

Marcos no Desenvolvimento da Física

Marco #7: A teoria quântica

Prof. Marcelo Augusto Leigui de Oliveira leigui@ufabc.edu.br

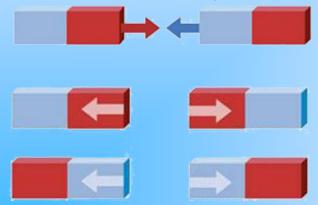
•4 elementos empedoclianos:

água, ar, terra e fogo;

Empédocles (c 490 – c 430 a.C.)

•2 forças ou princípios:

amor (philia) e ódio (ekthos), ou seja, atração e repulsão;

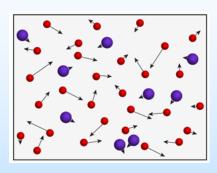


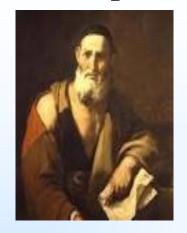
• A luz viaja em linha reta.

Os raios são emitidos pelos olhos e interagem com os corpos iluminados.

Demócrito (c 460 – c 380 a.C.) e seu discípulo **Leucipo** (c 460 – c 370 a.C.)

Os primeiros <u>atomistas</u>: **átomos** (indivisíveis) em constante movimento no **vácuo**.





Platão (c 427 – c 347 a.C.) e seu discípulo Aristóteles (384 – c 322 a.C.)

• propõe um modelo geométrico para os 4 elementos:

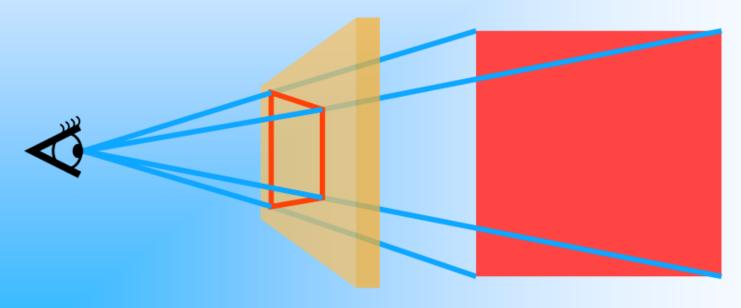
- rejeita a hipótese atomística: a matéria deve ser contínua e o vácuo não é físico;
- 5 elementos: **terra**, **fogo**, **água**, **ar** e **éter**.
- a luz é uma **onda** e propaga-se num meio muito rarefeito: o **éter**;
- achava que a luz arranca "lascas" dos corpos iluminados;

Euclides escreveu também *Óptica*, o mais antigo tratado no tema. Euclides inicia *Óptica* com um conjunto de definições e postulados. Vejamos os dois primeiros:

"Assumimos que:

- 1. os raios retilíneos procedentes do olho divergem indefinidamente;
- 2. a figura contida em um conjunto de raios visuais é um cone com vértice no olho e base no objeto visto."

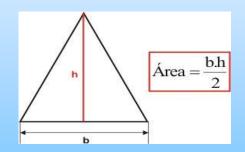
Euclides (c 325 – 265 a.C.)

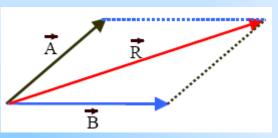


Postulado 2 de Euclides, base da teoria da perspectiva.

Sábio, geômetra e engenheiro de Alexandria. Popularmente conhecido pela primeira máquina à vapor documentada, a *eolípila* (já conhecida no século anterior).

Em sua obra *Métrica*, descreveu a fórmula para o cálculo da área de um triângulo (também já conhecida por Arquimedes), a regra do paralelogramo para a soma vetorial de velocidades, fez cálculos de centros de gravidade e estudou o funcionamento das engrenagens.

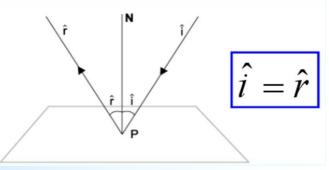




No campo da óptica geométrica, escreveu *Katoptrika*, onde demonstrou a lei fundamental da reflexão dos raios de luz em espelhos: o ângulo de incidência é igual ao ângulo de reflexão.

Heron ou Herão (10 – 70 d.C.)

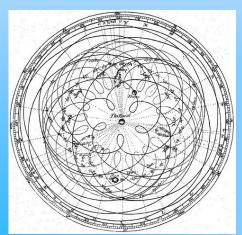
A eolípila de Heron.



Famoso pelo seu tratado *Almagesto* onde descreve o sistema de mundo geocêntrico (ou ptolomaico) que perdurou por 14 séculos. Escreveu também o tratado *Geografia*.

Realizou pesquisas no campo da *dióptrica*, conduzindo experimentos para medir o caminho da luz nas passagens do ar para água, do ar para o vidro e do vidro para a água e apresentou seus resultados no seu livro *Óptica*, considerado um dos trabalhos mais importantes no ramo antes de Newton - apesar de erroneamente achar que a refração estivesse relacionada aos valores dos ângulos (e não aos dos seus senos, como na lei de Snell) e de ter, supostamente, "cozinhado" os dados para evidenciar a sua teoria.

Claudio Ptolomeu (90 – 168 d.C.)



Sistema cosmológico de Ptolomeu.

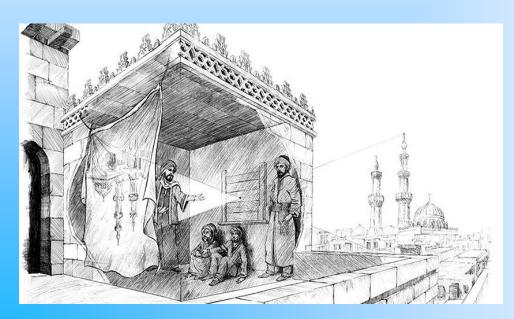
Mapa mundi de Ptolomeu.

Ptolomeu e a Astronomia (séc XVI).

NA IDADE MÉDIA (ORIENTE MÉDIO)

Físico, astrônomo e matemático árabe. Muitos o consideram o primeiro cientista, pois ele defendia que as hipóteses só poderiam ser comprovadas experimentalmente. Foi o grande pioneiro da óptica, ao publicar , no início século XI, seu tratado de 7 volumes *Livro de Óptica, Kitab al-Manazir*, onde propõe novas teorias sobre a luz, cor e a visão. Cita, pela primeira vez, as lentes, vidros biconvexos que utilizou para magnificar imagens.

Abū 'Alī al-Ḥasan ibn al-Haytham (965 – 1040), o "físico" Alhazen.



Câmara escura.

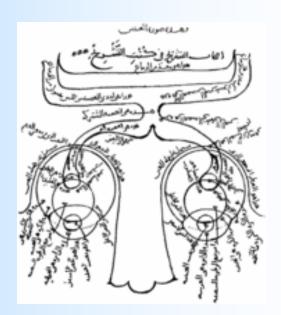
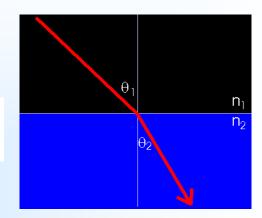


Diagrama dos olhos e dos nervos ópticos.

Willebrord Snellius (1580 - 1626)

(1621) a lei da refração:

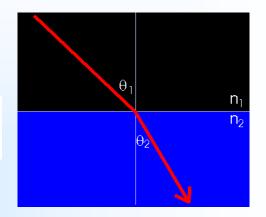
 $n_1 \operatorname{sen} \theta_1 = n_2 \operatorname{sen} \theta_2$



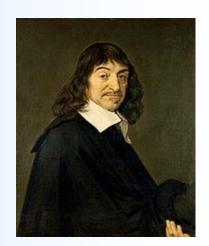
Willebrord Snellius (1580 - 1626)

(1621) a lei da refração:

$$n_1 \operatorname{sen} \theta_1 = n_2 \operatorname{sen} \theta_2$$



Posteriormente, Descartes a descobriu independentemente e até hoje, muitos livros citam a lei de Snell e Descartes.



René du Perron Descartes (1596 - 1650)



René du Perron Descartes (1596 - 1650)

- mostrou geometricamente que o ângulo subentendido entre o olho e o centro de um arco-íris é de 42°.
- retomou a ideia de que a luz se propaga no éter.

Newton deu várias contribuições para a óptica, sintetizadas em seu livro *Optiks* (1704).

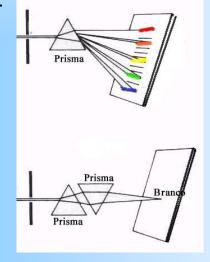
•Construiu o primeiro telescópio refletor (ou newtoniano):

Sir Isaac Newton (1642-1727)

•Descobriu que a luz branca era uma composição de várias cores

refratadas diferentemente por um prisma:

•E realizou o *experimentum crucis*:



•Apresentou também os anéis de Newton:

Dispersão

O fenômeno da **dispersão** da luz:

Ondas eletromagnéticas propagam-se com velocidade:

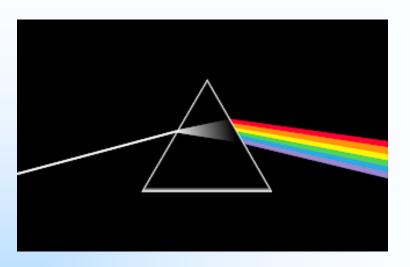
$$v=\lambda_n f=\frac{c}{n}\;,$$

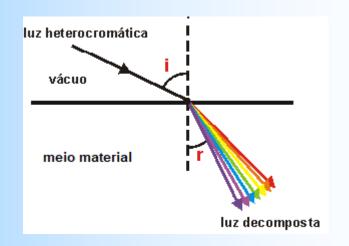
em meios materiais, onde n é o **índice de refração**, $c \approx 3 \cdot 10^8$ m/s a velocidade da luz no vácuo, λ_n o comprimento de onda no meio e f a frequência de oscilação.

Ao penetrar um meio material, a luz sofre **refração**:

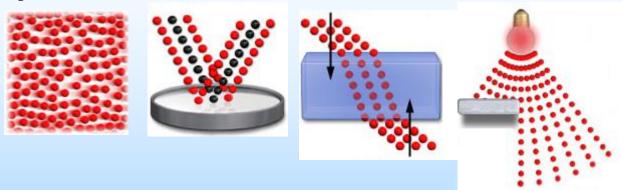
$$n_1 \operatorname{sen} i = n_2 \operatorname{sen} r$$
,

onde n = c/v é o **índice de refração** e i e r são os ângulos de incidência e de refração.



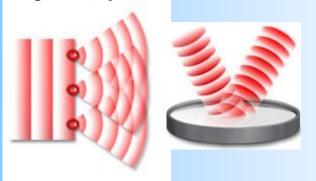


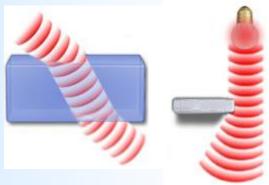
Teoria corpuscular: Newton defendia que a luz era composta por uma "multidão de pequenos corpúsculos de vários tamanhos que pulavam dos corpos iluminados".



Sir Isaac Newton (1642-1727)

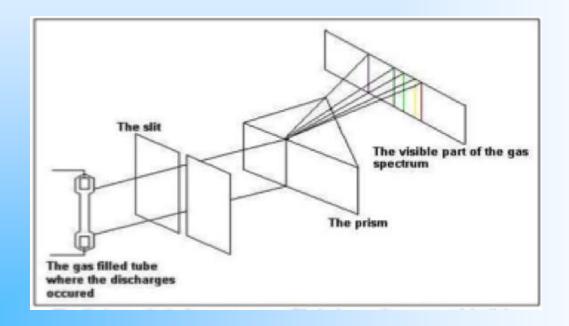
Teoria ondulatória: publicou *Traté de la lumière* de 1690, onde assumiu que o espaço era preenchido por um meio (éter) e que as perturbações do meio que constituíam a luz eram passadas para suas vizinhas que se tornam novas fontes de perturbação.





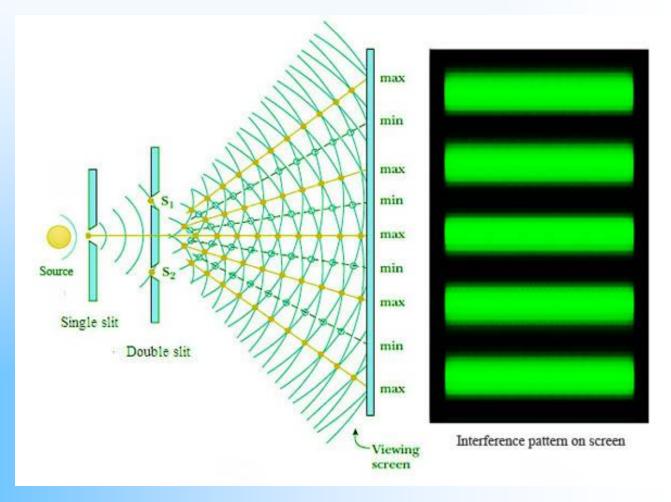
Christiaan Huygens (1629 - 1695)

• (1752) Thomas Melvill (1726-1753) nota que gases aquecidos emitem linhas (claras) em frequências específicas:



1801 o experimento da dupla fenda de Young:

Thomas Young(1773 - 1829)



Ondulatória

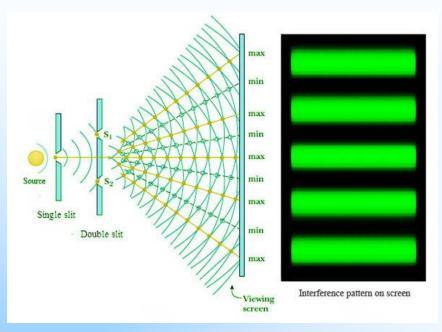
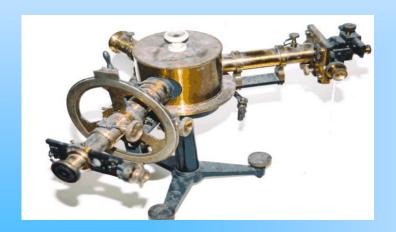
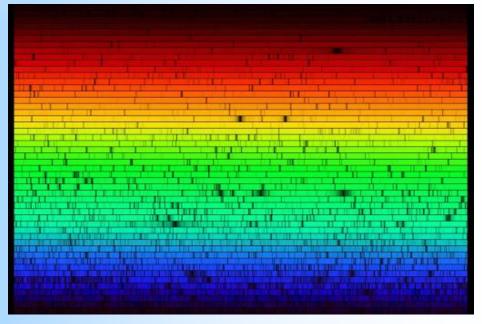


Imagem do Google Earth

- (1814) Fraunhofer inventa o espectroscópio e estuda 574 linhas (escuras) do Sol, as linhas de Fraunhofer.
- Ele mede também o espectro da estrela Sírius.

