Notas de Aula de Introdução à Física Nuclear (NHZ3026)

Prof. Dr. Marcelo Augusto Leigui de Oliveira Centro de Ciências Naturais e Humanas (CCNH) Universidade Federal do ABC (UFABC) Santo André - SP

AULA #9: RADIOATIVIDADE

I. TIPOS DE RADIAÇÕES

Núcleos atômicos que emitem **radiações**, quer seja na forma de partículas ou de radiações eletromagnéticas, são chamados de **radioativos**. Se a transformação pela qual passou o núcleo tenha ocorrido de forma espontânea, ela será chamada de *decaimento* e caso tenha ocorrido como resultado de uma interação entre núcleons e/ou radiações, esta transformação será uma *reação nuclear*. Classificamos a seguir os diferentes tipos de radiações conhecidas.

1. Radiação alfa:

Emissão de **raios alfa**: $\alpha \equiv {}^4{\rm He}$, isto é, o núcleo de ${}^4{\rm He}$, $m_{\alpha}=3727, 3~{\rm MeV/c^2}$, $q_{\alpha}=+2e$.

Lei de deslocamento:

$$(Z,A) \rightarrow (Z-2,A-4) + \alpha.$$

Por exemplo:

$$^{238}\mathrm{U} \rightarrow ^{234} Th + \alpha,$$

com $t_{1/2}=4,5\times 10^9$ anos e E=4,27 MeV.

Tem espectro discreto (picos) e origem no decaimento nuclear.

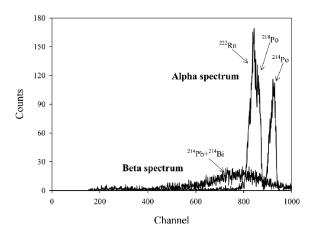


Figura 1: Espectro energético de emissões α (discreto) e β (contínuo).

2. Radiação beta:

Emissão de raios beta: $\beta^{\pm} \equiv e^{\pm}$, isto é, elétrons/pósitrons, $m_{\beta} = 0,511 \text{ MeV/c}^2$, $q_{\beta^{\pm}} = \pm e$.

Lei de deslocamento:

$$(Z,A) \rightarrow (Z \pm 1,A) + \beta^{\mp} + \nu.$$

Por exemplo:

$$^{14}\text{C} \rightarrow ^{14} N + e^- + \overline{\nu}_e$$

com $t_{1/2} = 5730$ anos e $E_{max} = 0,156$ MeV.

Tem espectro contínuo e origem no decaimento nuclear (força fraca).

3. Radiação gama:

Emissão de **raios gama**: γ , isto é, ondas eletromagnéticas (fótons) com $f > 10^{19}$ Hz, $m_{\gamma} = 0$, $q_{\gamma} = 0$.

Lei de deslocamento:

$$(Z,A)^* \to (Z,A) + \gamma.$$

Por exemplo:

$$^{60}\text{Co}^* \rightarrow ^{60}\text{Co} + \gamma$$
,

com $t_{1/2} = 10,47$ min e E = 58,6 keV.

Tem espectro discreto e origem em desexcitação nuclear.

4. Radiação delta:

Emissão de **raios delta** (δ), elétrons da camada eletrônica emitidos a partir da colisão de uma partícula carregada (ionização), $m_{\delta}=0,511~{\rm MeV/c^2}$ e $q_{\delta}=e^-$. Raios δ são *secundários*, provenientes de ionizações primárias; caso os raios δ ionizem subsequentemente formarão raios ϵ (*terciários*).

Tem espectro **contínuo** ($E_{\delta}=E_{\rm ext}-E_{\rm lig}$) e origem externa (radiação ionizante).

5. Radiação X:

Emissão de **raios X**: γ_X , isto é, ondas eletromagnéticas (fótons) com 10^{16} Hz $< f < 10^{19}$ Hz, $m_{\gamma} = 0$, $q_{\gamma} = 0$.

