisicamente, a barreira de momento angular (centrífuga) mantém o elétron afastado.

Então:

$$\Delta E_{hf} = \frac{\gamma_{p}e^{2}}{mm_{p}c^{2}} \left\langle \frac{1}{r^{3}} \left[(\vec{L}\cdot\vec{S}_{p}) + 3(\vec{S}_{p}\cdot\hat{r})(\vec{S}_{e}\cdot\hat{r}) - (\vec{S}_{p}\cdot\vec{S}_{e}) \right] \right\rangle,$$

que resulta em:

$$\Delta E_{hf} = \left(\frac{m}{m_{p}}\right) \alpha^{4} m c^{2} \frac{\gamma_{p}}{2n^{3}} \frac{\left[f(f+1) - j(j+1) - \frac{3}{4}\right]}{j(j+1)(\ell + \frac{1}{2})} \sim o(\alpha^{4} m/m_{p}),$$

que, por sua vez, recai na fórmula anterior para $\ell = 0, j = \frac{1}{2}$. Agora, tomando-se $f = j \pm \frac{1}{2}$, vem:

$$\Delta E_{hf} = \left(\frac{m}{m_{\rho}}\right) \alpha^4 mc^2 \frac{\gamma_{\rho}}{2n^3} \frac{\pm 1}{(f + \frac{1}{2})(l + \frac{1}{2})}$$

Positrônio

- A teoria apresentada para o átomo de hidrogênio pode ser estendida para sistemas mais exóticos (e instáveis): hidrogênio muônico (p⁺μ⁻), hidrogênio piônico (p⁺π⁻), muônio (μ⁺e⁻), positrônio (e⁺e⁻), etc.
- Em particular o positrônio (e^+e^-) é um vasto campo de testes para a QED;
 - A grande diferença para o hidrogênio: não há uma massa bem mais pesada e ambos (e⁺e⁻) orbitam o CM comum;
 - Introduzimos a massa reduzida:

$$m_{red}=\frac{m_1m_2}{m_1+m_2};$$

Se a hamiltoniana de 2 corpos é:

$$H = \frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} + V(\vec{r}_1, \vec{r}_2)$$

e se o potencial é função somente da separação $r = |\vec{r_1} - \vec{r_2}|$ e estamos trabalhando no sistema CM, onde $\vec{p_1} = -\vec{p_2}$, então:

$$H=\frac{\vec{p}^2}{2m_{red}}+V(r),$$

onde \vec{p} é o momento de uma única partícula de $m_{red} = m/2$ que orbita o sistema em r, a distância entre 1 e 2.

Positrônio

• Então os níveis de energia do positrônio são obtidos trocando-se $m \to m/2$ nas fórmulas de Bohr:

$$E_n^{pos} = \frac{1}{2}E_n = -\alpha^2 mc^2 \frac{1}{4n^2} = -\frac{6,8 \text{ eV}}{n^2} \quad (n = 1, 2, 3, ...)$$
$$a^{pos} = 2a = 1,06 \times 10^{-8} \text{ cm}$$

• Para a correção relativística:

$$\Delta H_{rel} = -\frac{1}{8m^3c^2}\vec{p}_1^4 + -\frac{1}{8m^3c^2}\vec{p}_2^4 = -\frac{1}{4m^3c^2}\vec{p}_2^4$$

Valores esperados para o estado ψ_{nℓm}:

• Por outro lado, a correção hiperfina é da mesma ordem que a estrutura fina:

$$\alpha^4 mc^2 (m/m) = \alpha^4 mc^2$$

Positrônio

 No positrônio, o núcleo não é estacionário, portanto, o potencial não é estático. Da eletrodinâmica, há uma nova correção:

$$\Delta H_{rel} = -rac{e^2}{2m^2c^2}rac{1}{r}[ec{p}^2 + (ec{p}\cdot\hat{r})^2],$$

com contribuição $\sim \alpha^4 mc^2.$

• Levando-se em conta tudo isso:

$$E_{f_s}^{pos} = \alpha^4 mc^2 \frac{1}{2n^3} \left[\frac{11}{32n} - \frac{(1+\frac{1}{2}\epsilon)}{(2\ell+1)} \right],$$

onde $\epsilon = 0$ para o singleto e para o tripleto:

1

$$\epsilon = \left\{ \begin{array}{rl} \displaystyle \frac{-(3\ell+4)}{(\ell+1)(2\ell+3)} &, \quad \text{para } j = \ell + 1 \\ \displaystyle \frac{1}{\ell(\ell+1)} &, \quad \text{para } j = \ell \\ \displaystyle \frac{(3\ell-1)}{\ell(2\ell-1)} &, \quad \text{para } j = \ell - 1 \end{array} \right.$$

• No positrônio, é mais comum a associação:

$$\vec{J} = \vec{L} + (\vec{S}_1 + \vec{S}_2) = \vec{L} + \vec{S};$$

A degenerescência acidental já é removida no nível de estrutura fina do positrônio, então o desvio Lamb (~ α⁵mc²) pode ser desprezado.

Estados ligados

Positrônio

- No positrônio, entretanto, há uma nova perturbação, sem um análogo no hidrogênio: a aniquilação de pares;
- Como as posições do e⁺ e do e⁻ devem coincidir (no CM), esta perturbação é proporcional a |ψ(0)|² e só ocorre com ℓ = 0.
- Ademais, como o spin do fóton é 1, ela só ocorre com o tripleto;
- O desvio dos níveis de energia é:

$$\Delta E_{aniq}^{pos} = \alpha^4 mc^2 \frac{1}{4n^3}, \qquad (\ell = 0, s = 1);$$

que é da mesma ordem ($\sim \alpha^4 mc^2$) da estrutura fina;

Positrônio

• Vimos na conjugação de carga que $C = (-1)^{\ell+s}$ para o positrônio e $C = (-1)^n$ para fótons, assim a invariância para o decaimento do positrônio é:

$$(-1)^{\ell+s} = (-1)^n,$$

que é muito mais provável para $\ell = 0$. Neste caso, evidentemente:

- o singleto (s = 0) só pode decair em pares de fótons (tipicamente 2);
- o tripleto (s = 1) pode decair em número ímpares de fótons (tipicamente 3);
- Veremos no capítulo 7, a seção de choque para a aniquilação em 2 fótons (a baixa velocidade v):

$$\sigma = 4\pi\alpha^2 \left(\frac{\hbar^2}{m^2 cv}\right),$$

com taxa de decaimentos:

$$\Gamma = \sigma v |\psi(\mathbf{0})|^2 = \alpha^5 m c^2 \frac{1}{2\hbar n^3},$$

onde substituímos as fórmulas para $|\psi(0)|^2$ e *a* apropriadas para o positrônio. Em particular, para o estado fundamental:

$$au = \mathsf{\Gamma}^{-1} = rac{2\hbar}{lpha^5 m c^2} = 1,25 imes 10^{-10} \ \mathsf{s}.$$

Quarkônio

 Os mésons são estados ligados de 2 quarks (qq). Será possível usar os métodos empregados no hidrogênio e no positrônio?

Dificuldades:

- Força forte:
 - Não conhecemos o potencial;
 - Não há um análogo do magnetismo para fazer os acoplamentos de spins;
 - Termos não lineares da QCD que, por sorte, não contribuem nas baixas energias (liberdade assintótica);
 - O comportamento a distâncias curtas é dominado pela troca de 1 glúon, analogamente à QED com a troca de 1 fóton. Como glúons e fótons são ambos de m = 0 e de s = 1, as interações são calculadas identicamente, com α → α_S (excluindo-se a trocas de cores);
 - Assim, a curtas distâncias, vamos assumir:

 \triangleright V(r) \sim 1/r;

> Estrutura hiperfina similar à do hidrogênio e do positrônio.

• E a grandes distâncias:

 \triangleright Potencial cresce sem limite: $V(r) \sim r^2$, ou $\sim \ln r$, ou $\sim r$.