Joseph von Fraunhofer (1787 - 1826)



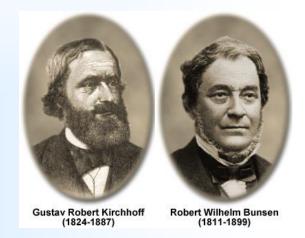


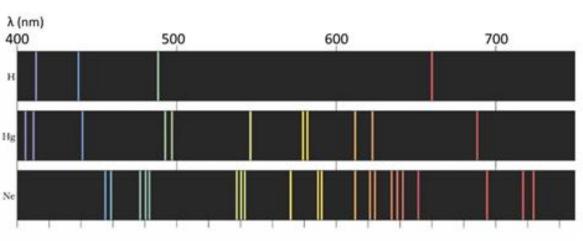
Augusto Comte (1798 - 1857)

• (1820) O filósofo Augusto Comte afirma em seu Curso de Filosofia Positiva:

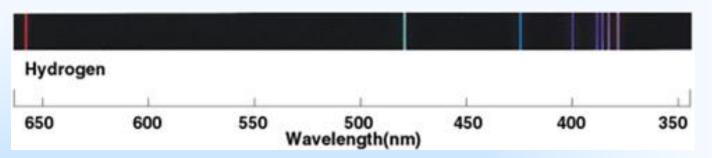
"Podemos conhecer tudo, menos a natureza físico-química das estrelas".

(1860) Kirchhoff e Bunsen acoplam um espectroscópio a um bico de Bunsen e mostram que os conjuntos diferentes de linhas estão associadas a diferentes elementos químicos:



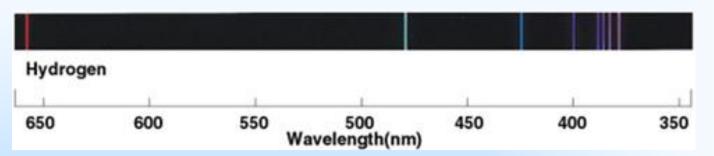


O espectro mais simples é o do hidrogênio, observado por Ångström, em (1853):



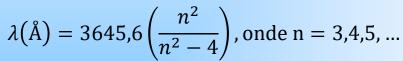
Anders Jonas Ångström (1814-1874)

O espectro mais simples é o do hidrogênio, observado por Ångström, em (1853):



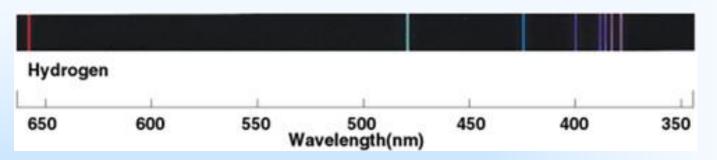
Anders Jonas Ångström (1814-1874)

(1885) Balmer descobre uma fórmula que descreve a série visível do hidrogênio:



Johan Jakob Balmer (1825-1898)

O espectro mais simples é o do hidrogênio, observado por Ångström, em (1853):



Anders Jonas Ångström (1814-1874)

(1885) Balmer descobre uma fórmula que descreve a série visível do hidrogênio:

$$\lambda(\text{Å}) = 3645,6 \left(\frac{n^2}{n^2 - 4}\right)$$
, onde n = 3,4,5, ...

(1888) Rydberg reescreveu a fórmula de Balmer em termos do número de onda (λ^{-1}):

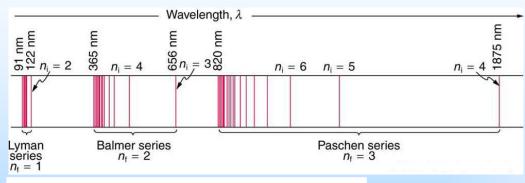
$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right),$$

onde $R_H = 1,09737 \cdot 10^7 \text{ m}^{-1}$ (valor moderno) é a **constante de Rydberg**.

Johan Jakob Balmer (1825-1898)

Johannes Rydberg (1854-1919)

Posteriormente, outras séries foram descobertas para o hidrogênio:



série	ano(s)	m	n	faixa espectral
Lyman	1906 - 1914	1	2, 3,	uv
Balmer	1885	2	3, 4,	uv+vis
Paschen	1908	3	4, 5,	iv
Brackett	1922	4	5, 6,	iv
Pfund	1924	5	6, 7,	iv

n = 6 n = 5 n = 4 Pfund Bracket n = 3 Paschen n = 2 Balmer Lyman SERIES: Lyman Balmer | Paschen Bracket Pfund Espectro

(1908) Ritz generaliza a fórmula:

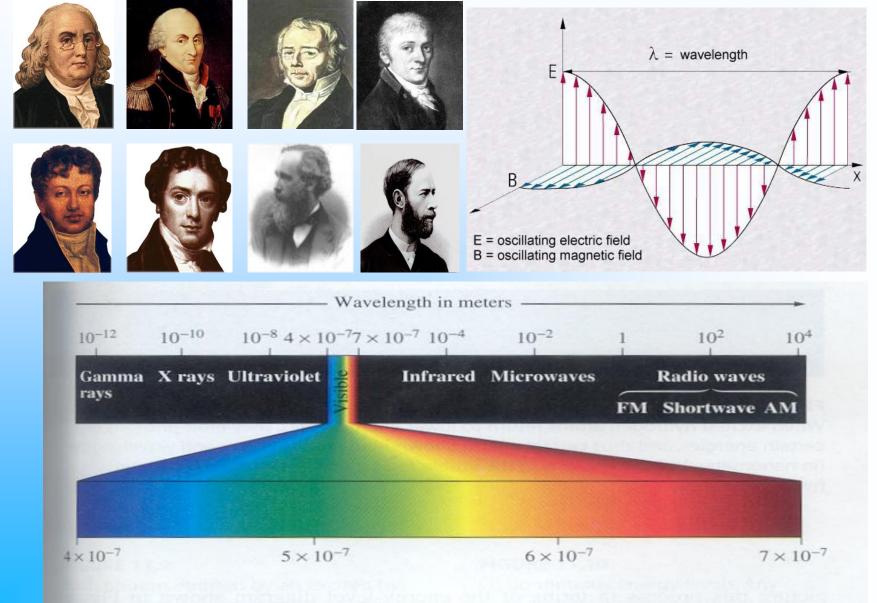
$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \qquad n > m \text{ (números inteiros)}$$

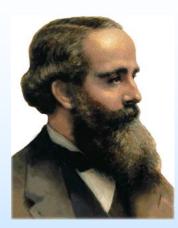
onde $R_H = 1,09737 \cdot 10^7 \text{ m}^{-1}$ (valor moderno) é a **constante de Rydberg**.

Walther Ritz (1878-1909)

NOS SÉCULOS XVIII & XIX

Eletromagnetismo





James Clerk Maxwell (1831 - 1879)

1864 James C. Maxwell descreve as 4 equações do eletromagnetismo, verificando que delas pode-se deduzir uma equação de onda.

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

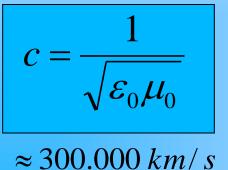
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

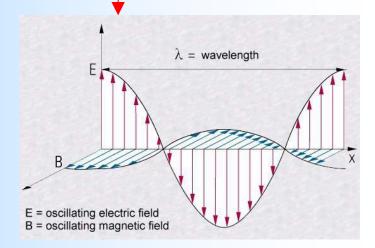
$$\nabla \times \vec{B} = \mu_0 \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

$$\Rightarrow$$

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$$
$$\nabla^2 \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}$$

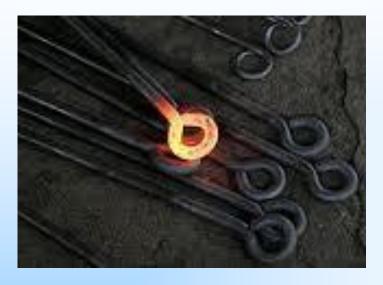
onde:



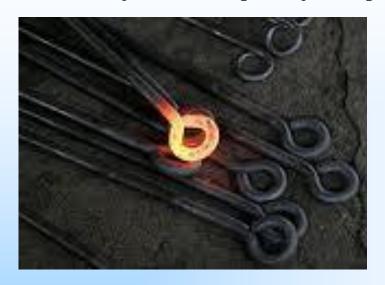


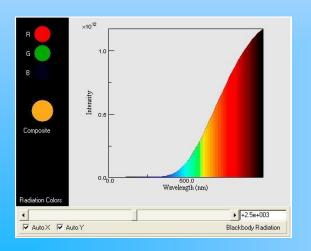
NO SÉCULO XIX ...

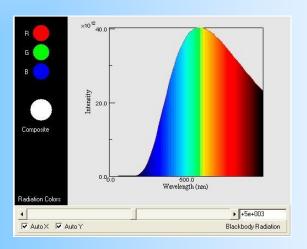
Emissão de radiação térmica por objetos opacos.

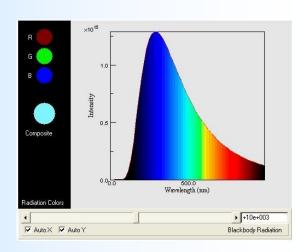


Emissão de radiação térmica por objetos opacos.

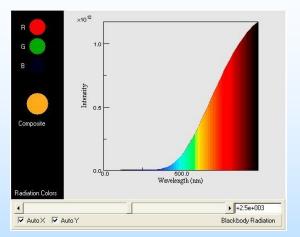


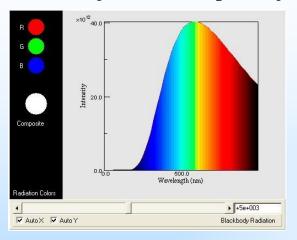


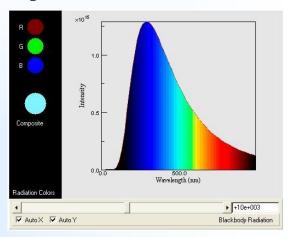




Emissão de radiação térmica por objetos opacos.





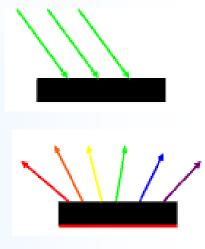


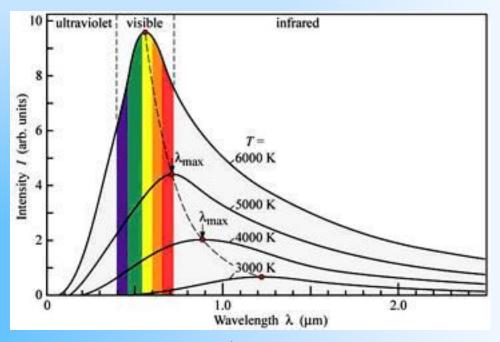
Radiação de corpo negro

Corpo negro (ideal):

• absorve toda a radiação incidente (sem refletir):

• quando aquecido emite radiação somente como resultado das vibrações térmicas de seus átomos:

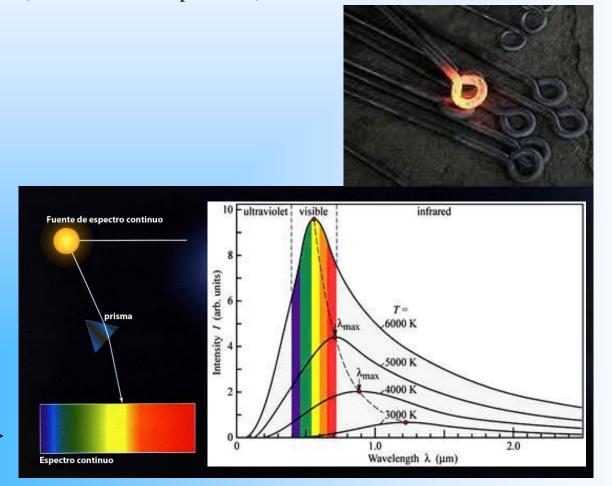




Espectro de corpo negro.

Tipos de espectros:

1. <u>Espectro contínuo</u>: não é emitido em linhas, mas em todas as frequências, por exemplo: radiação de corpo negro (veremos em aula posterior).