Tem espectro contínuo (Bremsstrahlung) e discreto (raias do material) e origem em desexcitação da camada eletrônica.

6. Captura eletrônica ou beta inverso:

Captura de um elétron, geralmente da camada K, pelo núcleo; para núcleos ricos em prótons, é uma alternativa para o decaimento β^+ :

(captura eletrônica)
$$p + e^- \rightarrow n + \nu \Leftrightarrow p \rightarrow n + e^+ + \nu$$
 (decaimento β^+).

A emissão do neutrino é acompanhada por um raio X, γ_X , quando outro elétron ocupa o nível vazio.

Lei de deslocamento:

$$(Z, A) \rightarrow (Z - 1, A) + \nu + \gamma_X.$$

Por exemplo:

55
Fe + $e^- \rightarrow ^{55}$ Mn + $\nu + \gamma_X$,

com $t_{1/2}=2,73$ anos e "raios-K" do M
n $(E_1=5,9~{\rm keV}$ ou $E_2=6,5~{\rm keV}).$

Tem espectro **discreto** (raio X) e origem nuclear.

7. Conversão interna (ou elétrons de Auger):

Emissão de um elétron, geralmente da camada K, pela transmissão direta da excitação nuclear (ou da camada eletrônica); é uma alternativa para o decaimento γ (ou para a emissão de raios X):

Lei de deslocamento:

$$(Z,A)^* \to (Z,A)^+ + e^-.$$

Tem espectro discreto ($E_e=E_{\gamma(\gamma_X)}-E_{\text{lig}}$) e origem no núcleo (ou na camada eletrônica).

8. Emissão de próton:

Emissão de 1 próton pelo núcleo: $m_p = 938, 3 \text{ MeV/c}^2 \text{ e } q_p = e^+.$

Lei de deslocamento:

$$(Z, A) \to (Z - 1, A - 1) + p.$$

Tem espectro discreto e origem nuclear.

9. Emissão de nêutron:

Emissão de 1 nêutron pelo núcleo: $m_p = 939, 6 \text{ MeV/c}^2 \text{ e } q_n = 0.$

Lei de deslocamento:

$$(Z,A) \rightarrow (Z,A-1) + n.$$

Tem espectro discreto e origem nuclear.

10. Emissão de grupos ou de fragmentos (fissão espontânea):

Emissão de prótons, nêutrons, alfas e/ou outros grupos (fragmentos) pelo núcleo; a fissão espontânea é um caso particular de emissão de dois fragmentos menores.

Lei de deslocamento:

$$(Z, A) \to (Z - Z_f, A - A_f) + (Z_f, A_f) + \dots$$

Tem espectro **discreto** (para decaimentos em 2 corpos) ou **contínuo** (para decaimentos em 3 ou mais corpos) e origem nuclear.

11. Radiação de aniquilação:

Emissão de um par de fótons devido à aniquilação de pósitrons na matéria:

$$e^+ + e^- \rightarrow 2\gamma$$
.

Tem espectro discreto (pico de aniquilação em $E=0,511~\mathrm{MeV}$) e origem no absorvedor.

12. Outras emissões:

Duplo decaimento β : $(Z, A) \rightarrow (Z \pm 2, A) + 2\beta + 2\nu$.

Dupla emissão de próton: $(Z, A) \rightarrow (Z - 2, A - 2) + 2p$.

Dupla emissão de pósitron: $(Z, A) \rightarrow (Z - 2, A) + 2e^+ + 2\nu$.

Dupla captura eletrônica: $(Z, A) \rightarrow (Z - 2, A) + 2\gamma_X + 2\nu$.

etc.

13. Reações nucleares:

Qualquer tipo de interação de um núcleo com partículas, radiações ou outros núcleos, produzindo um ou mais dos processos já mencionados. Exemplos:

Bombardeamento α : $\alpha + ^{9}$ Be $\rightarrow ^{13}$ C*.