• Podemos escolher, por exemplo:

$$V(r) = -\frac{4}{3} \frac{\alpha_S \hbar c}{r} + F_0 r.$$

2

F_0 (MeV/fm)	E ₁ (MeV)	E ₂ (MeV)	E ₃ (MeV)	E ₄ (MeV)
500	307	677	961	1210
1000	533	1100	1550	1940
1500	727	1480	2040	2550

Tabela: Cálculo numérico dos níveis de energia "de Bohr" do potencial coulombiano + linear, para estados $S(\ell=0)$, com $\alpha_S=0,2$ e m=1500 MeV/c² e $m_{red}=750$ MeV/c².

Dificuldades:

$$E_{lig} \sim mc^2 \sim 100$$
 MeV;

e não fizemos ainda a teoria relativística²;

- Contudo, para os quarks pesados (c, b, t), a teoria não relativística deve funcionar razoavelmente bem.
- Note, como:

$$M=m_1+m_2+E_{lig}/c^2,$$

os níveis de energia podem ser interpertados como mésons diferentes.

²Fizemos correções relativísticas, mas só de 1a ordem.

Quarkônio - charmônio

Fig. 5.6 Spectrum of energy levels in positronium and charmonium. Note that the scale is greater by a factor of 100 million for charmonium. In positronium, the various combinations of angular momentum cause only minuscule shifts in energy (shown by expanding the vertical scale), but in charmonium the shifts are much larger. All energies are given with reference to the 1³₅ state. At 6.8 eV positronium dissociates. At 633 MeV above the energy of the ψ charmonium becomes quasi-bound, because it can decay into D⁰ and \overline{D}^0 mesons. (Source: Bloom, E. and Feldman, G. (May 1982) 'Quarkonium', *Scientific American*, p. 66, reprinted by permission.)

Quarkônio - charmônio

 Todos os estados do charmônio com n = 1 ou n = 2 são OZI-suprimidos e têm vida relativamente longa (à esquerda). Para n ≥ 3, a massa do charmônio está acima do limiar de produção dos mésons D (à direita) e têm vida bem mais curta ("estados quase ligados" — que foram observados até n = 4);

Figure 5.8 (a) OZI-suppressed decay for charmonium below the $D\bar{D}$ threshold, (b) OZIallowed decay for charmonium above the $D\bar{D}$ threshold.

Quarkônio - botomônio

• No caso do botomônio, a massa estimada para o $B = b\overline{b}$ era grande o suficiente para que n = 1, n = 2, ou n = 3 fossem estados ligados. Em 1977, o méson Υ foi descoberto;

Fig. 5.8 Bottomonium. Note that there are far more bound states than for charmonium – compare Figure 5.6 (Source: Bloom, E. and Feldman, G. (May 1982) 'Quarkonium', Scientific American, p. 66, reprinted by permission. Corrected masses from Particle Physics Booklet (2006),)

• Topônio $(t\bar{t})$ e outros casos mistos $(c\bar{b}, c\bar{t}, b\bar{t})$, com o modelo do muônio (μ^+e^-) .

- Considere os quarks leves (*u*, *d* e *s*), lembrando que são sistemas relativísticos e a teoria de Schrödinger é limitada, neste caso;
- Vamos nos concentrar em $\ell = 0$: os spins dos quarks se acoplam no sigleto, s = 0 (noneto pseudoescalar) ou no tripleto, s = 1 (noneto vetorial):

 Vimos que há 9 combinações de quarks, sendo que 3 estados são neutros com estranheza zero: uū, dd e ss, mas não sabemos quem é o π⁰, o η ou o η';

• Os quarks *u* e *d* (e os antiquarks) formam dubletos de isospin:

ć

$$u = \left| \frac{1}{2} \frac{1}{2} \right\rangle, \quad d = \left| \frac{1}{2} - \frac{1}{2} \right\rangle,$$
$$\overline{u} = \left| \frac{1}{2} - \frac{1}{2} \right\rangle, \quad \overline{d} = \left| \frac{1}{2} \frac{1}{2} \right\rangle;$$

