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Abstract:

ROOT is an object-oriented framework for data anal-
ysis. Among its prominent features are an advanced
graphical user interface for visualization and inter-
active data analysis and an interpreter for the C++
programming language, which allows rapid prototyp-
ing of analysis code based on the C++ classes pro-
vided by ROOT. Access to ROOT classes is also pos-
sible from the very versatile and popular scripting
language Python.
This introductory guide shows the main features ap-
plicable to typical problems of data analysis in stu-
dent labs: input and plotting of data from measure-
ments and comparison with and �tting of analytical
functions. Although appearing to be quite a heavy
gun for some of the simpler problems, getting used to
a tool like ROOT at this stage is an optimal prepa-
ration for the demanding tasks in state-of-the art,
scienti�c data analysis.
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CHAPTER 1

MOTIVATION AND INTRODUCTION

Welcome to data analysis !

Comparison of measurements to theoretical models is one of the standard tasks in experimental physics.
In the most simple case, a �model� is just a function providing predictions of measured data. Very often,
the model depends on parameters. Such a model may simply state �the current I is proportional to the
voltage U �, and the task of the experimentalist consists of determining the resistance, R, from a set of
measurements.
As a �rst step, a visualisation of the data is needed. Next, some manipulations typically have to be

applied, e. g. corrections or parameter transformations. Quite often, these manipulations are complex
ones, and a powerful library of mathematical functions and procedures should be provided - think for
example of an integral or peak-search or a Fourier transformation applied to an input spectrum to obtain
the actual measurement described by the model.
One specialty of experimental physics are the inevitable errors a�ecting each measurement, and visu-

alization tools have to include these. In subsequent analysis, the statistical nature of the errors must be
handled properly.
As the last step, measurements are compared to models, and free model parameters need to be de-

termined in this process , see Figure1.1 for an example of a function (model) �t to data points. Several
standard methods are available, and a data analysis tool should provide easy access to more than one of
them. Means to quantify the level of agreement between measurements and model must also be available.
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Figure 1.1.: Measured data points with error bars and �tted quadratic function .
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1. Motivation and Introduction

Quite often, the data volume to be analyzed is large - think of �ne-granular measurements accumulated
with the aid of computers. A usable tool therefore must contain easy-to-use and e�cient methods for
data handling.
In Quantum mechanics, models typically only predict the probability density function (�pdf�) of mea-

surements depending on a number of parameters, and the aim of the experimental analysis is to extract
the parameters from the observed distribution of frequencies at which certain values of the measurement
are observed. Measurements of this kind require means to generate and visualize frequency distributions,
so-called histograms, and stringent statistical treatment to extract the model parameters from purely
statistical distributions.
Simulation of expected data is another important aspect in data analysis. By repeated generation of

�pseudo-data�, which are analysed in the same manner as intended for the real data, analysis procedures
can be validated or compared. In many cases, the distribution of the measurement errors is not precisely
known, and simulation o�ers the possibility to test the e�ects of di�erent assumptions.

1.1. Welcome to ROOT

A powerful software framework addressing all of the above requirements is ROOT [1], an open source
project coordinated by the European Centre for Particle Physics, CERN in Geneva. ROOT is very �exible
and provides both a programming interface to use in own applications and a graphical user interface for
interactive data analysis. The purpose of this document is to serve as a beginners guide and provides
extendable examples for your own use cases, based on typical problems addressed in student labs. This
guide will hopefully lay the ground for more complex applications in your future scienti�c work building
on a modern, state-of the art tool for data analysis.
This guide in form of a tutorial is intended to introduce you to the ROOT package in about 50 pages.

This goal will be accomplished using concrete examples, according to the �learning by doing� principle.
Also because of this reason, this guide cannot cover the complexity of the ROOT package. Nevertheless,
once you feel con�dent with the concepts presented in the following chapters, you will be able to appreciate
the ROOT Users Guide [2] and navigate through the Class Reference [3] to �nd all the details you might
be interested in. You can even look at the code itself, since ROOT is a free, open-source product. Use
these documents in parallel to this tutorial!
The ROOT Data Analysis Framework itself is written in and heavily relys on the programming language

C++, and therefore some knowledge about C andC++ is required. Eventually, just pro�t from the immense
available literature about C++ if you do not have any idea of what object oriented programming could be.
Recently, an alternative and very powerful way to use and control ROOT classes via the interpreted

high-level programming language Python became available. Python itself o�ers powerful modules and
packages for data handling, numerical applications and scien��c computing. A vast number of bindings
or wrappers to packages and tools written in other languages is also available. Access to the ROOT
functionality is provided by the ROOT package PyRoot [5], allowing interactive work as well as scritps
based on Python. This is presented at the end of this guide in Chapter 8.
ROOT is available for many platforms (Linux, Mac OS X, Windows. . . ), but in this guide we will

implicitly assume that you are using Linux. The �rst thing you need to do with ROOT is install it. Or do
you? Obtaining the latest ROOT version is straightforward. Just seek the �Pro� version on this webpage
http://root.cern.ch/drupal/content/downloading-root. You will �nd precompiled versions for the
di�erent architectures, or the ROOT source code to compile yourself. Just pick up the �avour you need
and follow the installation instructions. Or even simpler: use a virtual machine with ROOT installed
ready for use, as availalbe under e. g. http://www-ekp.physik.uni-karlsruhe.de/~quast.

