PLANO DE ENSINO NHZ3026: Introdução à Física Nuclear (4-0-4)

Ementa:

Introdução: descoberta do núcleo; O espalhamento Rutherford; Forças nucleares e partículas elementares; Momentos nucleares; Raio nuclear, densidade de carga e fator de forma; Energia de ligação e fórmula semi-empírica; Modelos nucleares: da gota líquida, do gás de Fermi, de camadas e coletivo; Estados excitados; Lei dos decaimentos radioativos; Reações nucleares; Teoria quântica dos decaimentos; Fissão nuclear, reação em cadeia, física de reatores; Fusão nuclear, plasmas e nucleossíntese estelar; Interações das radiações com a matéria; Detectores de radiações; Radioproteção e efeitos biológicos das radiações.

Horários:

Ter./Qui.: 14-16h

S 305-3, Bloco A, Campus Santo André.

Atendimentos:

Seg.: 15-17h

S 1015, Bloco B, Campus Santo André e/ou via RNP.

Cronograma de aulas:

Data	Conteúdo	Método/Material
01/10	Introdução e revisão histórica	Notas de aula e slides
03/10	Fundamentos	Notas de aula e slides
08/10	O espalhamento Rutherford	Notas de aula e slides
10/10	Interações nucleares	Notas de aula e slides
15/10	Momentos nucleares	Notas de aula e slides
17/10	Distribuição de carga, raio nuclear e fator de forma	Notas de aula e slides
22/10	Modelos nucleares - I	Notas de aula e slides
24/10	Modelos nucleares - II	Notas de aula e slides
29/10	Prova 1	Aplicada em sala de aula
31/10	Radioatividade	Notas de aula e slides
5/11	Simpósio de IC	Não haverá aula
7/11	Reações nucleares	Notas de aula e slides
12/11	Teoria quântica dos decaimentos - I	Notas de aula e slides
14/11	Teoria quântica dos decaimentos - II	Notas de aula e slides
19/11	Fissão nuclear, reação em cadeia, física de reatores	Notas de aula e slides
21/11	Fusão nuclear: plasmas e astrofísica	Notas de aula e slides
26/11	Prova 2	Aplicada em sala de aula
28/11	Congresso UFABC	Não haverá aula
3/12	Interações das radiações com a matéria - I	Notas de aula e slides
5/12	Interações das radiações com a matéria - II	Notas de aula e slides
10/12	Detectores de radiações	Notas de aula e slides
12/12	Radioproteção e efeitos biológicos	Notas de aula e slides
17/12	Revisão e exercícios	Listas de exercícios
19/12	Prova 3	Aplicada em sala de aula
28/01	Recuperação	Aplicada em sala de aula
30/01	Prova Substitutiva	Aplicada em sala de aula

Bibliografia:

- 1) Notas de aula;
- 2) Introdução à Física Nuclear, K.C. Chung, Ed. UERJ (2001);
- 3) Introductory Nuclear Physics, Kenneth S. Krane, John Wiley & Sons (1988);
- 4) Techniques for Nuclear and Particle Physics Experiments, W. R. Leo, Springer-Verlag (1987);
- 5) Nuclear and Particle Physics, W. S. C. Williams, Oxford Univ. Press (1991);
- 6) Introdução à Física Nuclear, H. Schechter, Ed. UFRJ (2007);
- 7) Física Quântica, R. Eisberg & R. Resnick, Ed. Campus (1979).

O material da disciplina será disponibilizado no site:

http://professor.ufabc.edu.br/~leigui/ensino/grad/nhz3026/nhz3026.html

Avaliação:

```
3 provas:
```

- P₁, em 29/10;
- P2, em 26/11;
- P₃, em 19/12;

A média será dada por:

 $M=(P_1 + P_2 + P_3)/3$, onde:

 $A = 10 \ge M \ge 8.5$

 $B = 8.5 > M \ge 7.0$

 $C = 7.0 > M \ge 5.0$

 $D = 5.0 > M \ge 4.0$

 $F = 4.0 > M \ge 0.0$

O (reprovação por faltas em ≥ 25% das aulas e/ou 2 avaliações).

Prova substitutiva em 30/01, somente mediante justificativa por escrito.

Recuperação em 28/01, somente para quem obteve M < 5,0.

A média final, após a recuperação, será dada por:

 $M_R = (2R + 3M)/5$, onde:

R = nota da recuperação;

M = média antes da recuperação.

Valendo a mesma tabela de conversão para conceitos.

Prof. Marcelo Augusto Leigui de Oliveira

CCNH/UFABC