- Vimos que, num dado multipleto, a partícula com maior carga tem a maior projeção de I₃, assim para os antiquarks: d tem I₃ = +¹/₂ e u tem I₃ = -¹/₂;
- Combinando-se as 2 partículas, temos um isotripleto:

$$\begin{cases} |11\rangle = -u\overline{d} \\ |10\rangle = (u\overline{u} - d\overline{d})/\sqrt{2} \\ |1-1\rangle = d\overline{u} \end{cases}$$
(1)

e o singleto:

$$|00>=(u\overline{u}+d\overline{d})/\sqrt{2}$$

 No caso dos mésons pseudoescalares, o tripleto é o π e, no caso dos mésons vetoriais, o tripleto é o ρ, onde os neutros são a combinação:

$$\pi^0, \rho^0 = (u\overline{u} - d\overline{d})/\sqrt{2};$$

• Agora, para o singleto, há 2 combinações:

$$|00>=(u\overline{u}+d\overline{d})/\sqrt{2}$$
 e $|00>=s\overline{s},$

que devem representar o η e o η' , ou o ω e o ϕ ;

- Novamente, temos as combinações lineares:
 - Para os pseudoescalares:

$$\eta = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6}$$
$$\eta' = (u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{3}$$

Para os vetoriais:

$$\omega = (u\overline{u} + d\overline{d})/\sqrt{2}$$
$$\phi = s\overline{s}$$

Agora:

Dentre os pseudoescalares:

$$\eta = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6},$$

$$\eta' = (u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{3},$$

 η' é um singleto, simétrico sob ${\rm SU}(3)^3,$ e o η transforma-se como parte do octeto de ${\rm SU}(3).$

E dentre os vetoriais:

$$\omega = (u\overline{u} + d\overline{d})/\sqrt{2},$$

$$\phi = s\overline{s},$$

nenhum dos dois é singleto de SU(3), o máximo que podemos dizer é que são misturados, pois o quark *s* está isolado.

³Assim como o π^0 é um singleto de isospin sob SU(2).

• Enquanto que os mésons estranhos são construídos:

$$K^+ = u\overline{s}, \quad K^0 = d\overline{s}, \quad \overline{K}^0 = -s\overline{d}, \quad K^- = s\overline{u}.$$

 Na linguagem da teoria de grupos, os 3 quarks pertencem à representação fundamental SU(3), enquanto que os antiquarks à representação conjungada. Então combinamos as duas da seguinte forma:

$$\mathbf{3}\otimes\overline{\mathbf{3}}=\mathbf{8}\oplus\mathbf{1}.$$

 Contudo, SU(3) não é uma simetria perfeita por causa das massas das partículas e dos quarks serem bem diferentes: Ks pesam muito mais que os πs, pois contêm o quark s. E, além disso, as orientações de spin contribuem para as diferenças de massa: as ρs não pesam o mesmo que as πs, por causa da interação spin-spin.

• Vimos que na QED:

$$\Delta E_{hf} = \frac{8\pi \gamma_{p} e^{2}}{3mm_{p} c^{2}} (\vec{S}_{p} \cdot \vec{S}_{e}) |\psi_{100}(0)|^{2}.$$

É razoável supor uma estrutura parecida na QCD, assim:

$$M_{meson} = m_1 + m_2 + A \frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2} = m_1 + m_2 + A' \frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2} |\psi(0)|^2;$$

• Quadrando-se
$$\vec{S} = \vec{S}_1 + \vec{S}_2$$
, vem:

$$\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2}(S^2 - S_1^2 - S_2^2) = \begin{cases} +\frac{1}{4}\hbar^2, & \text{para } s = 1 \text{ (mésons vetoriais)} \\ -\frac{3}{4}\hbar^2, & \text{para } s = 0 \text{ (mésons pseudoescalares)} \end{cases}$$

• Para $m_u=m_d=308~{
m MeV}/c^2,~m_s=483~{
m MeV}/c^2,$ o melhor fit para o parâmetro é: $A=(2m_u/\hbar)^2159~{
m MeV}/c^2$

e calculamos (com precisão de ${\sim}1\%$):

Méson	π	K	η	ρ	ω	<i>K</i> *	ϕ
Calculada	139	487	561	775	775	892	1031
Observada	138	496	549	776	783	894	1020

Tabela: Massas dos mésons em MeV/c^2 .