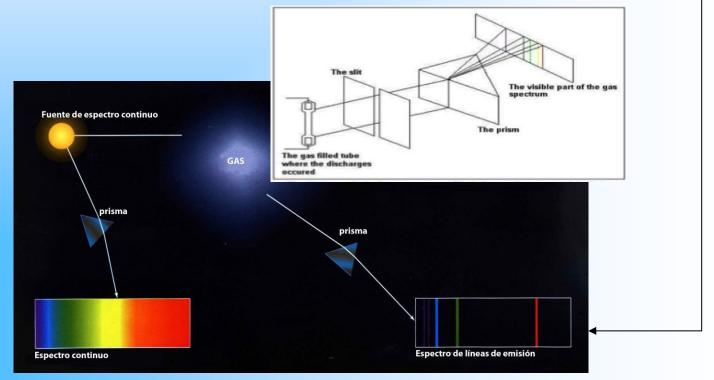


Tipos de espectros:

1. <u>Espectro contínuo</u>: não é emitido em linhas, mas em todas as frequências, por exemplo: radiação de corpo negro (veremos em aula posterior);

2. <u>Espectro de emissão</u> (linhas claras): produzido quando uma substância é excitada e emite luz em frequências bem definidas, por exemplo: termoluminescência, eletroluminescência,

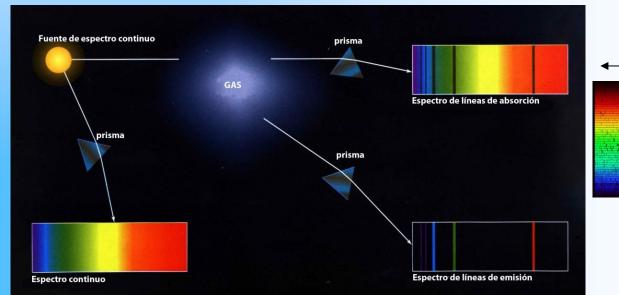
quimioluminescência.



Tipos de espectros:

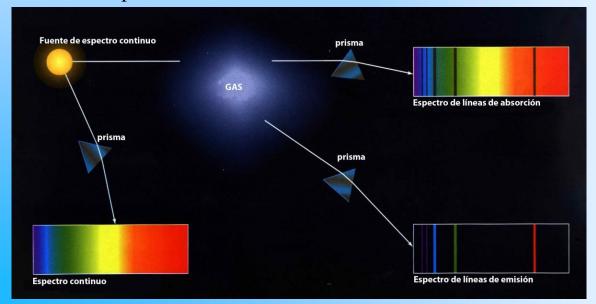
- 1. <u>Espectro contínuo</u>: não é emitido em linhas, mas em todas as frequências, por exemplo: radiação de corpo negro (veremos em aula posterior);
- 2. <u>Espectro de emissão</u> (linhas claras): produzido quando uma substância é excitada e emite luz em frequências bem definidas, por exemplo: termoluminescência, eletroluminescência, quimioluminescência;

3. <u>Espectro de absorção</u> (linhas escuras): produzido quando a luz branca (previamente produzida) é absorvida por uma substância.



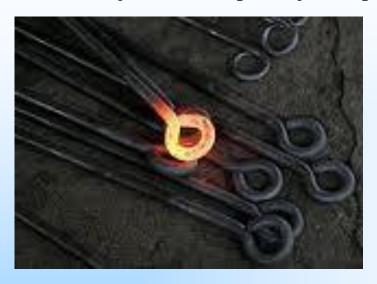
Tipos de espectros:

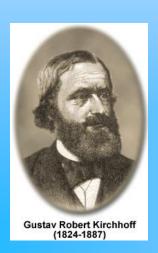
- 1. <u>Espectro contínuo</u>: não é emitido em linhas, mas em todas as frequências, por exemplo: radiação de corpo negro (veremos em aula posterior);
- 2. <u>Espectro de emissão</u> (linhas claras): produzido quando uma substância é excitada e emite luz em frequências bem definidas, por exemplo: termoluminescência, eletroluminescência, quimioluminescência;
- 3. <u>Espectro de absorção</u> (linhas escuras): produzido quando a luz branca (previamente produzida) é absorvida por uma substância.

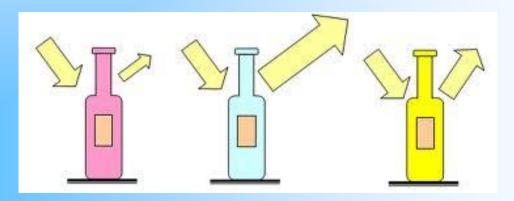


- ➤ Gases monoatômicos → linhas
- \triangleright Outros gases \rightarrow bandas

Emissão de radiação térmica por objetos opacos.



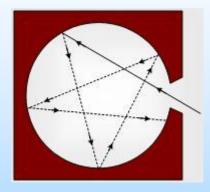




1860 Gustav R. Kirchhoff formula que: No equilíbrio térmico (à temperatura T):

 $\delta\epsilon_{\lambda}^{abs}=\delta\epsilon_{\lambda}^{emit}$

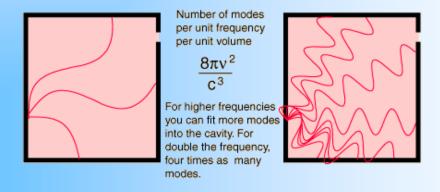
1860 Gustav Kirchhoff sugere que um orifício numa cavidade aquecida à temperatura uniforme deve ter espectro de corpo negro:



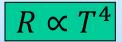
 $R(\lambda) = \left(\frac{c}{4}\right)u(\lambda)$, onde $u(\lambda)$ é a densidade de energia.

Gustav Robert Kirchhoff (1824-1887)

Fazendo-se uma contagem dos modos de ondas estacionárias:



1879 Stefan descobre experimentalmente:



Joseph Stefan (1835-1893)

A taxa de emissão de radiação por unidade de área (potência por unidade de área) de objetos aquecidos é proporcional à quarta potência da temperatura.

1879 Stefan descobre experimentalmente:

$$R \propto T^4$$

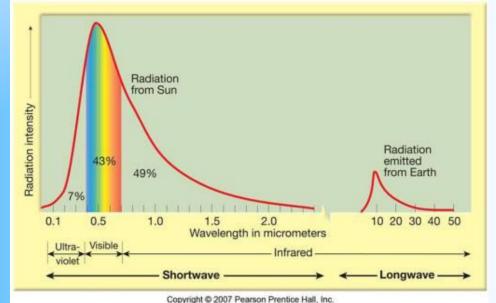
A taxa de emissão de radiação por unidade de área (potência por unidade de área) de objetos aquecidos é proporcional à quarta potência da temperatura.

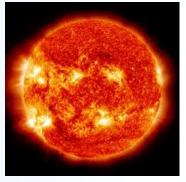
Joseph Stefan (1835-1893)

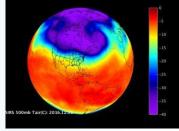
Exemplo: Qual a razão das intensidades $({}^{W}/_{m^2})$ das radiações de corpo negro emitidas pelo Sol

 $(T_S = 5800 \text{ K}) \text{ e pela Terra } (T_T = 300 \text{ K})?$

$$\frac{R_S}{R_T} = 1.4 \cdot 10^5$$







Ludwig Eduard Boltzmann (1844-1906)

1879 Stefan descobre experimentalmente:

1884 Boltzmann deduz teoricamente:

Joseph Stefan (1835-1893)

Lei de Stefan-Boltzmann:

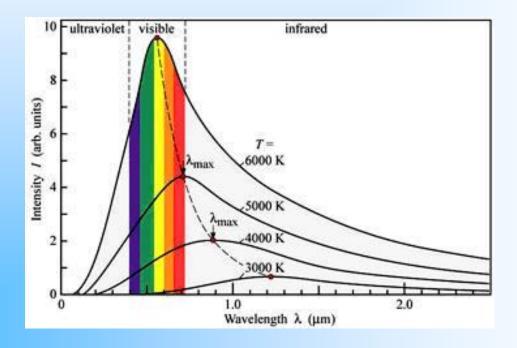
$$R = \sigma T^4$$
 , onde $\sigma = 5.67 \times 10^{-8} \, \text{W}/\text{m}^2\text{K}^4$ é a constante de Stefan–Boltzmann

A taxa de emissão de radiação por unidade de área (potência por unidade de área) de objetos aquecidos é proporcional à quarta potência da temperatura.

1893 Wien formula a lei do deslocamento:

$$\lambda^{\text{max}} = \frac{0,002898[\text{m} \cdot \text{K}]}{T}$$

Wilhelm Wien (1864-1928)

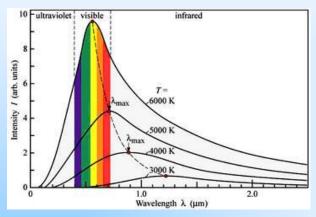


$$T_1 > T_2 > T_3 \Longrightarrow \lambda_1^{\max} < \lambda_2^{\max} < \lambda_3^{\max}$$

1893 Wien formula a lei do deslocamento:

$$\lambda^{\max} = \frac{0.002898[\text{m} \cdot \text{K}]}{T}$$

Wilhelm Wien (1864-1928)



$$T_1 > T_2 > T_3 \Longrightarrow \lambda_1^{\max} < \lambda_2^{\max} < \lambda_3^{\max}$$

Exemplo: A intensidade máxima de radiação solar ocorre em $\lambda^{\text{max}} = 490$ nm, qual é a temperatura da superfície solar?

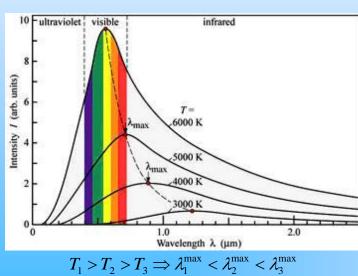
$$\lambda^{\text{max}} = 490 \text{ nm} = 4.9 \cdot 10^{-7} \text{ m}$$

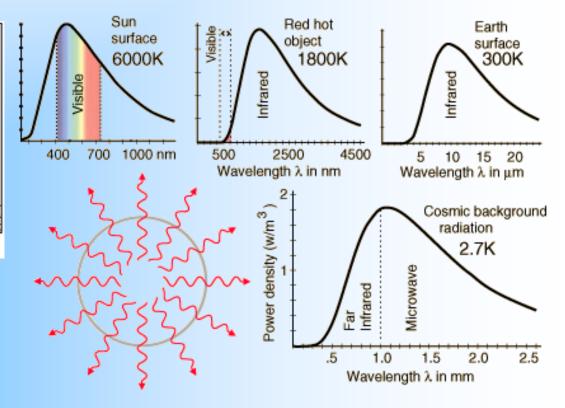
$$\lambda^{\text{max}} = \frac{0,002898}{T} \Longrightarrow T = \frac{0,002898}{\lambda^{\text{max}}} = \frac{2,898 \cdot 10^{-3}}{4,9 \cdot 10^{-7}} = 5914 \text{ K}$$

1893 Wien formula a lei do deslocamento:

$$\lambda^{\max} = \frac{0,002898[\text{m} \cdot \text{K}]}{T}$$

Wilhelm Wien (1864-1928)

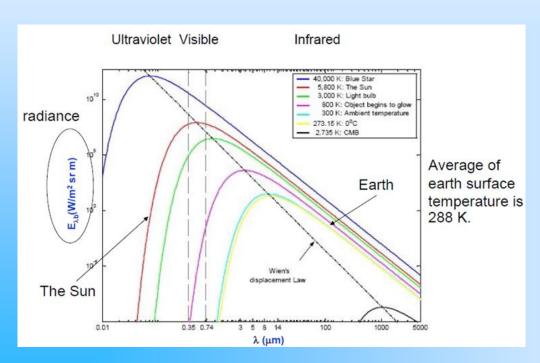


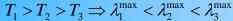


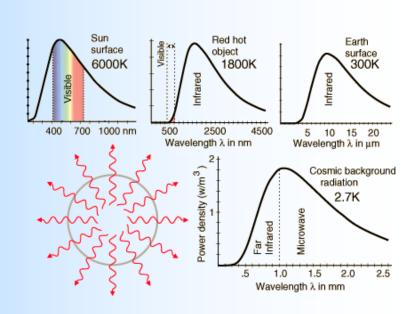
1893 Wien formula a lei do deslocamento:

$$\lambda^{\max} = \frac{0.002898[\text{m} \cdot \text{K}]}{T}$$

Wilhelm Wien (1864-1928)





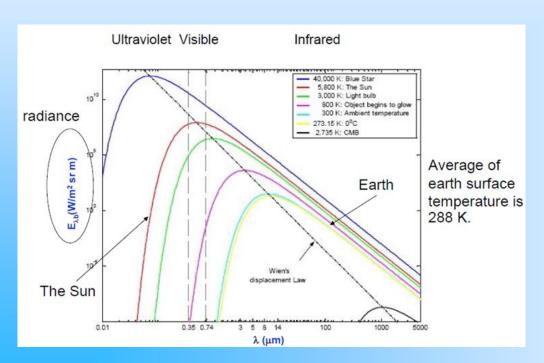


1893 Wien formula a lei do deslocamento:

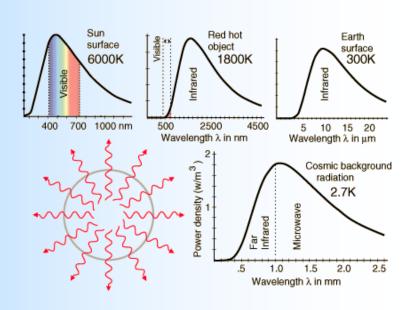
$$\lambda^{\max} = \frac{0,002898[\text{m} \cdot \text{K}]}{T}$$

Wilhelm Wien (1864-1928)

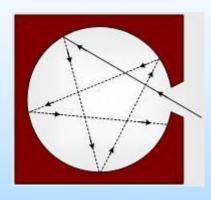
1911



$$T_1 > T_2 > T_3 \Longrightarrow \lambda_1^{\text{max}} < \lambda_2^{\text{max}} < \lambda_3^{\text{max}}$$



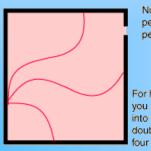
1860 Gustav Kirchhoff sugere que um orifício numa cavidade aquecida à temperatura uniforme deve ter espectro de corpo negro:



 $R(\lambda) = \left(\frac{c}{4}\right)u(\lambda)$, onde $u(\lambda)$ é a densidade de energia.