Let's dive into ROOT!
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CHAPTER 2

ROOT BASICS

Now that you have installed ROOT, what's this interactive shell thing you're running? It's like this:
ROOT leads a double life. It has an interpreter for macros (CINT [4]) that you can run from the
command line or run like applications. But it is also an interactive shell that can evaluate arbitrary
statements and expressions. This is extremely useful for debugging, quick hacking and testing. Let us
�rst have a look at some very simple examples.

2.1. ROOT as calculator

You can even use the ROOT interactive shell in lieu of a calculator! Launch the ROOT interactive shell
with the command

1 > root

on your Linux box. The prompt should appear shortly:

1 root [ 1 ]

and let's dive in with the steps shown here:

1 root [ 0 ] 1+1
2 ( const int ) 2
3 root [ 1 ] 2*(4+2) /12 .
4 ( const double ) 1.00000000000000000e+00
5 root [ 2 ] sqrt (3 )
6 ( const double ) 1.73205080756887719e+00
7 root [ 3 ] 1 > 2
8 ( const int ) 0
9 root [ 4 ] TMath : : Pi ( )
10 ( Double_t ) 3.14159265358979312e+00
11 root [ 5 ] TMath : : Erf ( . 2 )
12 ( Double_t ) 2.22702589210478447e−01

Not bad. You can see that ROOT o�ers you the possibility not only to type in C++ statements, but also
advanced mathematical functions, which live in the TMath namespace.

Now let's do something more elaborated. A numerical example with the well known geometrical series:

1 root [ 6 ] double x=.5
2 root [ 7 ] int N=30
3 root [ 8 ] double geom_series=0
4 root [ 9 ] for ( int i=0;i<N;++i ) geom_series+=TMath : : Power (x , i )
5 root [ 1 0 ] TMath : : Abs ( geom_series − (1−TMath : : Power (x , N−1) ) /(1−x ) )
6 ( Double_t ) 1.86264514923095703e−09
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2. ROOT Basics

Here we made a step forward. We even declared variables and used a for control structure. Note that
there are some subtle di�erences between CINT and the standard C++ language. You do not need the
";� at the end of line in interactive mode � try the di�erence e.g. using the command at line root [6].

2.2. ROOT as Function Plotter

Using one of ROOT's powerful classes, here TF1 1, will allow us to display a function of one variable, x.
Try the following:

1 root [ 1 1 ] TF1 *f1 = new TF1 ("f1" ,"sin(x)/x" , 0 . , 1 0 . ) ;
2 root [ 1 2 ] f1−>Draw ( ) ;

f1 is a pointer to an instance of a TF1 class, the arguments are used in the constructor; the �rst one
of type string is a name to be entered in the internal ROOT memory management system, the second
string type parameter de�nes the function, here sin(x)/x, and the two parameters of type real de�ne
the range of the variable x. The Draw() method, here without any parameters, displays the function in a
window which should pop up after you typed the above two lines. Note again di�erences between CINT
and C++: you could have omitted the ";� at the end of lines, of CINT woud have accepted the "." to
access the method Draw(). However, it is best to stick to standard C++ syntax and avoid CINT-speci�c
code, as will become clear in a moment.
A slightly extended version of this example is the de�nition of a function with parameters, called [0],

[1] and so on in ROOT formula syntax. We now need a way to assign values to these parameters; this is
achieved with the method SetParameter(<parameter_number>,<parameter_value>) of class TF1. Here
is an example:

1 root [ 1 3 ] TF1 *f1 = new TF1 ("f2" ,"[0]*sin([1]*x)/x" , 0 . , 1 0 . ) ;
2 root [ 1 4 ] f1−>SetParameter ( 0 , 1 ) ;
3 root [ 1 5 ] f1−>SetParameter ( 1 , 1 ) ;
4 root [ 1 6 ] f1−>Draw ( ) ;

Of course, this version shows the same results as the initial one. Try playing with the parameters and plot
the function again. The class TF1 has a large number of very useful methods, including integration and
di�erentiation. To make full use of this and other ROOT classes, visit the documentation on the Internet
under http://root.cern.ch/drupal/content/reference-guide. Formulae in ROOT are evaluated
using the class TFormula, so also look up the relevant class documentation for examples, implemented
functions and syntax.
On many systems, this class reference-guide is available locally, and you should de�nitely download it

to your own system to have it at you disposal whenever you need it.
To extend a little bit on the above example, consider a more complex function you would like to de�ne.

You can also do this using standard C or C++ code. In many cases this is the only practical way, as the
ROOT formula interpreter has clear limitations concerning complexity and speed of evaluation.
Consider the example below, which calculates and displays the interference pattern produced by light

falling on a multiple slit. Please do not type in the example below at the ROOT command line, there is
a much simpler way: Make sure you have the �le slits.cxx on disk, and type root slits.cxx in the
shell. This will start root and make it read the �macro� slit.cxx, i. e. all the lines in the �le will be
executed one after the other.