• Primeiramente, há um grande arranjo de bárions de quarks leves:

ISOSPIN. THIS IS NOT A COMPLETE LIST: BARYONS WITH SPINS AS HIGH AS ¹¹/₂ HAVE BEEN OBSERVED.) S = -1 SU(3) Representation JP S = 0 1 = 0 1 = 1S = -2S = -3 M(939) A(1116) Σ(1193) Z(1318) 10 4(1232) Z(1385) Z(1533) Ω(1672) A(1405) A(1520) 8 N(1535) A(1670) **\Sigma(1750)** N(1700) A(1870) N(1520) Λ(1690) **\Sigma(1670)** Z(1820)? N(1700) S(1940)? N(1670) A(1830) Σ(1765) 10 A(1650) Δ(1670) 8 N(1810) A(1860) 8 N(1688) A(1815) **Σ(1915)** 至(2030)? 10 $\Delta(1910)$ Δ(1890) Δ(1950) N(1470) Σ(1660) 10 Δ(1690)

TABLE 5.4 LIGHT-QUARK BARYONS (J = SPIN, P = PARITY, S = STRANGENESS, I =

• Depois, são mais difíceis de analisar, uma vez que são 3 corpos (2 momentos angulares):

Figure 5.13 Orbital angular momenta for a three-body system. L is the angular momentum of 1 and 2 about their center of mass (A); L' is the angular momentum of this combination and 3 about the center of mass of all three (B).

Vamos nos concentrar no estado fundamental: $\ell = \ell' = 0$.

Source: S. Gasiorowicz and J. L. Rosner. Am. J. Phys. 49, 954 (1981).

Bárions

Bárions

- Os quarks (*spin* = ¹/₂) ocupam 2 estados: "para cima" (↑) e "para baixo" (↓) e formam 8 possíveis estados para os bárions: (↑↑↑), (↑↓↓), (↑↓↓), (↓↓↑), (↓↓↑), (↓↓↑), (↓↓↑) e (↓↓↓),
- Mas estes não são autoestados do momento angular total. Vimos (cap.4) que:

$$\begin{vmatrix} \frac{3}{2} \frac{3}{2} \\ \frac{3}{2} \frac{1}{2} \end{vmatrix} = (\uparrow\uparrow\uparrow\uparrow) \\ \frac{3}{2} \frac{1}{2} \\ \frac{3}{2} - \frac{1}{2} \end{vmatrix} = (\uparrow\uparrow\downarrow+\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow)/\sqrt{3} \\ \frac{3}{2} - \frac{1}{2} \\ \frac{3}{2} - \frac{3}{2} \end{vmatrix} = (\downarrow\downarrow\uparrow\uparrow+\downarrow\uparrow\downarrow+\uparrow\downarrow\downarrow\uparrow)/\sqrt{3} \\ \begin{vmatrix} \frac{1}{2} \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2}$$

onde ψ_s é completamente simétrico e ψ_{12} e ψ_{23} são simétricos nas partículas dos índices.

Bárions

• Podemos construir também estados antissimétricos das partículas 1 e 3:

$$\begin{vmatrix} \frac{1}{2} \frac{1}{2} \\ 1_{3} \\ \frac{1}{2} - \frac{1}{2} \\ 1_{3} \end{vmatrix} = (\uparrow \downarrow \downarrow - \downarrow \downarrow \uparrow)/\sqrt{2}$$
 spin $\frac{1}{2} (\psi_{23}),$

que, no entanto, não são independentes dos outros:

$$\left|\right\rangle_{13} = \left|\right\rangle_{12} + \left|\right\rangle_{23};$$

• As 3 representações bidimensionais de SU(2) ficam, então, a soma de 1 quadrimensional com 2 bidimensionais:

$$2\otimes 2\otimes 2=4\oplus 2\oplus 2.$$

• Outro ponto que torna os bárions mais complicados é o Princípio de Exclusão de Pauli