Bombardeamento de nêutrons (num reator de fissão): $n + ^{235}$ U $\rightarrow ^{141}$ Ba $+ ^{92}$ Kr + 3n.

Fotorreação: $\gamma + ^{2} H \rightarrow ^{1} H + n$.

Fusão (no Sol): ${}^{2}\text{H} + {}^{3}\text{H} \rightarrow {}^{4}\text{He} + n$.

II. LEI DO DECAIMENTO RADIOATIVO

Todo processo de emissão de radiação por um radionuclídeo recebe o nome de *decaimento radioativo* ou *desintegração nuclear*. O decaimento radioativo corresponde a uma mudança de estado do núcleo ($X \rightarrow Y$ + emissão) que pode resultar numa alteração na composição do núcleo (como nos decaimentos α e β) ou não (como no decaimento γ). Os decaimentos ocorrem espontaneamente, portanto, são transições energeticamente favoráveis.

Diagramas:

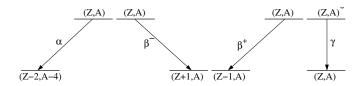


Figura 2: Diagramas de decaimento.

A atividade de uma fonte é definida como a taxa de decaimentos por unidade de tempo:

$$R \equiv -\frac{dN}{dt} \tag{1}$$

Unidades:

- Becquerel: $1 \text{ Bq} \equiv 1 \text{ s}^{-1}$;
- Curie: 1 Ci $\equiv 3, 7 \cdot 10^{10} \, \mathrm{s}^{-1} \sim$ atividade de 1 g de Ra puro.

Se num dado instante t uma amostra contém N radionuclídeos, a quantidade de núcleos que decaem em um infinitesimal de tempo entre t e t + dt é proporcional ao número inicial (e ao intervalo de tempo dt):

$$dN = -\lambda N dt$$
,

onde a constante de proporcionalidade λ é conhecida como razão de transição ou constante de decaimento:

$$\lambda \equiv \frac{-dN/dt}{N} = \frac{R}{N},\tag{2}$$

que mede a probabilidade da transição ocorrer por unidade de tempo.

De onde vem:

$$dN = -\lambda N dt \Rightarrow \frac{dN}{N} = -\lambda dt \Rightarrow \int_{N_0}^{N(t)} \frac{dN}{N} = -\lambda \int_0^t dt \Rightarrow$$

$$\ln N(t) - \ln N_0 = -\lambda (t - 0) \Rightarrow \ln \left[\frac{N(t)}{N_0} \right] = -\lambda t \Rightarrow$$

$$\boxed{N(t) = N_0 e^{-\lambda t}}$$
(3)

Esta é a lei do decaimento radioativo.

A $vida\ m\'edia\ (au)$ da amostra é definida pela média ponderada:

$$\tau \equiv \frac{\int_0^\infty t|dN/dt|dt}{\int_0^\infty |dN/dt|dt},$$

mas:

$$\int_0^\infty t|dN/dt|dt = \lambda \int_0^\infty tN(t)dt = \lambda \int_0^\infty tN_0e^{-\lambda t}dt = \lambda N_0 \left[\left(-\frac{te^{-\lambda t}}{\lambda} \right) \right]_0^\infty + \frac{1}{\lambda} \int_0^\infty e^{-\lambda t}dt dt = \int_0^\infty N_0e^{-\lambda t}dt$$

e:

$$\int_0^\infty |dN/dt|dt = \lambda \int_0^\infty N_0 e^{-\lambda t} dt$$

então:

$$\tau = \frac{\int_{0}^{\infty} N_{0} e^{-\lambda t} dt}{\lambda \int_{0}^{\infty} N_{0} e^{-\lambda t} dt} = \frac{1}{\lambda} \Rightarrow \boxed{\tau = \frac{1}{\lambda}}$$

$$\tag{4}$$

A $\it meia-vida~(t_{1/2})$ é o tempo que leva para a quantidade de núcleos cair à metade:

$$N(t) = \frac{N_0}{2} = N_0 e^{-\lambda t_{1/2}} \Rightarrow \frac{1}{2} = e^{-\lambda t_{1/2}} \Rightarrow \ln 2^{-1} = -\lambda t_{1/2} \Rightarrow -\ln 2 = -\lambda t_{1/2} \Rightarrow$$

$$t_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2 \approx 0,693 \, \tau$$
 (5)