1 /* *** example to draw the i n t e r f e r e n c e pattern o f l i g h t
2 f a l l i n g on a g r id with n s l i t s
3 and r a t i o r o f s l i t widht over d i s t ance between s l i t s *** */
4

5 /* f unc t i on code in C */
6 double single ( double *x , double *par ) {
7 double const pi=4*atan ( 1 . ) ;
8 return pow ( sin ( pi*par [ 0 ] * x [ 0 ] ) /( pi*par [ 0 ] * x [ 0 ] ) , 2 ) ; }
9

10 double nslit0 ( double *x , double *par ) {
11 double const pi=4*atan ( 1 . ) ;
12 return pow ( sin ( pi*par [ 1 ] * x [ 0 ] ) /sin ( pi*x [ 0 ] ) , 2 ) ; }

1All ROOT classes start with the letter T.
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2.3. Controlling ROOT

13

14 double nslit ( double *x , double *par ) {
15 return single (x , par ) * nslit0 (x , par ) ; }
16

17 /* This i s the main program */
18 void slits ( ) {
19 float r , ns ;
20

21 /* r eque s t user input */
22 cout << "slit width / g ? " ;
23 scanf ("%f" ,&r ) ;
24 cout << "# of slits? " ;
25 scanf ("%f" ,&ns ) ;
26 cout <<"interference pattern for "<< ns<<" slits , width/distance: "<<r<<endl ;
27

28 /* de f i n e func t i on and s e t opt ions */
29 TF1 *Fnslit = new TF1 ("Fnslit" , nslit , −5 .001 ,5 . , 2 ) ;
30 Fnslit−>SetNpx (500) ; // s e t number o f po in t s to 500
31

32 Fnslit−>SetParameter (0 , r ) ; // s e t parameters , as read in above
33 Fnslit−>SetParameter (1 , ns ) ;
34

35 Fnslit−>Draw ( ) ; // draw the i n t e r f e r e n c e pattern f o r a g r id with n s l i t s
36 }

�le: slits.cxx
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Figure 2.1.: Output of macro slits.cxx with parameters 0.2 and
2.

The example �rst asks for user input,
namely the ratio of slit width over slit dis-
tance, and the number of slits. After en-
tering this information, you should see the
graphical output as is shown in Figure 2.1
below.
This is a more complicated example

than the ones we have seen before, so
spend some time analysing it carefully,
you should have understood it before
continuing. Let us go through in de-
tail:

Lines 6-19 de�ne the necessary functions
in C++ code, split into three separate func-
tions, as suggested by the problem consid-
ered. The full interference pattern is given
by the product of a function depending on
the ratio of the width and distance of the
slits, and a second one depending on the
number of slits. More important for us here

is the de�nition of the interface of these functions to make them usable for the ROOT class TF1: the �rst argument
is the pointer to x, the second one points to the array of parameters.
The main program starts in line 17 with the de�nition of a function slits() of type void. After asking for

user input, a ROOT function is de�ned using the C-type function given in the beginning. We can now use all
methods of the TF1 class to control the behaviour of our function � nice, isn't it?
If you like, you can easily extend the example to also plot the interference pattern of a single slit, using function

double single, or of a grid with narrow slits, function double nslit0, in TF1 instances.
Here, we used a macro, some sort of lightweight program, that the interpreter distributed with ROOT, CINT,

is able to execute. This is a rather extraordinary situation, since C++ is not natively an interpreted language!
There is much more to say, therefore there is a dedicated chapter on macros.

2.3. Controlling ROOT

One more remark at this point: as every command you type into ROOT is usually interpreted by CINT, an
�escape character� is needed to pass commands to ROOT directly. This character is the dot at the beginning of
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2. ROOT Basics

a line:

1 root [ 1 ] .<command>

To

� quit root, simply type .q

� obtain a list of commands, use .?

� access the shell of the operating system, type .!<OS_command>; try, e. g. .!ls or .!pwd

� execute a macro, enter .x <file_name>; in the above example, you might have used .x slits.cxx at
the ROOT prompt

� load a macro, type .L <file_name>; in the above example, you might instead have used the command
.L slits.cxx followed by the function call slits();. Note that after loading a macro all functions and
procedures de�ned therein are available at the ROOT prompt.

2.4. Plotting Measurements

To display measurements in ROOT, including errors, there exists a powerful class TGrapErrors with di�erent
types of constructors. In the example here, we use data from the �le ExampleData.txt in text format:

1 root [ 0 ] TGraphErrors *gr=new TGraphErrors ("ExampleData.txt" ) ;
2 root [ 1 ] gr−>Draw ("AP" ) ;

You should see the output shown in Figure 2.2.

Figure 2.2.: Visualisation of data points with errors using the
class TGraphErrors

Make sure the �le ExampleData.txt is
available in the directory from which you
started ROOT. Inspect this �le now with
your favourate editor, or use the command
less ExampleData.txt to inspect the �le,
you will see that the format is very sim-
ple and easy to understand. Lines begin-
ning with # are ignored, very convenient to
add some comments on the type of data.
The data itself consist of lines with four
real numbers each, representing the x- and
y- coordinates and their errors of each data
point. You should quit
The argument of the method Draw("AP")

is important here. It tells the TGraphPainter
class to show the axes and to plot mark-
ers at the x and y positions of the speci�ed
data points. Note that this simple example
relies on the default settings of ROOT, con-
cerning the size of the canvas holding the
plot, the marker type and the line colours
and thickness used and so on. In a well-
written, complete example, all this would

need to be speci�ed explicitly in order to obtain nice and reproducible results. A full chapter on graphs will
explain many more of the features of the class TGraphErrors and its relation to other ROOT classes in much
more detail.