Gustav Robert Kirchhoff (1824-1887)

Fazendo-se uma contagem dos modos de ondas estacionárias e utilizando-se de <u>argumentos clássicos</u>,



Number of modes per unit frequency per unit volume

 $\frac{8\pi v^2}{c^3}$

For higher frequencies you can fit more modes into the cavity. For double the frequency, four times as many modes.

Lord Rayleigh (John Strutt) (1842-1919)

James Jeans (1877-1946)

vem:
$$u(\lambda) = n(\lambda)kT = \frac{8\pi kT}{\lambda^4}$$
, que é a fórmula de Rayleigh (1900) & Jeans (1905).

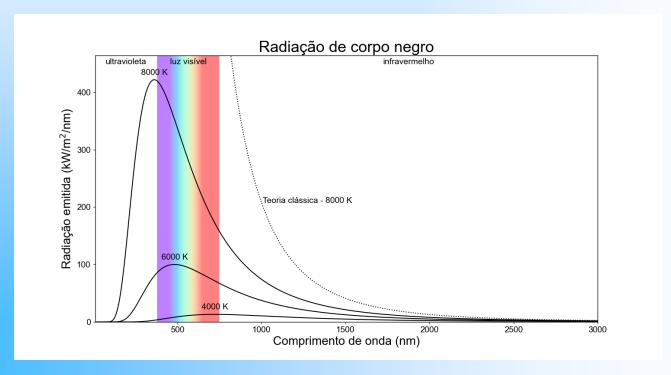
Mas a fórmula de Rayleigh & Jeans

$$u(\lambda) = \frac{8\pi kT}{\lambda^4}$$

tinha um probleminha ...

Lord Rayleigh (John Strutt) (1842-1919)

James Jeans



A catástrofe do ultravioleta!

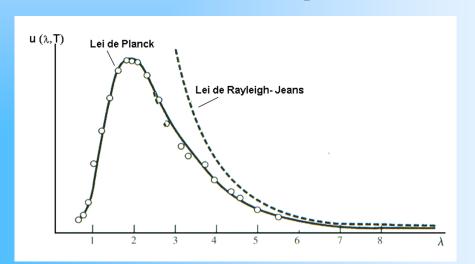
1900 Max Planck substitui o cálculo da energia média de estados contínuos por discretos:

$$\langle E \rangle = \int E \cdot p(E) \ dE \to \langle E \rangle = \sum_{n} E_n \cdot p_n(E)$$

e introduz a hipótese da **quantização de energia**: as moléculas vibrantes somente podem ter valores de energia quantizados, ou discretos:

$$E_n = n(hf)$$
.

Com isso, Planck formula uma lei de distribuição que se ajustava perfeitamente aos dados em todos os comprimentos de onda:





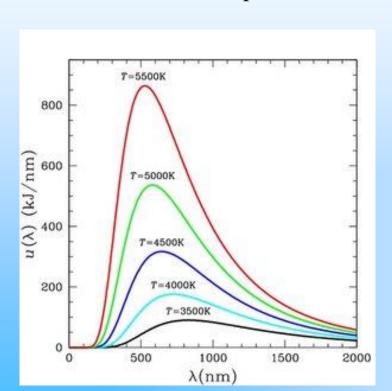
1900 Max Planck, com a hipótese da quantização de energia, formula uma lei de distribuição que se ajustava perfeitamente aos dados em todos os comprimentos de onda:

$$E_n = n(hf) \Longrightarrow$$

$$u(\lambda) = \frac{8\pi h c \lambda^{-5}}{e^{hc}/\lambda kT - 1}$$

$$h = 6,626 \cdot 10^{-34} \text{J} \cdot \text{s}$$
 é a constante de Planck.

1900 Max Planck, com a hipótese da quantização de energia, formula uma lei de distribuição que se ajustava perfeitamente aos dados em todos os comprimentos de onda:



Max Planck (1858-1947)

$$E_n = n(hf)$$

$$u(\lambda) = \frac{8\pi h c \lambda^{-5}}{e^{hc}/\lambda kT - 1}$$

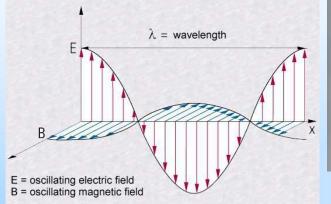
$$h = 6,626 \cdot 10^{-34} \text{J} \cdot \text{s}$$
 é a constante de Planck.

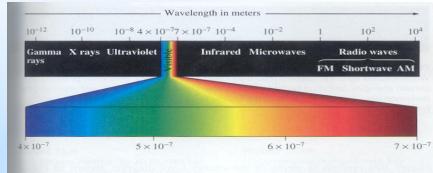
Na lápide de seu túmulo, em Göttingen (Alemanha):

11 6

James Clerk Maxwell (1831 - 1879)

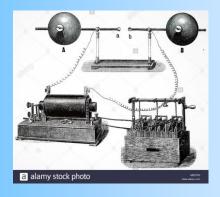
1864 Maxwell deduziu as equações de ondas eletromagnéticas:

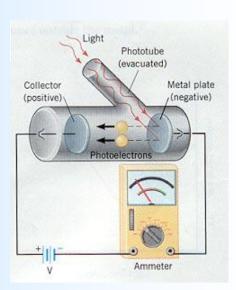


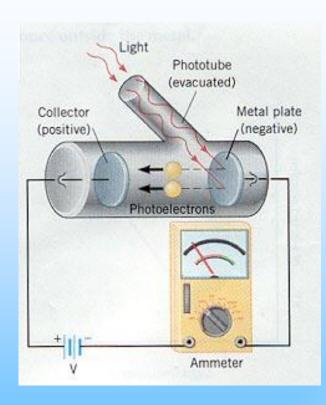


Heinrich R. Hertz (1857 - 1894)

1887 Hertz demonstra a existência das ondas eletromagnéticas e descobre o **efeito fotoelétrico**.

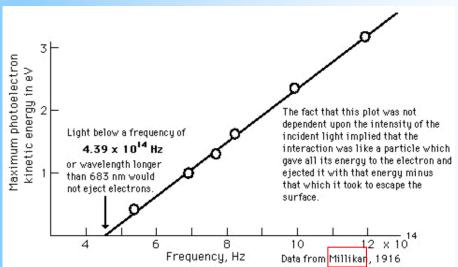




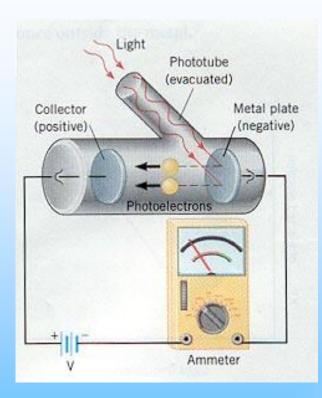


1897++ Lenard estuda sistematicamente o efeito fotoelétrico:

- •A emissão ocorre a alto vácuo, portanto, os portadores de carga não são íons gasosos;
- •A ação de um campo magnético confirma a carga negativa dos portadores;
- •Existe um <u>limiar de freqüência</u> para o efeito ocorrer, ou **frequência de corte**, em ~10¹⁴ Hz.



Philipp E. A. von Lenard (1862-1947)

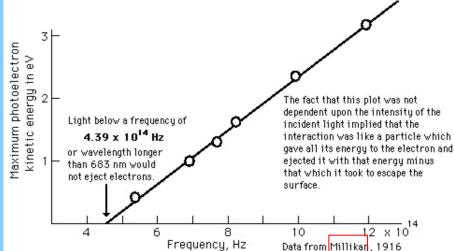


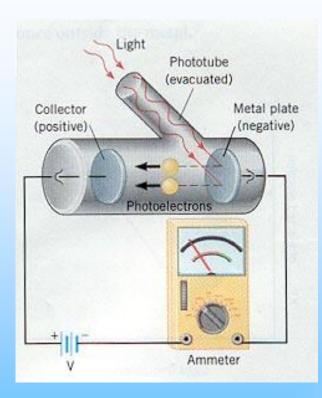
1897++ Lenard estuda sistematicamente o efeito fotoelétrico:

- •A emissão ocorre a alto vácuo, portanto, os portadores de carga não são íons gasosos;
- •A ação de um campo magnético confirma a carga negativa dos portadores;
- •Existe um <u>limiar de freqüência</u> para o efeito ocorrer, ou **frequência de corte**, em ~10¹⁴ Hz.

Philipp E. A. von Lenard (1862-1947)

1905



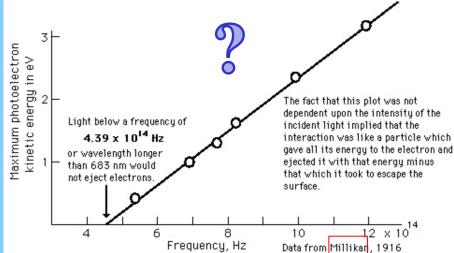


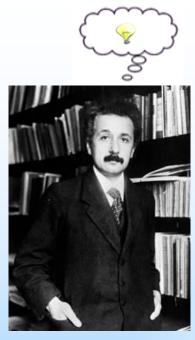
1897++ Lenard estuda sistematicamente o efeito fotoelétrico:

- •A emissão ocorre a alto vácuo, portanto, os portadores de carga não são íons gasosos;
- •A ação de um campo magnético confirma a carga negativa dos portadores;
- •Existe um <u>limiar de freqüência</u> para o efeito ocorrer, ou **frequência de corte**, em ~10¹⁴ Hz.

Philipp E. A. von Lenard (1862-1947)

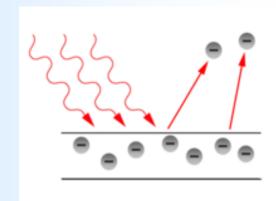
1905





Albert Einstein (1879-1955)

1905 Einstein considera que se a radiação eletromagnética é quantizada, a luz deve se comportar como partícula na interação com a matéria, e explica o efeito fotoelétrico.

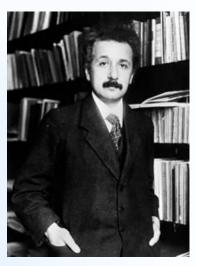


1905 Einstein considera que se a radiação eletromagnética é quantizada, a luz deve se comportar como partícula na interação com a matéria, e explica o efeito fotoelétrico.

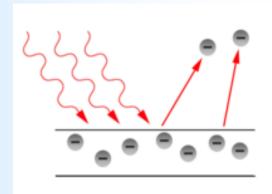
O fóton tem energia:

$$E=hf$$

onde f é a frequência e h a constante de Planck.



Albert Einstein (1879-1955)

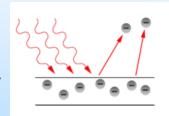


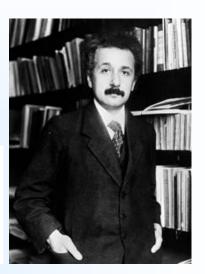
1905 Einstein considera que se a radiação eletromagnética é quantizada, a luz deve se comportar como partícula na interação com a matéria, e explica o efeito fotoelétrico.

O fóton tem energia:

$$E=hf$$

onde f é a frequência e h a constante de Planck.

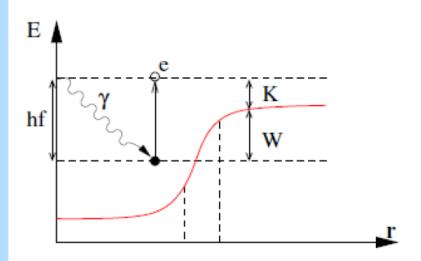




Albert Einstein (1879-1955)

Na interação com a superfície do metal, parte da energia do fóton é gasta para arrancar os elétrons do metal (ϕ) e parte é convertida em energia cinética dos elétrons (K):

$$E = hf = K + W \implies K_{max} = hf - W_0$$
, onde W_0 é a **função trabalho**.

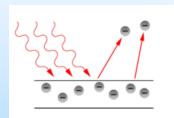


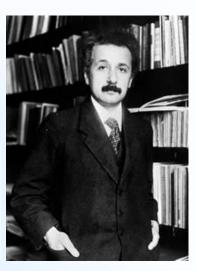
1905 Einstein considera que se a radiação eletromagnética é quantizada, a luz deve se comportar como partícula na interação com a matéria, e explica o efeito fotoelétrico.

O fóton tem energia:

$$E=hf$$

onde f é a frequência e h a constante de Planck.





Albert Einstein (1879-1955)

Na interação com a superfície do metal, parte da energia do fóton é gasta para arrancar os elétrons do metal (ϕ) e parte é convertida em energia cinética dos elétrons (K):

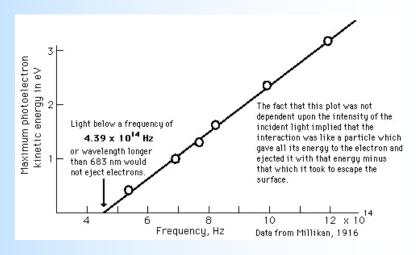
$$E = hf = K + W \implies K_{max} = hf - W_0$$

onde W_0 é a **função trabalho**.