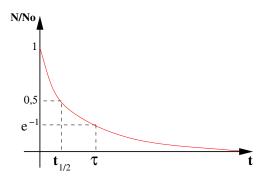


Figura 3: Lei do decaimento.

Exemplos:

- $^{238}_{92}U\rightarrow^{234}_{90}Th+\alpha$, $\tau=6,5\cdot 10^9$ anos;
- $^{215}_{84}$ Po $\rightarrow ^{211}_{80}$ Pb $+\alpha$, $\tau = 1, 9 \cdot 10^3$ s;
- $\Lambda^0 \to p + \pi^-$, $\tau = 2, 6 \cdot 10^{-10} \text{ s}$;
- $\pi^0 \to \gamma + \gamma$, $\tau = 8, 3 \cdot 10^{-17} \text{ s}$;
- $\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$, $\tau = 2, 2 \cdot 10^{-6} \text{ s.}$

III. DECAIMENTOS MULTIMODAIS

Observe os modos de decaimento do ²¹²Bi:

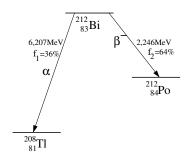


Figura 4: Decaimento bimodal do ^{212}Bi .

 f_1 e f_2 são as razões de ramificações. A cada modo, podemos associar uma razão de transição parcial λ_1 e λ_2 , tais que:

$$\frac{dN}{dt} = -\lambda_1 N - \lambda_2 N \Rightarrow N(t) = N_0 e^{-(\lambda_1 + \lambda_2)t} = N_0 e^{-\lambda t},$$

então:

$$\lambda = \lambda_1 + \lambda_2 \Rightarrow \tau^{-1} = \tau_1^{-1} + \tau_2^{-1}$$

de onde podemos concluir que: $f_1 = \frac{\lambda_1}{\lambda}$ e $f_2 = \frac{\lambda_2}{\lambda}$.

Generalizando para o caso multimodal:

$$\lambda = \sum_{i} \lambda_{i}, \quad \tau^{-1} = \sum_{i} \tau_{i}^{-1} \quad e \quad f_{i} = \frac{\lambda_{i}}{\lambda} = \frac{\lambda_{i}}{\sum_{i} \lambda_{i}}.$$

Exemplo: méson K^+ , com $\lambda = 8,08 \cdot 10^7 \text{s}^{-1}$:

•
$$K^+ \to \mu^+ + \nu_{\mu}$$
, $f_1 = 0.635$, $\lambda_1 = 5.13 \cdot 10^7 \text{s}^{-1}$;

•
$$K^+ \to \pi^+ + \pi^0$$
, $f_2 = 0.212$, $\lambda_2 = 1.71 \cdot 10^7 \text{s}^{-1}$;

•
$$K^+ \to \pi^+ + \pi^+ + \pi^-$$
, $f_3 = 0.056$, $\lambda_3 = 4.53 \cdot 10^6 \text{s}^{-1}$;

•
$$K^+ \to \pi^+ + \pi^0 + \pi^0$$
, $f_4 = 0,017$, $\lambda_4 = 1,37 \cdot 10^6 \text{s}^{-1}$; ...