2.5. Histograms in ROOT

Frequency distributions in ROOT are handled by a set of classes derived from the histogram class TH1, in our
case TH1F. The letter F stands for "�oat", meaning that the data type float is used to store the entries in one
histogram bin.

1 root [ 0 ] TF1 efunc ("efunc" ,"exp([0]+[1]*x)" , 0 . , 5 . ) ;
2 root [ 1 ] efunc . SetParameter ( 0 , 1 ) ;
3 root [ 2 ] efunc . SetParameter (1 ,−1) ;
4 root [ 3 ] TH1F* h=new TH1F ("h" ,"example histogram" , 1 0 0 , 0 . , 5 . ) ;
5 root [ 4 ] for ( int i=0;i<1000;i++) {h−>Fill ( efunc . GetRandom ( ) ) ; }
6 root [ 5 ] h−>Draw ( ) ;
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2.6. Interactive ROOT

The �rst three lines of this example de�ne a function, an exponential in this case, and set its parameters. In
Line 4 a histogram is instantiated, with a name, a title, a certain number of 100 bins (i. e. equidistant, equally
sized intervals) in the range from 0. to 5.

h
Entries  1000
Mean   0.9719
RMS     0.927

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10

20

30

40

50

h
Entries  1000
Mean   0.9719
RMS     0.927

example histogram

Figure 2.3.: Visualisation of a histogram �lled with exponen-
tially distributed, random numbers.

We use yet another new feature of
ROOT to �ll this histogram with data,
namely pseudo-random numbers generated
with the method TF1::GetRandom, which in
turn uses an instance of the ROOT class
TRandom created when ROOT is started.
Data is entered in the histogram in line
5 using the method TH1F::Fill in a loop
construct. As a result, the histogram
is �lled with 1000 random numbers dis-
tributed according to the de�ned func-
tion. The histogram is displayed using the
method TH1F::Draw(). You may think of
this example as repeated measurements of
the life time of a quantummechanical state,
which are entered into the histogram, thus
giving a visual impression of the probabil-
ity density distribution. The plot is shown
in Figure 2.3.
Note that you will not obtain an iden-

tical plot when executing the above lines,
depending on how the random number generator is initialised.
The class TH1F does not contain a convenient input format from plain text �les. The following lines of C++

code do the job. One number per line stored in the text �le �expo.dat� is read in via an input stream and �lled
in the histogram until end of �le is reached.

1 root [ 1 ] TH1F* h=new TH1F ("h" ,"example histogram" , 1 0 0 , 0 . , 5 . ) ;
2 root [ 2 ] ifstream inp ; double x ;
3 root [ 3 ] inp . open ("expo.dat" ) ;
4 root [ 4 ] while ( ! ( inp >> x )==0){h−>Fill (x ) ; }
5 root [ 5 ] h−>Draw ( ) ;
6 root [ 6 ] inp . close ( ) ;

Histograms and random numbers are very important tools in statistical data analysis, and the whole Chapter 5
will be dedicated to this.

2.6. Interactive ROOT

Look at one of your plots again and move the mouse across. You will notice that this is much more than a static
picture, as the mouse pointer changes its shape when touching objects on the plot. When the mouse is over
an object, a right-click opens a pull-down menu displaying in the top line the name of the ROOT class you are
dealing with, e.g. TCanvas for the display window itself, TFrame for the frame of the plot, TAxis for the axes,
TPaveText for the plot name. Depending on which plot you are investigating, menus for the ROOT classes TF1,
TGraphErrors or TH1F will show up when a right-click is performed on the respective graphical representations.
The menu items allow direct access to the members of the various classes, and you can even modify them, e.g.
change colour and size of the axis ticks or labels, the function lines, marker types and so on. Try it!

Figure 2.4.: Interactive ROOT panel for setting function
parameters.

You will probably like the following:
in the output produced by the example
slits.cxx, right-click on the function line
and select "SetLineAttributes", then left-
click on "Set Parameters". This gives ac-
cess to a panel allowing you to interactively
change the parameters of the function, as
shown in Figure 2.4. Change the slit width,
or go from one to two and then three or
more slits, just as you like. When clicking
on "Apply", the function plot is updated
to re�ect the actual value of the parame-
ters you have set.

9



2. ROOT Basics

Figure 2.5.: Fit functions to graphs and
histograms.