Para elétrons com máxima energia cinética nula:

$$K_{max} = hf_0 - W_0 = 0 \Longrightarrow f_0 = \frac{W_0}{h},$$

onde f_0 é a **frequência de corte**.

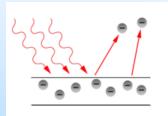


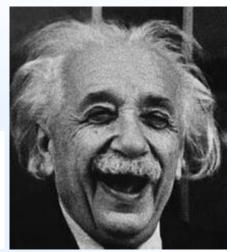
1905 Einstein considera que se a radiação eletromagnética é quantizada, a luz deve se comportar como partícula na interação com a matéria, e explica o efeito fotoelétrico.

O fóton tem energia:

$$E=hf$$

onde f é a frequência e h a constante de Planck.





Albert Einstein (1879-1955)

1921

Na interação com a superfície do metal, parte da energia do fóton é gasta para arrancar os elétrons do metal (ϕ) e parte é convertida em energia cinética dos elétrons (K):

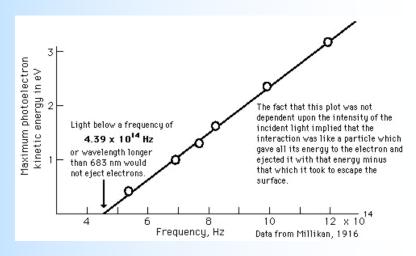
$$E = hf = K + W \implies K_{max} = hf - W_0$$

onde W_0 é a função trabalho.

Para elétrons com máxima energia cinética nula:

$$K_{max} = hf_0 - W_0 = 0 \Longrightarrow f_0 = \frac{W_0}{h},$$

onde f_0 é a **frequência de corte**.



Niels Bohr (1885 - 1955)

1922

1913 Niels Bohr propõe um modelo de quantização das energias atômicas, através de 3 postulados:

- Os elétrons não irradiam enquanto orbitam o núcleo (as órbitas são estacionárias);
- 2. Os átomos irradiam (ou absorvem) somente se os elétrons mudarem de um estado estacionário para outro, tal que:

Ground

Excited

Photon

Ground

$$\Delta E = hf$$

 $\Delta E > 0$ na absorção

 $\Delta E < 0$ na emissão

3. O momento angular é quantizado:

$$L_n = n\hbar = n \left(\frac{h}{2\pi} \right)$$
, onde $n = 1, 2, 3, ...$

e $L_n = mvr_n$ é o momento angular.

Bohr deduziu teoricamente as séries de Lyman, Balmer, etc e calculou a constante de Rydberg.

Previsões do modelo de Bohr

Seja um elétron numa órbita circular, sujeito a atração do núcleo, do 3° postulado obtemos os raios das órbitas de Bohr:

$$L_n = n\hbar \Longrightarrow r_n = \frac{n^2\hbar^2}{mkZe^2}$$
, onde $n = 1, 2, 3, ...$

com o primeiro nível (*n*=1) para o átomo de hidrogênio (*Z*=1):

$$r_1 = \frac{\hbar^2}{mke^2} \equiv a_0 = 5.3 \cdot 10^{-11} \text{m}$$
 é o primeiro **raio de Bohr**.

E do 2° postulado obtemos a fórmula de Rydberg-Ritz:

$$f = \frac{\Delta E}{h} = \frac{mk^2Z^2e^4}{4\pi\hbar^3} \left(\frac{1}{n_2^2} - \frac{1}{n_1^2}\right) = \frac{c}{\lambda} = cR_H \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

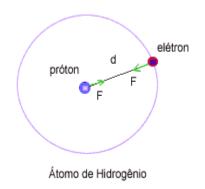
e a constante de Rydberg:
$$R_H = \frac{mk^2e^4}{4\pi c\hbar^3}$$

Vimos que a energia do elétron é:

$$E_n = -\frac{kZe^2}{2r_n} = -\frac{kZe^2}{2} \frac{mkZe^2}{n^2\hbar^2} = -\frac{mk^2Z^2e^4}{2\hbar^2n^2} \equiv -\frac{Z^2E_0}{n^2} \Longrightarrow E_n = -\frac{Z^2E_0}{n^2}$$

que são os níveis de energia de Bohr, onde:

$$E_0 = \frac{mk^2e^4}{2\hbar^2} = 2,169 \cdot 10^{-18} \text{ J} = 13,6 \text{ eV}.$$



Previsões do modelo de Bohr

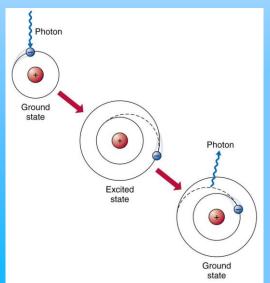
- 1. Os elétrons orbitam órbitas estacionárias;
- 2. Os átomos irradiam (ou absorvem) somente se os elétrons mudarem de um estado estacionário para outro, tal que: $\Delta E = hf$;
- 3. O momento angular é quantizado: $L_n = n\hbar$, onde n = 1,2,3,...

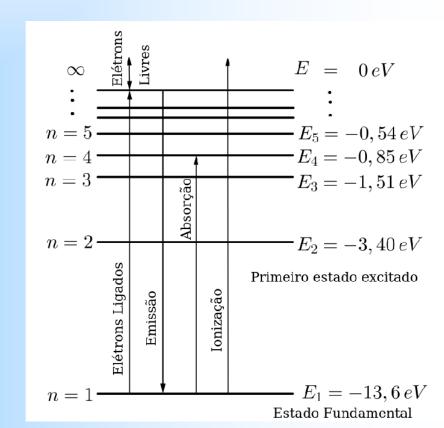
$$\Rightarrow r_n = \frac{n^2 \hbar^2}{mkZe^2}$$
, onde $n = 1, 2, 3, ...$

Niels Bohr (1885 - 1955)

$$\Longrightarrow \frac{1}{\lambda} = \frac{mk^2Z^2e^4}{4\pi c\hbar^3} \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

$$\Rightarrow E_n = -\frac{Z^2 E_0}{n^2}$$
, onde: $E_0 = 13.6$ eV





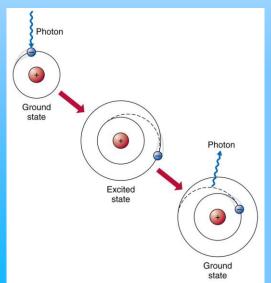
Previsões do modelo de Bohr

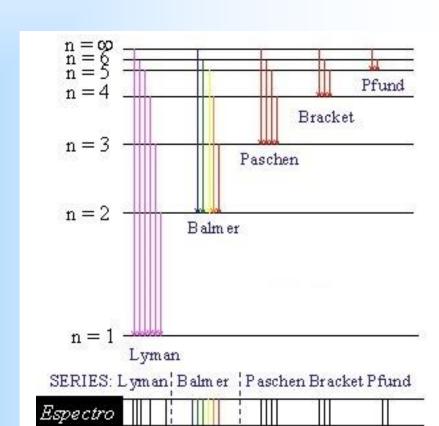
- 1. Os elétrons orbitam órbitas estacionárias;
- 2. Os átomos irradiam (ou absorvem) somente se os elétrons mudarem de um estado estacionário para outro, tal que: $\Delta E = hf$;
- 3. O momento angular é quantizado: $L_n = n\hbar$, onde n = 1,2,3,...

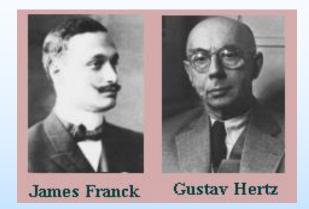
$$\Rightarrow r_n = \frac{n^2 \hbar^2}{mkZe^2}$$
, onde $n = 1, 2, 3, ...$

$$\Longrightarrow \frac{1}{\lambda} = \frac{mk^2Z^2e^4}{4\pi c\hbar^3} \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

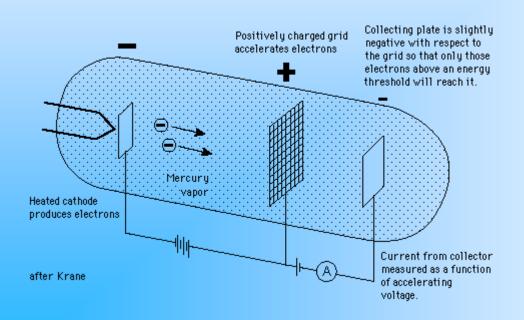
$$\Rightarrow E_n = -\frac{Z^2 E_0}{n^2}$$
, onde: $E_0 = 13.6$ eV

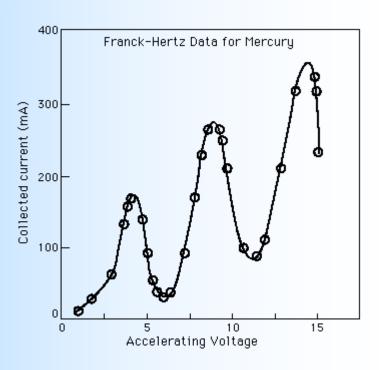






James Franck e Gustav Hertz comprovam experimentalmente o modelo de Bohr:





Dualidade onda-partícula

Louis de Broglie (1892 - 1987)

1924 Louis de Broglie propõe que o elétron se comporta como onda:

$$\lambda = h/p$$
,

onde h é a constante de Planck e p=mv é o momento linear.

Dualidade onda-partícula

1924 Louis de Broglie propõe que o elétron se comporta como onda:

$$\lambda = h/p$$

onde h é a constante de Planck e p=mv é o momento linear.

Louis de Broglie (1892 - 1987)

Ex.1) Calcule o comprimento de onda de de Broglie para:

a) um elétron a 1/100 da velocidade da luz

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{9,1 \cdot 10^{-31} \cdot 10^{-2} \cdot 3 \cdot 10^{8}} = 2,43 \cdot 10^{-10} \text{m} = 2,43 \text{Å} \quad \sim \text{raio X}$$

b) um prótron a 1/100 da velocidade da luz

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{1,67 \cdot 10^{-27} \cdot 10^{-2} \cdot 3 \cdot 10^{8}} = 1,32 \cdot 10^{-13} \text{m} = 132 \text{ fm} \quad \sim \text{raio } \gamma$$

c) uma bola de gude de 5 g viajando a 1 m/s

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{5 \cdot 10^{-3} \cdot 1} = 1,33 \cdot 10^{-31} \text{m}$$
 muito pequeno para ser detectado

Dualidade onda-partícula

1924 Louis de Broglie propõe que o elétron se comporta como onda:

$$\lambda = h/p$$
,

onde h é a constante de Planck e p=mv é o momento linear.

Louis de Broglie (1892 - 1987)

Ex.1) Calcule o comprimento de onda de de Broglie para:

a) um elétron a 1/100 da velocidade da luz

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{9,1 \cdot 10^{-31} \cdot 10^{-2} \cdot 3 \cdot 10^{8}} = 2,43 \cdot 10^{-10} \text{m} = 2,43 \text{Å} \quad \sim \text{raio X}$$

b) um prótron a 1/100 da velocidade da luz

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{1,67 \cdot 10^{-27} \cdot 10^{-2} \cdot 3 \cdot 10^{8}} = 1,32 \cdot 10^{-13} \text{m} = 132 \text{ fm} \quad \sim \text{raio } \gamma$$

c) uma bola de gude de 5 g viajando a 1 m/s

$$\lambda = \frac{h}{mv} \approx \frac{6,63 \cdot 10^{-34}}{5 \cdot 10^{-3} \cdot 1} = 1,33 \cdot 10^{-31} \text{m}$$
 muito pequeno para ser detectado

Dualidade onda-partícula

Interpretação para o 3° postulado de Bohr:

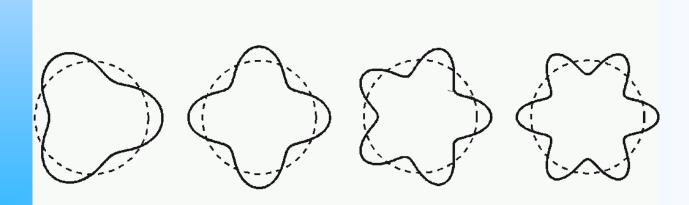
 $L=n\hbar \Rightarrow nh=2\pi l=2\pi rp$, onde substituimos o momento angular de uma órbita circular: L=rp .

Então:
$$2\pi rp = nh \Rightarrow 2\pi r = \frac{nh}{p}$$

que, usando a relação de de Broglie: $\lambda = \frac{h}{p}$, vem:

$$2\pi r = n\lambda$$

que significa que a circunferência da órbita deve ser tal que contenha números inteiros do comprimento de onda das ondas estacionárias:

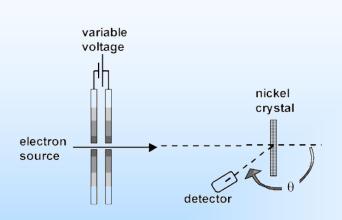


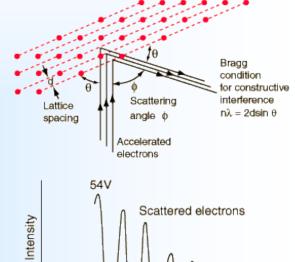
Ondas estacionárias em um círculo para n = 3,4,5,6

Dualidade onda-partícula

1927 Davisson e Germer observam a interferência de elétrons.

C. Davisson (1881 - 1958) L. H. Germer (1896 - 1971)





0

5

10

15

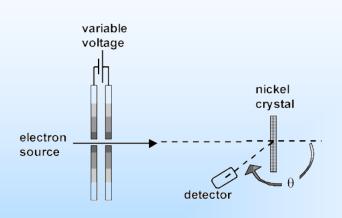
√Accelerating voltage

25

Dualidade onda-partícula

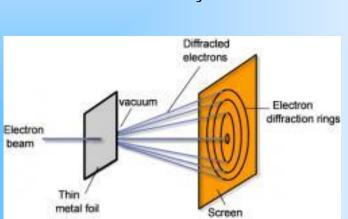
1927 Davisson e Germer observam a interferência de elétrons.