2 elétrons (férmions) não podem ocupar o mesmo estado quântico;

- Por que todos os elétrons não vão para o estado fundamental, ψ_{100} ? Porque o estado fundamental só pode acomodar 2 elétrons ($\uparrow\downarrow$);
- Se 2 partículas são *absolutamente idênticas*, o quadrado da função de onda deve ser exatamente o mesmo sob a troca das partículas:

 $|\psi(1,2)|^2 = |\psi(2,1)|^2 \Rightarrow \psi(1,2) = \pm \psi(2,1)$

simétrica: $\psi(1,2) = +\psi(2,1)$,bósons, spin inteiroantissimétrica: $\psi(1,2) = -\psi(2,1)$,férmions, spin semi-inteiro

- Sejam 2 partículas indistinguíveis e 2 estados possíveis, $\psi_{\alpha} \in \psi_{\beta}$:
 - ► bósons:

$$\psi(1,2) = [\psi_{\alpha}(1)\psi_{\beta}(2) + \psi_{\beta}(1)\psi_{\alpha}(2)]/\sqrt{2}$$

► férmions:

$$\psi(1,2)=[\psi_lpha(1)\psi_eta(2)-\psi_eta(1)\psi_lpha(2)]/\sqrt{2}$$

P.ex.: para 2 elétrons no mesmo estado, $\psi_{\alpha} = \psi_{\beta}$: $\psi(1, 2) = 0$;

O princípio não se aplica para bósons ou para partículas distinguíveis, como nos constituintes dos mésons $(q\overline{q}).$

Bárions

Bárions

• Agora, a função de onda dos bárions envolve várias partes:

 $\psi = \psi(\text{espacial})\psi(\text{spin})\psi(\text{sabor})\psi(\text{cor})$

e toda a função deve ser antissimétrica sob a troca de 2 quarks.

- ▶ Não sabemos a forma espacial, mas deve ser simétrica, pois em ℓ = ℓ' = 0 não há dependência angular;
- O spin pode ser completamente simétrico $(j = \frac{3}{2})$ ou de simetria mista $(j = \frac{1}{2})$;
- Para o sabor, há 3³ = 27 representações irredutíveis de SU(3):

 $\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}=\mathbf{10}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{1}$

(Obs.: há mais um octeto antissimétrico que não é independente: $\psi_{13} = \psi_{12} + \psi_{23}$)

Cada partícula que ocorre na natureza é um singleto de cor de SU(3), (qqq) ou (qq̄) bárions: ψ(cor) = (rgb - rbg + gbr - grb + brg - bgr)/√6 Bárions

Bárions - exemplos

() Escreva a função de onda do Δ^+ no estado de spin $m_j = -\frac{1}{2}$ (não se preocupe com as partes espacial e de cor):

Escreva a função de onda do próton com spin para cima:

$$\begin{vmatrix} p:\frac{1}{2}\frac{1}{2} \end{vmatrix} = \frac{1}{2}(\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow)(udu - duu) + \frac{1}{2}(\uparrow\uparrow\downarrow - \uparrow\downarrow\uparrow)(uud - udu) + \\ + \frac{1}{2}(\uparrow\uparrow\downarrow - \downarrow\uparrow\uparrow)(uud - duu)\sqrt{\frac{2}{3}} = \\ = \{uud(2\uparrow\uparrow\downarrow - \uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow) + udu(2\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\uparrow) + \\ + duu(2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\uparrow) \}\frac{1}{3\sqrt{2}} = \\ = \frac{2}{3\sqrt{2}}(u(\uparrow)u(\uparrow)d(\downarrow)) - \frac{1}{3\sqrt{2}}(u(\uparrow)u(\downarrow)d(\uparrow)) - \frac{1}{3\sqrt{2}}(u(\downarrow)u(\uparrow)d(\uparrow)) + \\ + permutações \dots$$