Another very useful interactive tool is the FitPanel, available
for the classes TGraphErrors and TH1F. Prede�ned �t functions
can be selected from a pull-down menu, including �gaus�, �expo�
and �pol0� - �pol9� for Gaussian and exponential functions or
polynomials of degree 0 to 9, respectively. In addition, user-
de�ned functions using the same syntax as for functions with pa-
rameters are possible.
After setting the initial parameters, a �t of the selected func-

tion to the data of a graph or histogram can be performed and the
result displayed on the plot. The �t panel is shown in Figure 2.5.
The �t panel has a large number of control options to select the
�t method, �x or release individual paramters in the �t, to steer
the level of output printed on the console, or to extract and dis-
play additional information like contour lines showing parameter
correlations. Most of the methods of the class TVirtualFitter

are easily available through the latest version of the graphical in-
terface. As function �tting is of prime importance in any kind of
data analysis, this topic will again show up in later chapters.
If you are satis�ed with your plot, you probably want to save

it. Just close all selector boxes you opened previously, and select

the menu item Save as from the menu line of the window, which
will pop up a �le selector box to allow you to choose the format,
�le name and target directory to store the image.
There is one very noticeable feature here: you can store a plot

as a root macro! In this macro, you �nd the C++ representation
of all methods and classes involved in generating the plot. This is
a very valuable source of information for your own macros, which
you will hopefully write after having worked through this tutorial.
Using the interactive capabilities of ROOT is very useful for

a �rst exploration of possibilities. Other ROOT classes you will
be encountering in this tutorial have such graphical interfaces as
well. We will not comment further on this, just be aware of the
existence of interactive features in ROOT and use them if you �nd
convenient. Some trial-and-error is certainly necessary to �nd your way through the enormous number of menus
and possible parameter settings.

2.7. ROOT Beginners' FAQ

At this point of the guide, some basic question could have already come to your mind. We will try to clarify some
of them with further explanations in the following.

2.7.1. ROOT type declarations for basic data types

In the o�cial ROOT documentation, you �nd special data types replacing the normal ones, e. g. Double_t,
Float_t or Int_t replacing the standard double, float or int types. Using the ROOT types makes it easier to
port code between platforms (64/32 bit) or operating systems (windows/Linux), as these types are mapped to
suitable ones in the ROOT header �les. If you want adaptive code of this type, use the ROOT type declarations.
However, usually you do not need such adaptive code, and you can safely use the standard C type declarations
for your private code, as we did and will do throughout this guide. If you intend to become a ROOT developer,
however, you better stick to the o�cial coding rules!

2.7.2. Con�gure ROOT at start-up

If the �le .rootlogon.C exists in your home directory, it is executed by ROOT at start-up. Such a �le can be
used to set preferred options for each new ROOT session. The ROOT default for displaying graphics looks OK
on the computer screen, but rather ugly on paper. If you want to use ROOT graphs in documents, you should
change some of the default options. This is done most easily by creating a new TStyle object with your preferred
settings, as described in the class reference guide, and then use the command gROOT->SetStyle("MyStyle"); to
make this new style de�nition the default one. As an example, have a look in the �le rootlogon.C coming with
this tutorial.
There is also a possibility to set many ROOT features, in particular those closely related to the operating and

window system, like e.g. the fonts to be used, where to �nd start-up �les, or where to store a �le containing
the command history, and many others. The �le searched for at ROOT start-up is called .rootrc and must
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2.7. ROOT Beginners' FAQ

reside in the user's home directory; reading and interpeting this �le is handled by the ROOT class TEnv, see its
documentation if you need such rather advanced features.

2.7.3. ROOT command history

Every command typed at the ROOT prompt is stored in a �le .root_hist in your home directory. ROOT
uses this �le to allow for navigation in the command history with the up-arrow and down-arrow keys. It is also
convenient to extract successful ROOT commands with the help of a text editor for use in your own macros.

2.7.4. ROOT Global Variables

All global variables in ROOT begin with a small �g�. Some of them were already implicitly introduced (for example
in session 2.7.2). The most important among them are presented in the following:

� gROOT: the gROOT variable is the entry point to the ROOT system. Technically it is an instance of the
TROOT class. Using the gROOT pointer one has access to basically every object created in a ROOT based
program. The TROOT object is essentially a container of several lists pointing to the main ROOT objects.

� gRandom: the gRandom variable is a variable that points to a random number generator instance of the
type TRandom3. Such a variable is useful to access in every point of a program the same random number
generator, in order to achieve a good quality of the random sequence.

� gStyle: By default ROOT creates a default style that can be accessed via the gStyle pointer. This class
includes functions to set some of the following object attributes.

� Canvas

� Pad

� Histogram axis

� Lines

� Fill areas

� Text

� Markers

� Functions

� Histogram Statistics and Titles

� gSystem: An instance of a base class de�ning a generic interface to the underlying Operating System, in
our case TUnixSystem.

At this point you have already learnt quite a bit about some basic features of ROOT.

Please move on to become an expert!
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CHAPTER 3

ROOT MACROS

You know how other books go on and on about programming fundamentals and �nally work up to building a
complete, working program? Let's skip all that. In this part of the guide, we will describe macros executed by
the ROOT C++ interpreter CINT.
An alternative way to access ROOT classes interactively or in a script will be shown in Chapter 8, where we

describe how to use the scritping language Python. This is most suitable for smaller analysis projects, as some
overhead of the C++ language can be avoided. It is very easy to convert ROOT macros into python scripts using
the pyroot interface.
Since ROOT itself is written in C++ let us start with Root macros in C++. As an additional advantage,

it is relatively easy to turn a ROOT C++ macro into compiled � and hence much faster � code, either as a
pre-compiled library to load into ROOT, or as a stand-alone application, by adding some include statements for
header �les or some �dressing code� to any macro.