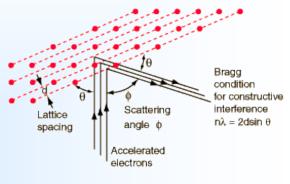
C. Davisson (1881 - 1958) L. H. Germer (1896 - 1971)

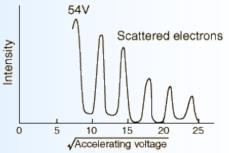


1927 G.P. Thomson observa a difração de elétrons.

G. P. Thomson (1892 - 1975)



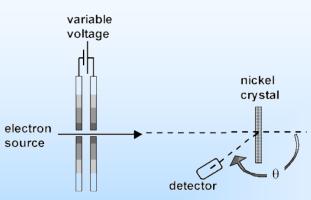




Dualidade onda-partícula

1927 Davisson e Germer observam a interferência de elétrons.

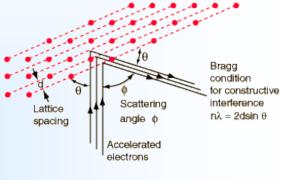
C. Davisson (1881 - 1958) L. H. Germer (1896 - 1971)

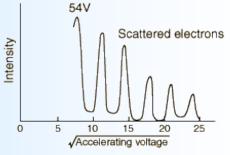


1927 G.P. Thomson observa a difração de elétrons.

G. P. Thomson (1892 - 1975)



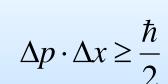




Princípio da indeterminação

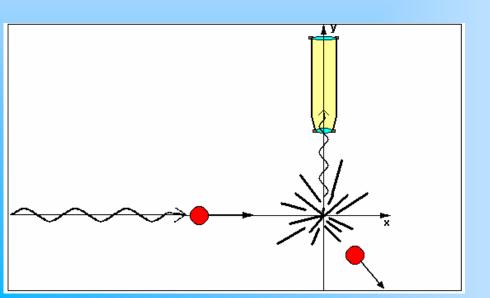
1927 Heisenberg formula o princípio da incerteza.

Werner Heisenberg (1901 - 1976)



$$\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$$

1932



melhor precisão da posição:

$$\Delta x \sim \lambda$$

o fóton fornece ao elétron o recuo (momento):

$$\Delta p \sim \frac{h}{\lambda}$$

tal que:

$$\Delta p \cdot \Delta x \sim h$$

A Função de Onda

Max Born (1882 - 1970)

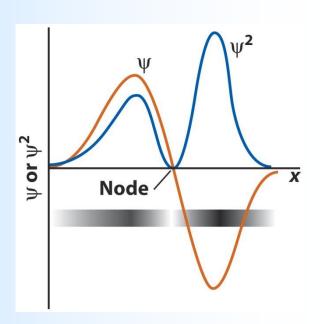
1924 Max Born formula a **interpretação probabilística** da mecânica quântica, através da **função de onda** ψ

A Função de Onda

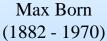
Max Born (1882 - 1970)

1924 Max Born formula a **interpretação probabilística** da mecânica quântica, através da **função de onda** ψ

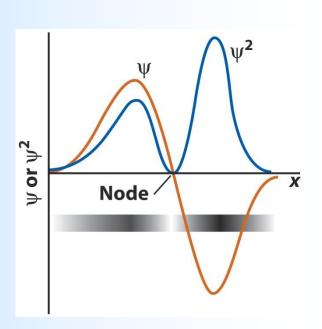
- $\rightarrow \psi(x)$ é uma função complexa da posição: $\psi(x,t) = Ae^{-i(kx-\omega t)}$
- $\rightarrow \psi(x)$ é contínua e finita em todo o espaço;
- $|\psi(x)|^2 = \psi^*(x)\psi(x) \propto \text{probabilidade de encontrar}$ a partícula em x:



A Função de Onda



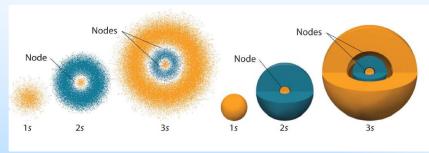
- $\rightarrow \psi(x)$ é uma função complexa da posição: $\psi(x,t) = Ae^{-i(kx-\omega t)}$
- $\rightarrow \psi(x)$ é contínua e finita em todo o espaço;
- $|\psi(x)|^2 = \psi^*(x)\psi(x) \propto \text{probabilidade de encontrar}$ a partícula em x:

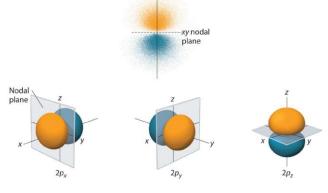


A Função de Onda

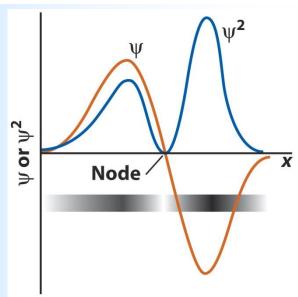
Max Born (1882 - 1970)

1924 Max Born formula a **interpretação probabilística** da mecânica quântica, através da **função de onda** ψ





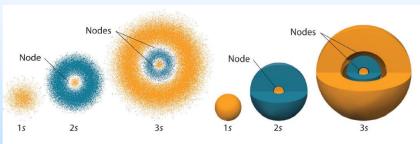
- $\rightarrow \psi(x)$ é uma função complexa da posição: $\psi(x,t) = Ae^{-i(kx-\omega t)}$
- $\rightarrow \psi(x)$ é contínua e finita em todo o espaço;
- $|\psi(x)|^2 = \psi^*(x)\psi(x) \propto \text{probabilidade de encontrar}$ a partícula em x:



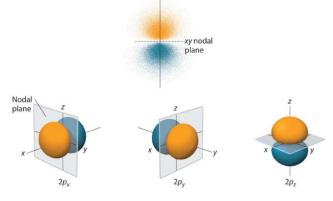
A Função de Onda

Max Born (1882 - 1970)

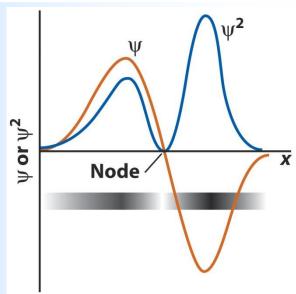
1924 Max Born formula a **interpretação probabilística** da mecânica quântica, através da **função de onda** ψ

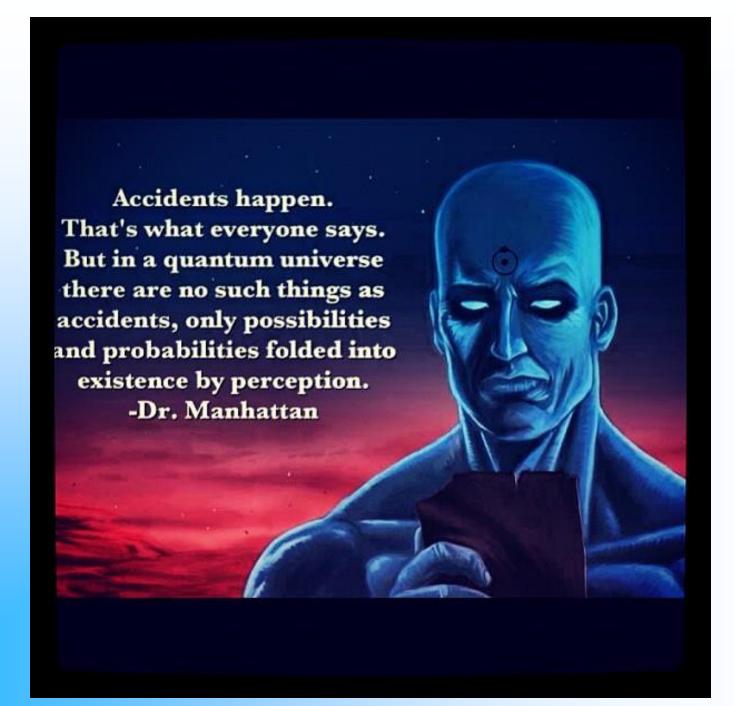


1954 Born & Bothe



- $\rightarrow \psi(x)$ é uma função complexa da posição: $\psi(x,t) = Ae^{-i(kx-\omega t)}$
- $\rightarrow \psi(x)$ é contínua e finita em todo o espaço;
- $|\psi(x)|^2 = \psi^*(x)\psi(x) \propto \text{probabilidade de encontrar}$ a partícula em x:





Como calcular \u03c4?

1925 Werner Heisenberg desenvolve a mecânica (quântica) matricial

 $\widehat{H}\Psi = E\Psi$

1932

Werner Heisenberg (1901 - 1976)

Como calcular y?

1925 Werner Heisenberg desenvolve a mecânica (quântica) matricial

$$\widehat{H}\Psi = E\Psi$$

1932

Werner Heisenberg (1901 - 1976)

Erwin R. J. A. Schrödinger (1887 - 1961)

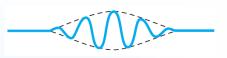
1926 Erwin Schrödinger desenvolve a mecânica (quântica) **ondulatória**, propondo sua equação de onda (Equação de Schrödinger)

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + V\Psi = E\Psi$$

1933 Schrödinger & Dirac

A equação de Schrödinger

Caso mais simples: partícula livre e independente do tempo.



Partindo da fórmula de de Broglie:

$$p = \frac{h}{\lambda} = \frac{h}{2\pi} \frac{2\pi}{\lambda} = \hbar k \implies p = \hbar k$$

Se a função de onda for: $\psi(x) = A \operatorname{sen}(kx) + B \cos(kx)$, vimos que:

$$\frac{d^2}{dx^2}\psi(x) = -k^2\psi(x) \Longrightarrow \frac{d^2}{dx^2}\psi(x) = -\left(\frac{p}{\hbar}\right)^2\psi(x)$$

Agora, para uma partícula livre:

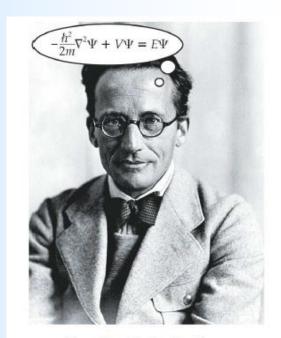
$$E = K + V(x) = \frac{p^2}{2m} + 0 \Longrightarrow E = \frac{p^2}{2m} \Longrightarrow p^2 = 2mE$$

Assim:

$$\frac{d^2}{dx^2}\psi(x) = -\frac{2mE}{\hbar^2}\psi(x) \Longrightarrow -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) = E\psi(x)$$

Somando-se o potencial "nulo":

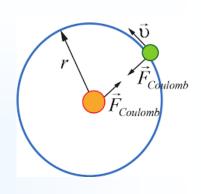
$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$



Erwin Schrödinger

A solução da equação de Schrödinger em coordenadas esféricas:

$$-rac{\hbar^2}{2m_e}\left(rac{1}{r}rac{\partial^2}{\partial r^2}(r\psi)+rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial\psi}{\partial heta}
ight)+rac{1}{r^2\sin^2 heta}rac{\partial^2\psi}{\partial\phi^2}
ight)-rac{ke^2}{r^2}\psi=E\psi$$



é bem complicada e não veremos em nossa disciplina, mas vamos indicar alguns passos.

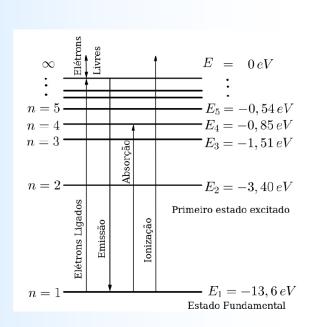
Primeiramente, supõe-se que a função de onda pode ser fatorada numa função puramente **radial**, R(r), e numa função puramente **angular**, $Y(\theta, \varphi)$:

$$\psi(r,\theta,\varphi) = R(r) \cdot Y(\theta,\varphi)$$

Da solução radial vêm os níveis de energia:

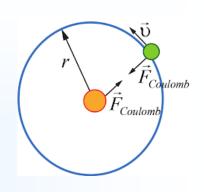
$$E_n = -\frac{mk^2Z^2e^4}{2\hbar^2n^2} \equiv -\frac{Z^2E_0}{n^2} \Longrightarrow E_n = -\frac{Z^2E_0}{n^2}$$

onde n = 1, 2, 3, ... é o número quântico principal.



A solução da equação de Schrödinger em coordenadas esféricas:

$$-rac{\hbar^2}{2m_e}\left(rac{1}{r}rac{\partial^2}{\partial r^2}(r\psi)+rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial\psi}{\partial heta}
ight)+rac{1}{r^2\sin^2 heta}rac{\partial^2\psi}{\partial\phi^2}
ight)-rac{ke^2}{r^2}\psi=E\psi$$



é bem complicada e não veremos em nossa disciplina, mas vamos indicar alguns passos.