Massas dos bárions e momentos magnéticos

 Vamos calcular os momentos de dipolo magnético das partículas do octeto de bárions. Na ausência de movimentos orbitais:

$$\vec{\mu} = \vec{\mu}_1 + \vec{\mu}_2 + \vec{\mu}_3,$$

mas depende do sabor, uma vez que μ depende da massa. Para uma partícula de spin $\frac{1}{2}$:

$$ec{\mu}=rac{q}{mc}ec{S}, ext{ com magnitude: } \mu=rac{q\hbar}{2mc},$$

que é o valor do μ_z para o spin para cima (\uparrow). Então, para os quarks:

$$\mu_{u} = \frac{2}{3} \frac{e\hbar}{2m_{u}c}, \quad \mu_{d} = -\frac{1}{3} \frac{e\hbar}{2m_{d}c}, \quad \mu_{s} = -\frac{1}{3} \frac{e\hbar}{2m_{s}c}.$$

E o momento magnético do bárion B é:

$$\mu_{B} = \left\langle B \uparrow \left| (\vec{\mu}_{1} + \vec{\mu}_{2} + \vec{\mu}_{3})_{z} \right| B \uparrow \right\rangle = \frac{2}{\hbar} \sum_{i=1}^{3} \left\langle B \uparrow \left| (\mu_{i} S_{iz}) \right| B \uparrow \right\rangle$$

Massas dos bárions e momentos magnéticos - exemplo

Olicie o momento magnético do próton:

Do exemplo 2, o primeiro termo da função de onda é:

$$\frac{2}{3\sqrt{2}}[u(\uparrow)u(\uparrow)d(\downarrow)]$$

Como:

$$(\mu_1 S_{1z} + \mu_2 S_{2z} + \mu_3 S_{3z}) \Big| u(\uparrow) u(\uparrow) d(\downarrow) \Big\rangle = \left[\mu_u \frac{\hbar}{2} + \mu_u \frac{\hbar}{2} + \mu_d \frac{\hbar}{2} \right] \Big| u(\uparrow) u(\uparrow) d(\downarrow) \Big\rangle,$$

este termo contribui com:

$$\left(\frac{2}{3\sqrt{2}}\right)^2 \frac{2}{\hbar} \sum_{i=1}^3 \left\langle u(\uparrow)u(\uparrow)d(\downarrow) \middle| (\mu_i S_{iz}) \middle| u(\uparrow)u(\uparrow)d(\downarrow) \right\rangle = \frac{2}{9} (2\mu_u - \mu_d).$$

Analogamente, o segundo e terceiro termos dão:

$$\frac{1}{18}\mu_d$$

E como os outros são permutações, temos que repetir o cálculo. Assim:

$$\mu_{\rho} = 3[\frac{2}{9}(2\mu_{u} - \mu_{d}) + \frac{1}{18}\mu_{d} + \frac{1}{18}\mu_{d}] = \frac{1}{3}(4\mu_{u} - \mu_{d}).$$

Física de Partículas Elementares

Massas dos bárions e momentos magnéticos - exemplo

Procedendo analogamente:

Baryon	Moment	Prediction	Experiment	
р	$(\frac{4}{3})\mu_u - (\frac{1}{3})\mu_d$	2.79	2.793	
n	$(\frac{4}{3})\mu_d - (\frac{1}{3})\mu_u$	-1.86	-1.913	
Λ	μ_s	-0.58	-0.61	
Σ^+	$\left(\frac{4}{3}\right)\mu_u - \left(\frac{1}{3}\right)\mu_s$	2.68	2.33 ± 0.13	
Σ^0	$(\frac{2}{3})(\mu_u + \mu_d) - (\frac{1}{3})\mu_s$	0.82		
Σ-	$(\frac{4}{3})\mu_d - (\frac{1}{3})\mu_s$	-1.05	-1.41 ± 0.25	
Ξ°	$(\frac{4}{3})\mu_s - (\frac{1}{3})\mu_u$	-1.40	-1.253 ± 0.014	
'Ξ	$\left(\frac{4}{3}\right)\mu_s - \left(\frac{1}{3}\right)\mu_d$	-0.47	-0.69 ± 0.04	

TABLE 5.5	MAGNETIC DIPOLE MOM	IENTS OF OCTET BARYONS
-----------	---------------------	------------------------

The numerical values are given as multiples of the nuclear magneton, $e\hbar/2m_pc = 3.152 \times 10^{-18}$ MeV/gauss.