3.1. General Remarks on ROOT macros

If you have a number of lines which you were able to execute at the ROOT prompt, they can be turned into a
ROOT macro by giving them a name which corresponds to the �le name without extension. The general structure
for a macro stored in �le MacroName.cxx is

1 void MacroName ( ) {
2 < . . .
3 your lines of CINT code

4 . . . >
5 }

The macro is executed by typing

1 > root MacroName . cxx

at the system prompt, or it can be loaded into a ROOT session and then be executed by typing

1 root [ 0 ] . L MacroName . cxx
2 root [ 1 ] MacroName ( ) ;

at the ROOT prompt. Note that more than one macro can be loaded this way, as each macro has a unique name
in the ROOT name space. Because many other macros may have been executed in the same shell before, it is a
good idea to reset all ROOT parameters at the beginning of a macro and de�ne your preferred graphics options,
e. g. with the code fragment

1 // re− i n i t i a l i s e ROOT
2 gROOT−>Reset ( ) ; // re− i n i t i a l i z e ROOT
3 gROOT−>SetStyle ("Plain" ) ; // s e t empty TStyle ( n i c e r on paper )
4 gStyle−>SetOptStat (111111) ; // p r i n t s t a t i s t i c s on p lo t s , ( 0 ) f o r no output
5 gStyle−>SetOptFit (1111) ; // p r i n t f i t r e s u l t s on plot , ( 0 ) f o r no ouput
6 gStyle−>SetPalette (1 ) ; // s e t n i c e r c o l o r s than de f au l t
7 gStyle−>SetOptTitle (0 ) ; // suppres s t i t l e box
8 . . .
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3. ROOT Macros

Next, you should create a canvas for graphical output, with size, subdivisions and format suitable to your needs,
see documentation of class TCanvas:

1 // c r ea t e a canvas , s p e c i f y p o s i t i o n and s i z e in p i x e l s
2 TCanvas c1 ("c1" ,"<Title >" , 0 , 0 , 400 ,300) ;
3 c1 . Divide ( 2 , 2 ) ; // s e t subd iv i s i on s , c a l l e d pads
4 c1 . cd (1 ) ; // change to pad 1 o f canvas c1

These parts of a well-written macro are pretty standard, and you should remember to include pieces of code
like in the examples above to make sure your output always comes out as you had intended.
Below, in section3.4, some more code fragments will be shown, allowing you to use the system compiler to

compile macros for more e�cient execution, or turn macros into stand-alone applications linked against the
ROOT libraries.

3.2. A more complete example

Let us now look at a rather complete example of a typical task in data analysis, a macro that constructs a graph
with errors, �ts a (linear) model to it and saves it as an image. To run this macro, simply type in the shell:

1 > root macro1 . cxx

The code is build around the ROOT class TGraphErrors, which was already introduced previously. Have a look at
it in the class reference guide, where you will also �nd further examples. The macro shown below uses additional
classes, TF1 to de�ne a function, TCanvas to de�ne size and properties of the window used for our plot, and
TLegend to add a nice legend. For the moment, ignore the commented include statements for header �les, they
will only become important at the end (section 3.4).

1 /* **** Bui lds a graph with e r ro r s , d i s p l a y s i t and saves i t as image . *** */
2 // f i r s t , i n c lude some header f i l e s ( with in CINT, these w i l l be ignored )
3 #include "TCanvas.h"

4 #include "TROOT.h"

5 #include "TGraphErrors.h"

6 #include "TF1.h"

7 #include "TLegend.h"

8 #include "TArrow.h"

9 #include "TLatex.h"

10

11 void macro1 ( ) {
12 // The va lue s and the e r r o r s on the Y ax i s
13 const int n_points=10;
14 double x_vals [ n_points ]=
15 {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10} ;
16 double y_vals [ n_points ]=
17 {6 ,12 ,14 ,20 ,22 ,24 ,35 ,45 ,44 ,53} ;
18 double y_errs [ n_points ]=
19 { 5 , 5 , 4 . 7 , 4 . 5 , 4 . 2 , 5 . 1 , 2 . 9 , 4 . 1 , 4 . 8 , 5 . 4 3 } ;
20

21 // Ins tance o f the graph
22 TGraphErrors graph ( n_points , x_vals , y_vals , NULL , y_errs ) ;
23 graph . SetTitle ("Measurement XYZ;lenght [cm];Arb.Units" ) ;
24

25 // Make the p l o t e s t e t i c a l l y be t t e r
26 gROOT−>SetStyle ("Plain" ) ;
27 graph . SetMarkerStyle ( kOpenCircle ) ;
28 graph . SetMarkerColor ( kBlue ) ;
29 graph . SetLineColor ( kBlue ) ;
30

31 // The canvas on which we ' l l draw the graph
32 TCanvas* mycanvas = new TCanvas ( ) ;
33

34 // Draw the graph !
35 graph . DrawClone ("APE" ) ;
36
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3.2. A more complete example

37 // Def ine a l i n e a r func t i on
38 TF1 f ("Linear law" ,"[0]+x*[1]" , . 5 , 1 0 . 5 ) ;
39 // Let ' s make the func ion l i n e n i c e r
40 f . SetLineColor ( kRed ) ; f . SetLineStyle (2 ) ;
41 // Fit i t to the graph and draw i t
42 graph . Fit(&f ) ;
43 f . DrawClone ("Same" ) ;
44