Primeiramente, supõe-se que a função de onda pode ser fatorada numa função puramente **radial**, R(r), e numa função puramente **angular**, $Y(\theta, \varphi)$:

$$\psi(r,\theta,\varphi) = R(r) \cdot Y(\theta,\varphi)$$

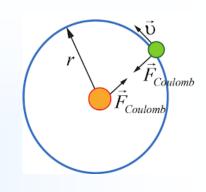
Da solução angular vêm os orbitais (subcamadas):

- l = 0 para o orbital s (*sharp*);
- l = 1 para o orbital p (principal);
- l = 2 para o orbital d (difuse);
- l = 3 para o orbital f (fundamental);
- l = 4 para o orbital g;
- l = 5 para o orbital h;
- etc (em ordem alfabética)

l = 0, 1, 2, ..., n-1 é o número quântico orbital.

A solução da equação de Schrödinger em coordenadas esféricas:

$$-rac{\hbar^2}{2m_e}\left(rac{1}{r}rac{\partial^2}{\partial r^2}(r\psi)+rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial\psi}{\partial heta}
ight)+rac{1}{r^2\sin^2 heta}rac{\partial^2\psi}{\partial\phi^2}
ight)-rac{ke^2}{r^2}\psi=E\psi$$



é bem complicada e não veremos em nossa disciplina, mas vamos indicar alguns passos.

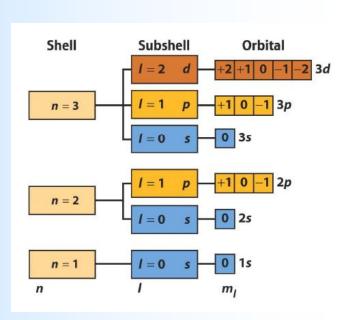
Primeiramente, supõe-se que a função de onda pode ser fatorada numa função puramente **radial**, R(r), e numa função puramente **angular**, $Y(\theta, \varphi)$:

$$\psi(r,\theta,\varphi) = R(r) \cdot Y(\theta,\varphi)$$

Da solução angular vêm os orbitais:

- para l = 0: $m_l = 0$;
- para l = 1: $m_l = -1, 0, 1$;
- para l = 2: $m_l = -2, -1, 0, 1, 2$;
- para l = 3: $m_l = -3, -2, -1, 0, 1, 2, 3$;
- etc.

 m_l é o **número quântico magnético** e assume 2l + 1 valores possíveis (números inteiros entre -l e l).



Resumindo ... a solução da equação de Schrödinger para o átomo de hidrogênio (em coordenadas esféricas):

$$\psi_{nlm}(r,\theta,\varphi) = R_n(r) \cdot Y_{lm}(\theta,\varphi)$$

Soluções para o átomo de Hidrogênio

n	- 1	m	Função	Orbital
1	0	0	Ψ _{1,0,0}	1s
	0	0	Ψ _{2,0,0}	2s
2	1	-1 0 +1	$\begin{array}{c} \psi_{2,1,\text{-}1} \\ \psi_{2,1,0} \\ \psi_{2,1,1} \end{array}$	2p (2p _x , 2p _y , 2p _z)
	0	0	Ψ _{3,0,0}	3s
	1	-1 0 +1	$\Psi_{3,1,-1} \ \Psi_{3,1,0} \ \Psi_{3,1,1}$	3p (3p _x , 3p _y , 3p _z)
3	2	-2 -1 0 +1 +2	$\Psi_{3,2,-2}$ $\Psi_{3,2,-1}$ $\Psi_{3,2,0}$ $\Psi_{3,2,1}$ $\Psi_{3,2,2}$	3d (3d , 3d _{xy} , 3d _{yz} , 3d _{xz} , 3d)

Resumindo ... a solução da equação de Schrödinger para o átomo de hidrogênio (em coordenadas esféricas):

$$\psi_{nlm}(r,\theta,\varphi) = R_n(r) \cdot Y_{lm}(\theta,\varphi)$$

Orbitais Atômicos

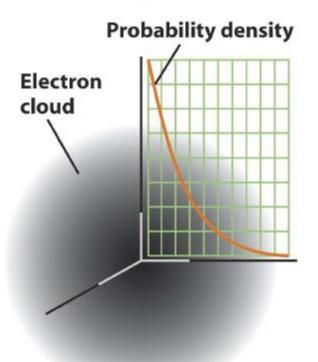
TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$	
--	--

(a) Radial wavefunctions, $R_{nl}(r)$			(b) Angular wavefunctions, $Y_{lm_l}(\theta, \phi)$		
n	I	$R_{nl}(r)$	1	"m _l "**	$Y_{lm_l}(\theta, \phi)$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zx/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{\!1/2}\sin\theta\cos\varphi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2} \sin \theta \sin \phi$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2} \sin^2\theta \cos 2\varphi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{\!1/2}\cos\theta\sin\theta\sin\varphi$
				zx	$\left(\frac{15}{4\pi}\right)^{\!1/2}\cos\theta\sin\theta\cos\varphi$
				$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2} \sin^2\theta \sin 2\varphi$
				z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

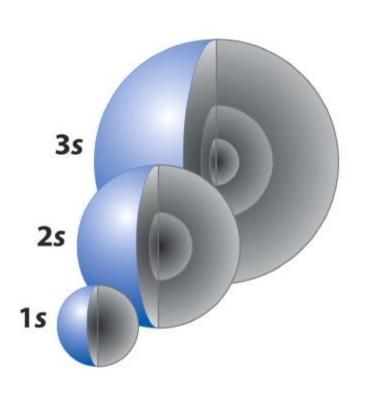
Note: In each case, $a_0 = 4\pi\epsilon_0^2/m_e e^2$, or close to 52.9 pm; for hydrogen itself, Z = 1.

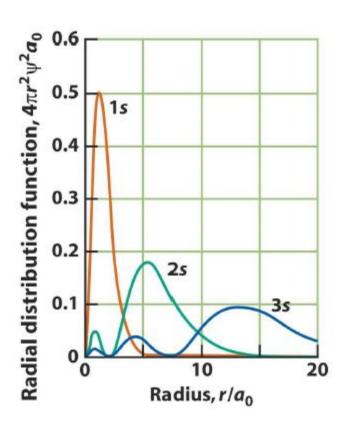
"In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_e .

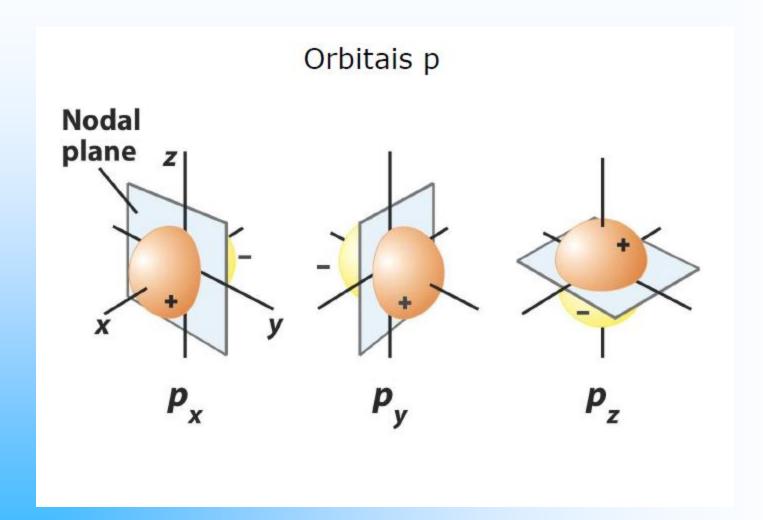
Densidade de Probabilidade de se Encontrar o Elétron

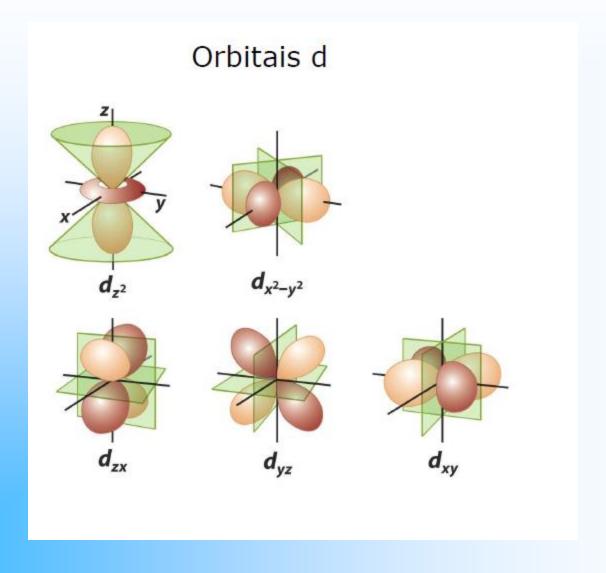


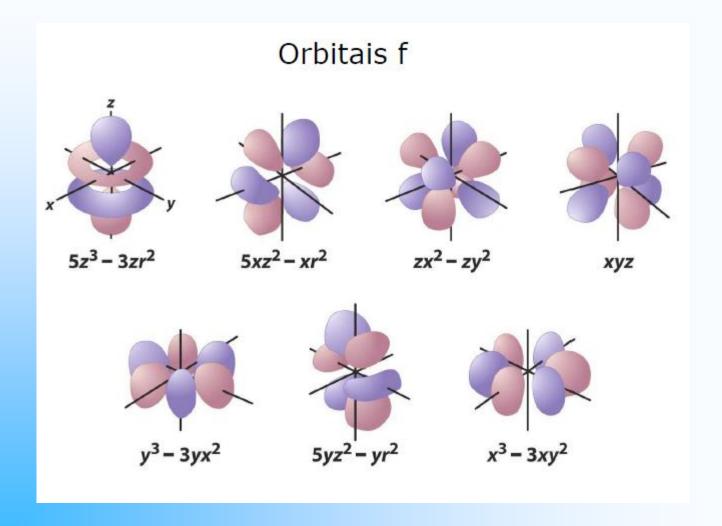
Orbitais s



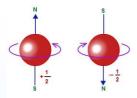








O spin

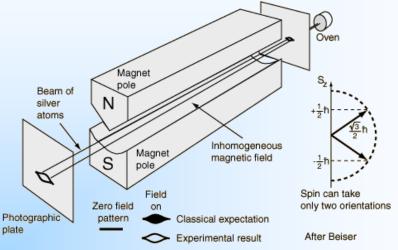


Otto Stern (1888 - 1969)

Walther Gerlach (1888 - 1969)

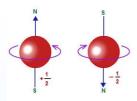
1943 Stern

1920 Stern e Gerlach descobrem o spin do elétron.



O spin

1925 Pauli estabelece o princípio de exclusão.

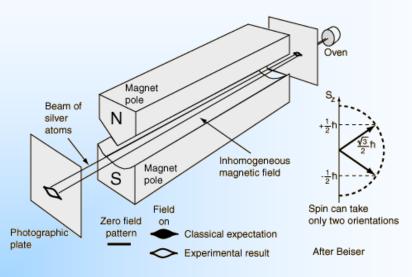


1920 Stern e Gerlach descobrem o spin do elétron.

Otto Stern (1888 - 1969)

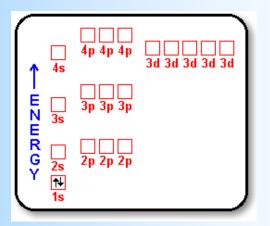
Walther Gerlach (1888 - 1969)

1943 Stern

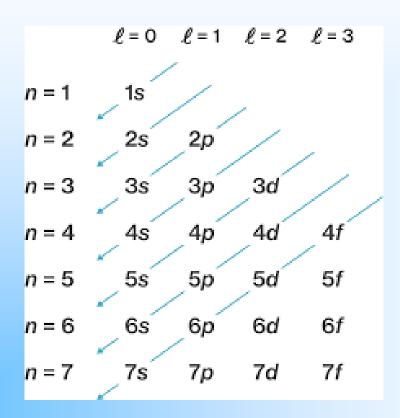


104

Wolfgang E. Pauli (1900 - 1958)



O diagrama de Pauli



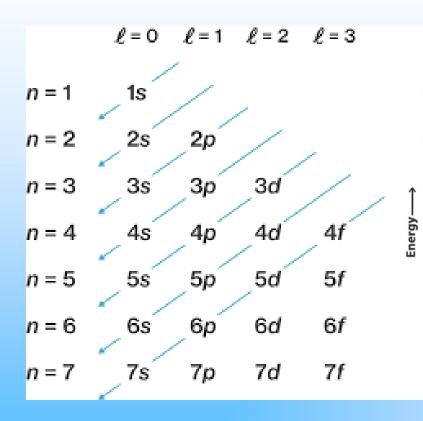
O diagrama de Pauli

3р

2p

3s

25



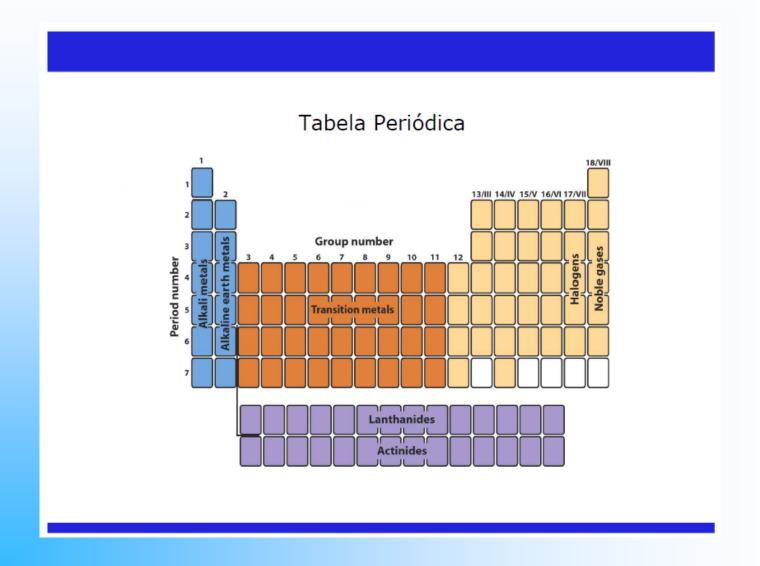
Energias Relativas das Camadas

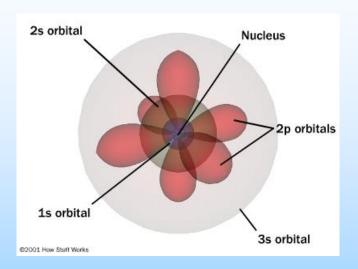
After

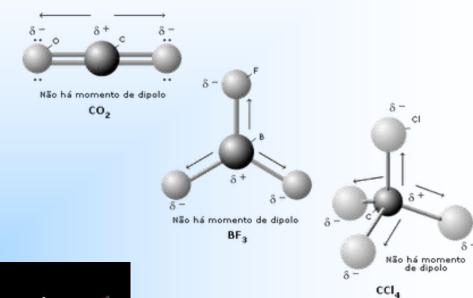
Z = 20

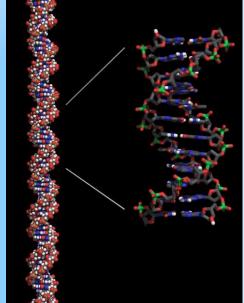
No estado fundamental de um átomo com muitos elétrons, os elétrons ocupam os orbitais atômicos disponíveis, de modo a tornar a energia total do átomo a menor possível.