IV. PRODUÇÃO DE MATERIAIS RADIOATIVOS

Suponha que queremos produzir ²⁴Na por bombardeamento de nêutrons. Sabe-se, entretanto que o nuclídeo ²⁴Na não é estável e decai por emissão beta. Assim, a reação completa seria:

$$n + {}^{23} \text{ Na} \rightarrow {}^{24} \text{ Na} \rightarrow {}^{24} \text{ Mg} + e^- + \bar{\nu}_e$$

que indica, por um lado, a produção e, por outro lado, a diminuição na quantidade de 24 Na. Seja p a razão de produção, então:

$$\frac{dN}{dt} = p - \lambda N \Rightarrow \frac{dN}{dt} + \lambda N = p,$$

que é uma equação diferencial ordinária de primeira ordem não-homogênea, que descreve a evolução temporal da quantidade de 24 Na. Para a parte homogênea da equação temos a solução:

$$N_h(t) = N_0 e^{-\lambda t}$$

e para a parte não-homogênea, vamos, inicialmente, propor no regime estacionário $(t \to \infty)$ que:

$$N(t \to \infty) = N' = p/\lambda.$$

Supondo $N(t) = N_h(t) + N'$, vem:

$$\frac{dN(t)}{dt} = -\lambda N_0 e^{-\lambda t} + 0$$

e substituindo de volta na equação diferencial, vem:

$$-\lambda N_0 e^{-\lambda t} + 0 + \lambda N_0 e^{-\lambda t} + \lambda N' = p \Rightarrow$$

$$N(t \to \infty) = N_\infty = N' = p/\lambda,$$

denominado número de equilíbrio.

Falta ainda especificar N_0 . No limite $t \to 0$, a quantidade inicial é $N_0 = 0$, então:

$$N(t=0) = N_0$$
 $e^{-\lambda 0} + p/\lambda = 0 \Rightarrow N_0 = -p/\lambda$

Então:

$$N(t) = \frac{p}{\lambda} \left(1 - e^{-\lambda t} \right), \tag{6}$$

conhecida como equação secular, cujo comportamento pode ser visto na figura 5.

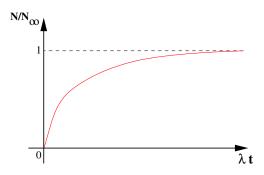


Figura 5: Equação secular.

V. DECAIMENTOS SEQUENCIAIS

Suponha, agora, uma sequência de dois decaimentos, isto é, um núcleo pai (1) decai num núcleo filho (2), que é, por sua vez, ativo. Teremos, então:

$$\begin{cases}
\frac{dN_1}{dt} = -\lambda_1 N_1 \\
\frac{dN_2}{dt} = -\lambda_2 N_2 + \lambda_1 N_1
\end{cases}$$
(7)

Integrando a primeira equação, vem:

$$\boxed{N_1(t) = N_0 e^{-\lambda_1 t}},$$
(8)

que já é a solução para o núcleo pai.

Agora, para o núcleo filho, vamos propor inicialmente: $N_2(t)=Ae^{-\lambda_1 t}+Be^{-\lambda_2 t}$, com a condição inicial $N_2(0)=0$:

$$A + B = 0 \Rightarrow A = -B$$
,

então: $N_2(t)=A(e^{-\lambda_1 t}-e^{-\lambda_2 t})$ que, substituindo na segunda equação em 7, vem:

$$\frac{dN_2}{dt} = A(-\lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t}) = -\lambda_2 A(e^{-\lambda_1 t} - e^{-\lambda_2 t}) + \lambda_1 N_0 e^{-\lambda_1 t} \Rightarrow$$

$$e^{-\lambda_1 t} (-\lambda_1 A + \lambda_2 A - \lambda_1 N_0) + e^{-\lambda_2 t} (\underline{\lambda_2 A - \lambda_2 A}) = 0 \Rightarrow A = \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} \Rightarrow$$

$$N_2(t) = \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t})$$
(9)

Casos especiais:

- filho estável: $\lambda_2 \to 0 \Rightarrow N_2(t) = N_0 \left(1 e^{-\lambda_1 t}\right)$, que é a equação secular;
- pai quase estável: $\lambda_1 << \lambda_2 \Rightarrow N_2(t) \approx N_0 \frac{\lambda_1}{\lambda_2} \left(1-e^{-\lambda_2 t}\right)$

O instante da máxima atividade do núcleo filho ocorre quando:

$$\frac{dN_2}{dt} = 0 \Rightarrow \frac{\lambda_1 N_0}{\lambda_2 - \lambda_1} \left(-\lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t} \right) = 0 \Rightarrow \lambda_1 e^{-\lambda_1 t} = \lambda_2 e^{-\lambda_2 t} \Rightarrow
\frac{\lambda_1}{\lambda_2} = e^{(\lambda_1 - \lambda_2)t} \Rightarrow \ln\left(\frac{\lambda_1}{\lambda_2}\right) = (\lambda_1 - \lambda_2)t \Rightarrow
\boxed{t_{max} = \frac{\ln\left(\frac{\lambda_1}{\lambda_2}\right)}{\lambda_1 - \lambda_2}} \tag{10}$$

VI. Exercícios

- 1. Numa amostra de 1 litro de dióxido de carbono a CNTP, uma média de 5 desintegrações por minuto são observadas para o decaimento: $^{14}\text{C} \rightarrow ^{14}\text{N} + e^+ + \overline{\nu}$. Calcule a fração de ^{14}C presente na amostra se a vida média deste nuclídeo é 5730 anos.
- 2. O nuclídeo $^{210}_{83}$ Bi decai, com vida média de 7,2 dias, em $^{210}_{84}$ Po através de emissão β . O nuclídeo $^{210}_{84}$ Po, por sua vez, decai, com vida média de 200 dias, em $^{206}_{82}$ Pb através de emissão α . Se uma fonte contém, inicialmente, $^{210}_{83}$ Bi puro, após quanto tempo a taxa de emissão de partícula α atingirá o máximo?
- 3. Uma amostra de ouro é exposta a um feixe de nêutrons de intensidade constante tal que 10¹⁰ nêutrons por segundo são absorvidos na reação: n+¹⁹⁷₇₉Au→¹⁹⁸₇₉Au+γ. O nuclídeo ¹⁹⁸₇₉Au decai em ¹⁹⁸₈₀Hg via emissão β com vida média de 3,89 dias. Quantos núcleos de ¹⁹⁸₇₉Au estarão presentes após 6 dias de irradiação? Qual o número de equilíbrio destes núcleos? Assumindo que o nuclídeo ¹⁹⁸₈₀Hg não seja afetado pelo feixe de nêutrons, quantos de seus núcleos estarão presentes após os 6 dias?
- 4. Seja uma amostra contendo, num dado instante t, uma quantidade $N_p(t)$ de núcleos-pai e $N_f(t)$ núcleos-filho. Supondo que no instante de formação da amostra, t=0, havia apenas $N_p(0)$ núcleos-pai e admitindo-se que as quantidades de núcleos se conservem, temos que:

$$N_p(0) = N_p(t) + N_f(t).$$

Mostre que a idade estimada da amostra será dada por:

$$t = \frac{1}{\lambda} \ln \left[1 + \frac{N_f(t)}{N_p(t)} \right],$$

onde λ é a constante de decaimento do núcleo-pai.

5. Uma amostra de urânio natural contém hoje 99,3% de $^{238}_{92}$ U e 0,7% de $^{235}_{92}$ U, com meias-vidas de 4 , $^{47} \cdot 10^{9}$ anos e 7,04 $\cdot 10^{8}$ anos, respectivamente. Se a formação do urânio se deu há 6 bilhões de anos após o Big Bang, com uma abundância relativa de $^{235}_{92}$ U/ $^{238}_{92}$ U ≈ 4 , 2, estime a idade do universo.