45 // Build and Draw a legend
46 TLegend leg ( . 1 , . 7 , . 3 , . 9 , "Lab. Lesson 1" ) ;
47 leg . SetFillColor (0 ) ;
48 graph . SetFillColor (0 ) ;
49 leg . AddEntry(&graph , "Exp. Points" ) ;
50 leg . AddEntry(&f , "Th. Law" ) ;
51 leg . DrawClone ("Same" ) ;
52

53 // Draw an arrow on the canvas
54 TArrow arrow ( 8 , 8 , 6 . 2 , 2 3 , 0 . 0 2 , "----|>" ) ;
55 arrow . SetLineWidth (2 ) ;
56 arrow . DrawClone ( ) ;
57

58 // Add some text to the p l o t
59 TLatex text ( 8 . 2 , 7 . 5 , "#splitline{Maximum}{Deviation}" ) ;
60 text . DrawClone ( ) ;
61

62 mycanvas−>Print ("graph_with_law.pdf" ) ;
63 }
64

65 #ifndef __CINT__
66 int main ( ) {
67 macro1 ( ) ;
68 }
69 #endif

�le: macro1.cxx

Let's comment it in detail:

� Line 11: the name of the principal function (it plays the role of the �main� function in compiled programs)
in the macro �le. It has to be the same as the �le name without extension.

� Line 22 − 23: instance of the TGraphErrors class. The constructor takes the number of points and the
pointers to the arrays of x values, y values, x errors (in this case none, represented by the NULL pointer)
and y errors. The second line de�nes in one shot the title of the graph and the titles of the two axes,
separated by a �;�.

� Line 26− 29: the �rst line refers to the style of the plot, set as Plain. This is done through a manipulation
of the global variable gSystem (ROOT global variables begin always with �g�). The following three lines
are rather intuitive right? To understand better the enumerators for colours and styles see the reference for
the TColor and TMarker classes.

� Line 32: the canvas object that will host the drawn objects. The �memory leak� is intentional, to make the
object existing also out of the macro1 scope.

� Line 35: the method DrawClone draws a clone of the object on the canvas. It has to be a clone, to survive
after the scope of macro1, and be displayed on screen after the end of the macro execution. The string
option �APE� stands for:

� A imposes the drawing of the Axes.

� P imposes the drawing of the graphs markers.

� E imposes the drawing of the graphs markers errors.

� Line 38: de�ne a mathematical function. There are several ways to accomplish this, but in this case the
constructor accepts the name of the function, the formula, and the function range.

� Line 40: maquillage. Try to give a look to the line styles at your disposal visiting the documentation of the
TLine class.

� Line 42: �ts the f function to the graph, observe that the pointer is passed. It is more interesting to look
at the output on the screen to see the parameters values and other crucial information that we will learn
to read at the end of this guide.
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3. ROOT Macros

� Line 43: again draws the clone of the object on the canvas. The �Same� option avoids the cancellation of
the already drawn objects, in our case, the graph.

� Line 46− 51: completes the plot with a legend, represented by a TLegend instance. The constructor takes
as parameters the lower left and upper right corners coordinates with respect to the total size of the canvas,
assumed to be 1, and the legend header string. You can add to the legend the objects, previously drawn
or not drawn, through the addEntry method. Observe how the legend is drawn at the end: looks familiar
now, right?

� Line 54− 56: de�nes an arrow with a triangle on the right hand side, a thickness of 2 and draws it.

� Line 59 − 61: interpret a Latex string which hast its lower left corner located in the speci�ed coordinate.
The �#splitline{}{}� construct allows to store multiple lines in the same TLatex object.

� Line 62: save the canvas as image. The format is automatically inferred from the �le extension (it could
have been eps, gif, . . . ).

Let's give a look to the obtained plot in �gure 3.1. Beautiful outcome for such a small bunch of lines, isn't it?
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Figure 3.1.: Your �rst plot with data points.

A version of the same macro in Python is available in the �le macro1.py; you may want to open it in the
editor and have a look at the di�erences right now - please consult the introductory sections of Chapter 8 �rst.
This example shows how easy it is to change a ROOT macro from C++ to Python.

3.3. Summary of Visual e�ects

3.3.1. Colours and Graph Markers

We have seen that to specify a colour, some identi�ers like kWhite, kRed or kBlue can be speci�ed for markers,
lines, arrows etc. The complete summary of colours is represented by the ROOT �colour wheel�, shown in appendix
in �gure B.1. To know more about the full story, refer to the online documentation of TColor.
ROOT provides an analogue of the colour wheel for the graphics markers. Select the most suited symbols for
your plot (see Figure B.1) among dots, triangles, crosses or stars. An alternative set of names for the markers is
summarised in Table B.1.

3.3.2. Arrows and Lines

The macro line 56 shows how to de�ne an arrow and draw it. The class representing arrows is TArrow, which
inherits from TLine. The constructors of lines and arrows always contain the coordinates of the endpoints. Arrows
also foresee parameters to specify their shapes (see Figure B.2). Do not underestimate the role of lines and arrows
in your plots. Since each plot should contain a message, it is convenient to stress it with additional graphics
primitives.