Source: S. Gasiorowicz and J. L. Rosner, Am. J. Phys. 49, 954 (1981).

Massas dos bárions e momentos magnéticos

- Assim como vimos com os mésons, se a simetria de sabor SU(3) fosse perfeita, com os quarks de mesma massa, todas as partículas teriam a mesma massa, mas não têm, especialmente por causa do s;
- Além disso, há a contribuição ("hiperfina') da interação spin-spin, com a diferença que agora são 3 pares de spins:

$$M_{barion} = m_1 + m_2 + m_3 + A' \left[rac{ec{S}_1 \cdot ec{S}_2}{m_1 m_2} + rac{ec{S}_1 \cdot ec{S}_3}{m_1 m_3} + rac{ec{S}_2 \cdot ec{S}_3}{m_2 m_3}
ight];$$

De:

$$J^{2} = (\vec{S}_{1} + \vec{S}_{2} + \vec{S}_{3})^{2} = S_{1}^{2} + S_{2}^{2} + S_{3}^{2} + 2(\vec{S}_{1} \cdot \vec{S}_{2} + \vec{S}_{1} \cdot \vec{S}_{3} + \vec{S}_{2} \cdot \vec{S}_{3}),$$

vem:

$$\begin{split} \vec{S}_1 \cdot \vec{S}_2 + \vec{S}_1 \cdot \vec{S}_3 + \vec{S}_2 \cdot \vec{S}_3 &= \frac{\hbar^2}{2} [j(j+1) - \frac{9}{4}] = \\ &= \begin{cases} \frac{3}{4} \hbar^2, & \text{para o decupleto } (j = \frac{3}{2}) \\ -\frac{3}{4} \hbar^2, & \text{para o octeto } (j = \frac{1}{2}) \end{cases} \end{split}$$

De onde:

$$M_N = 3m_u - rac{3}{4} rac{\hbar^2}{m_u^2} A', ext{ para o próton ou o nêutron;}$$

$$M_\Delta=3m_u+rac{3}{4}rac{\hbar^2}{m_u^2}A',~~({
m para}~{
m as}~\Delta);~~M_\Omega=3m_s+rac{3}{4}rac{\hbar^2}{m_s^2}A',~~{
m para}~{
m as}~\Omega.$$

Física de Partículas Elementares

Massas dos bárions e momentos magnéticos

$$\left(M_{barion} = m_1 + m_2 + m_3 + A' \left[\frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2} + \frac{\vec{S}_1 \cdot \vec{S}_3}{m_1 m_3} + \frac{\vec{S}_2 \cdot \vec{S}_3}{m_2 m_3}\right]\right)$$

Para o decupleto, os spins são todos paralelos, então:

$$M_{\Xi^*} = m_u + 2m_s + rac{\hbar^2}{4} A' \left(rac{1}{m_s^2} + rac{2}{m_u m_s}
ight), \;\;\;$$
 para as $\Xi,$

$$M_{\Sigma}=2m_u+m_s+rac{\hbar^2}{4}A'\left(rac{1}{m_u^2}-rac{4}{m_um_s}
ight), \ \ \ \mbox{para as }\Sigma,$$

$$M_{\Xi}=m_u+2m_s+rac{\hbar^2}{4}A'\left(rac{1}{m_s^2}-rac{4}{m_um_s}
ight), \ \ \ \mbox{para as Ξ},$$

$$M_{\Lambda}=2m_u+m_s-rac{3\hbar^2}{4m_u^2}A',~~$$
 para as $\Lambda.$

TABLE 5.6 BARYON OCTET AND DECUPLET MASSES (MeV/c²)

Baryon	Calculated	Observed 939	
N	939		
Λ	1116	1114	
Σ	1179	1193	
Ξ	1327	1318	
Δ	1239	1232	
Σ*	1381	1384	
Ξ*	1529	1533	
Ω	1682	1672	