O princípio da construção e a regra de Hund





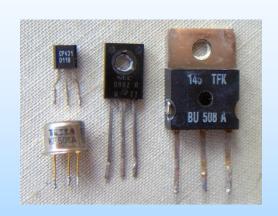


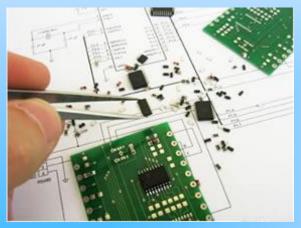


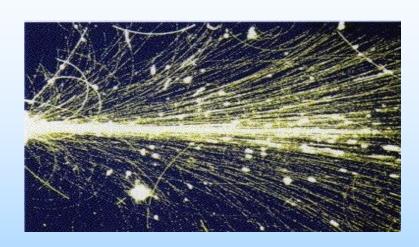
Quantum mechanics has explained all of chemistry and most of physics.

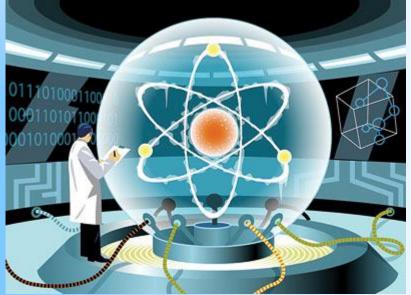
— Paul Dirac —

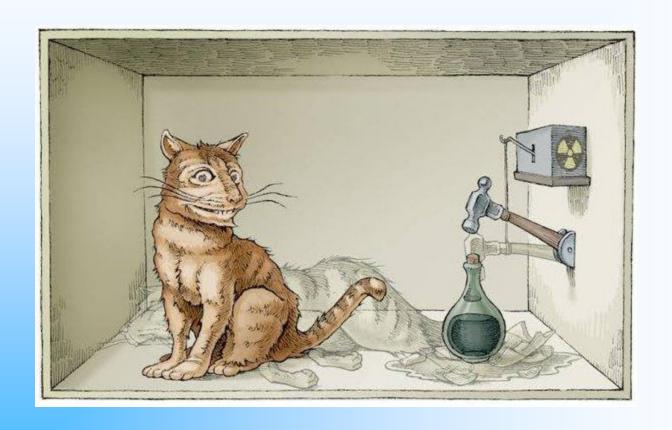
AZ QUOTES

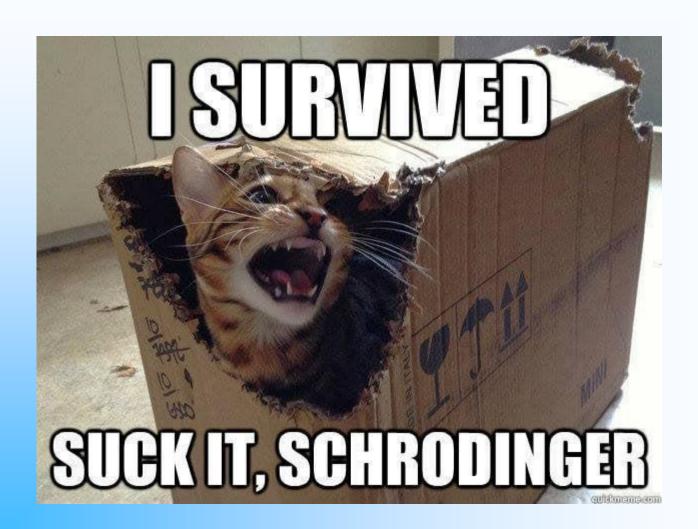




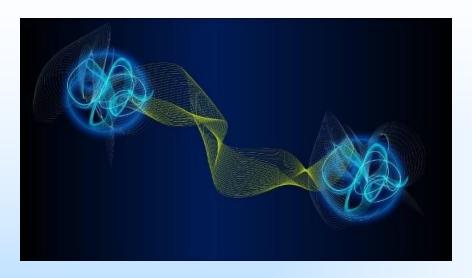


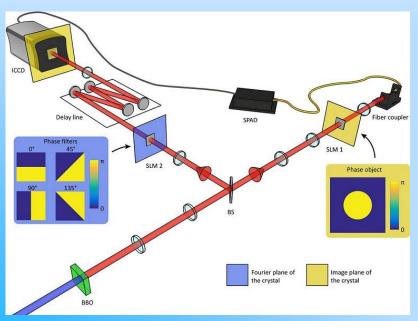


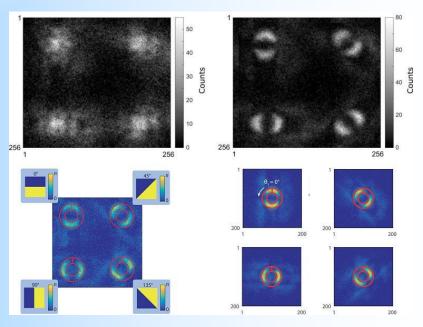




Entrelaçamento quântico é fotografado pela primeira vez







If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet.

(Niels Bohr)

izquotes.com

Quantum mechanics makes absolutely no sense.

— Roger Penrose —

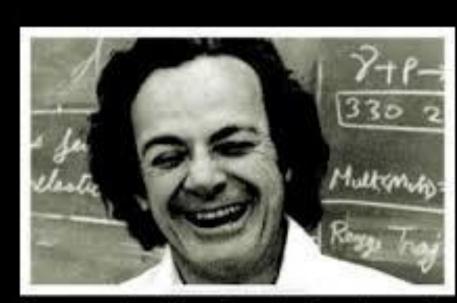
AZQUOTES



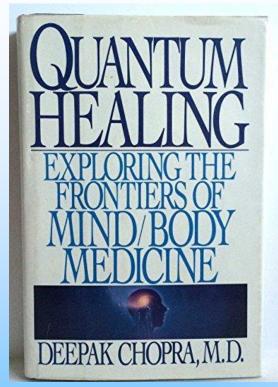
I think I can safely say that nobody understands quantum mechanics.

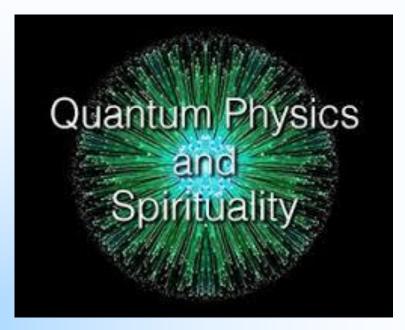
(Richard Feynman)

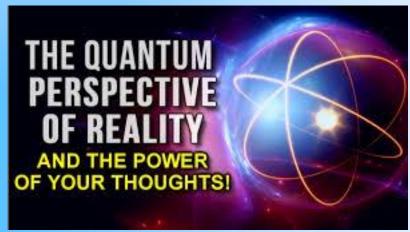
izquotes.com

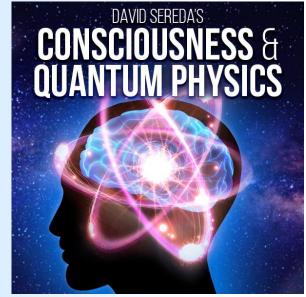


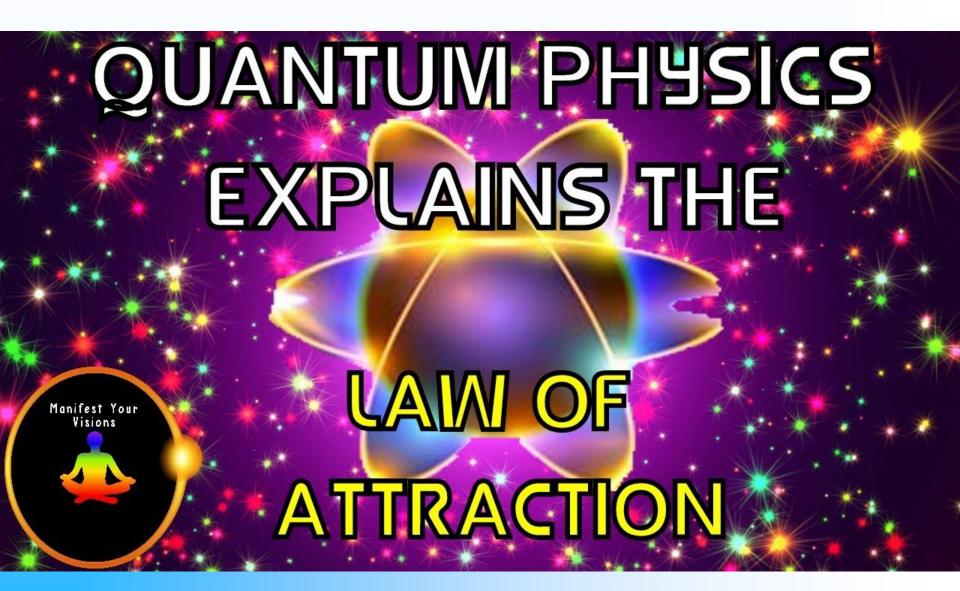
"Anyone who claims to understand quantum theory is either lying or crazy."

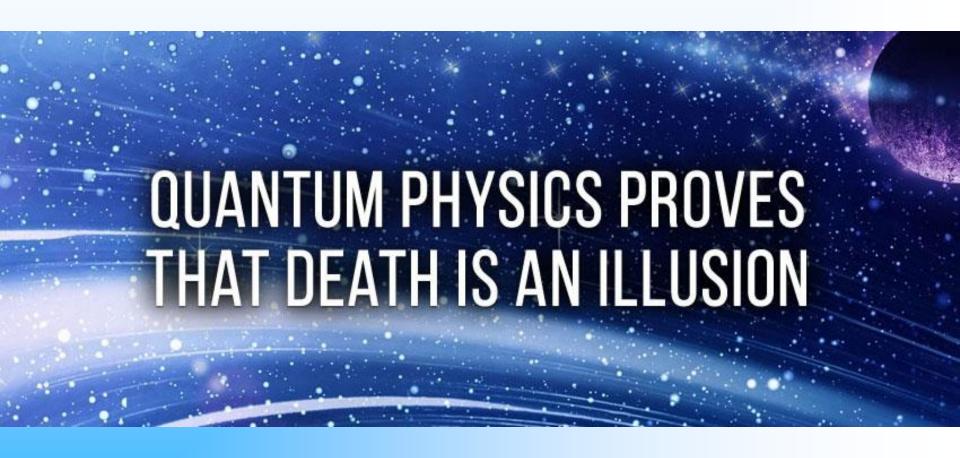


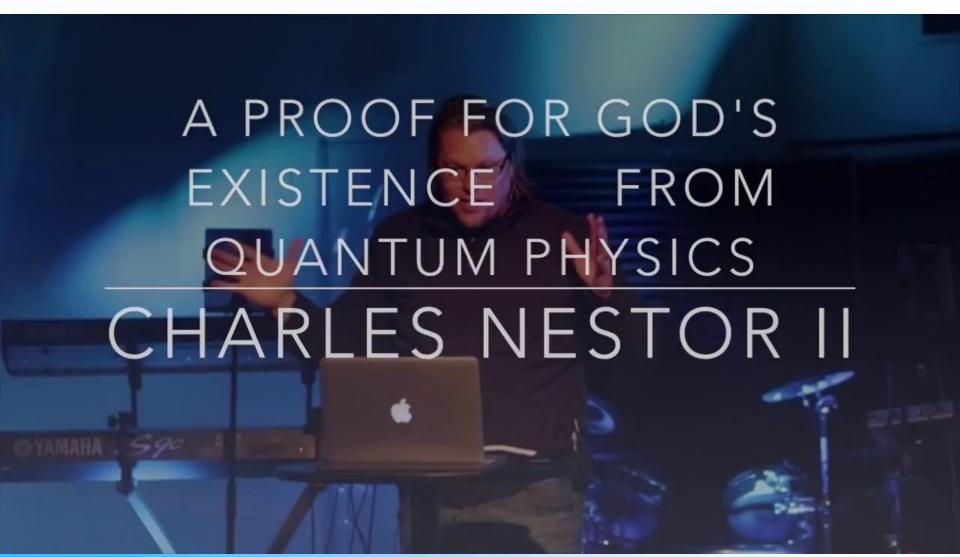












No colchão quântico:

ou você tem a posição ou o momento!