16



3.4. Interpretation and Compilation

3.3.3. Text

Also text plays a fundamental role in making the plots self-explanatory. A possibility to add text in your plot is
provided by the TLatex class. The objects of this class are constructed with the coordinates of the bottom-left
corner of the text and a string which contains the text itself. The real twist is that ordinary Latex mathematical
symbols are automatically interpreted, you just need to replace the �\� by a �#� (see Figure B.3).

3.4. Interpretation and Compilation

As you observed, up to now we heavily exploited the capabilities of ROOT for interpreting our code, more than
compiling and then executing. This is su�cient for a wide range of applications, but you might have already
asked yourself �how can this code be compiled?�. There are two answers.

3.4.1. Compile a Macro with ACLiC

ACLiC will create for you a compiled dynamic library for your macro, without any e�ort from your side, except
the insertion of the appropriate header �les in lines 3�9. In this example, they are already included. This does
not harm, as they are not loaded by CINT. To generate an object libary from the macro code, from inside the
interpreter type (please note the �+�):

1 root [ 1 ] . L macro1 . cxx+

Once this operation is accomplished, the macro symbols will be available in memory and you will be able to
execute it simply by calling from inside the interpreter:

1 root [ 2 ] macro1 ( )

3.4.2. Compile a Macro with g++

In this case, you have to include the appropriate headers in the code and then exploit the root-con�g tool for
the automatic settings of all the compiler �ags. root-con�g is a script that comes with ROOT; it prints all �ags
and libraries needed to compile code and link it with the ROOT libraries. In order to make the code executable
stand-alone, an entry point for the operating system is needed, in C++ this is the procedure int main();. The
easiest way to turn a ROOT macro code into a stand-alone application is to add the following �dressing code� at
the end of the macro �le. This de�nes the procedure main, the only purpose of which is to call your macro:

1 #ifndef __CINT__
2 int main ( ) {
3 ExampleMacro ( ) ;
4 return 0 ;
5 }
6 #endif

Within ROOT, the symbol __CINT__ is de�ned, and the code enclosed by #ifndef __CINT__ and #endif is not
executed; on the contrary, when running the system compiler g++, this symbol is not de�ned, and the code is
compiled. To create a stand-alone program from a macro called ExampleMacro.C, simply type

1 > g++ −o ExampleMacro . exe ExampleMacro . C `root−config −−cflags −−libs `

and execute it by typing

1 > ./ ExampleMacro . exe

This procedure will, however, not give access to the ROOT graphics, as neither control of mouse or keyboard
events nor access to the graphics windows of ROOT is available. If you want your stand-alone application have
display graphics output and respond to mouse and keyboard, a slightly more complex piece of code can be used.
In the example below, a macro ExampleMacro_GUI is executed by the ROOT class TApplication. As a further
feature, this code example o�ers access to parameters eventually passed to the program when started from the
command line. Here is the code fragment:

1 #ifndef __CINT__
2 void StandaloneApplication ( int argc , char** argv ) {
3 // eventua l ly , eva luate the app l i c a t i o n parameters argc , argv
4 // ==>> here the ROOT macro i s c a l l e d
5 ExampleMacro_GUI ( ) ;
6 }

17



3. ROOT Macros

7 // This i s the standard "main" o f C++ s t a r t i n g a ROOT app l i c a t i o n
8 int main ( int argc , char** argv ) {
9 gROOT−>Reset ( ) ;
10 TApplication app ("Root Application" , &argc , argv ) ;
11 StandaloneApplication ( app . Argc ( ) , app . Argv ( ) ) ;
12 app . Run ( ) ;
13 return 0 ;
14 }
15 #endif

Compile the code with

1 > g++ −o ExampleMacro_GUI . exe ExampleMacro_GUI `root−config −−cflags −−libs `

and execute the program with

1 > ./ ExampleMacro_GUI . exe
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CHAPTER 4

GRAPHS

In this Chapter we will learn how to exploit some of the functionalities that ROOT provides to display data based
on the class TGraphErrors, which you already got to know previously.

4.1. Read Graph Points from File

The fastest way in which you can �ll a graph with experimental data is to use the constructor which reads data
points and their errors from a �le in ASCII (i. e. standard text) format:

1 TGraphErrors ( const char *filename , const char *format="%lg %lg %lg %lg" , ←↩
Option_t *option="" ) ;

The format string can be:

� "\%lg \%lg" read only 2 �rst columns into X,Y

� "\%lg \%lg \%lg" read only 3 �rst columns into X,Y and EY

� "\%lg \%lg \%lg \%lg" read only 4 �rst columns into X,Y,EX,EY

This approach has a the nice feature of allowing the user to reuse the macro for many di�erent data sets. Here
is an example of an input �le. The nice graphic result shown is produced by the macro below, which reads two
such input �les and uses di�erent options to display the data points.

1 # Measurement o f Friday 26 March
2 # Experiment 2 Phys ics Lab
3

4 1 6 5
5 2 12 5
6 3 14 4 .7
7 4 20 4 .5
8 5 22 4 .2
9 6 24 5 .1
10 7 35 2 .9
11 8 45 4 .1
12 9 44 4 .8
13 10 53 5 .43

�le: macro2_input.txt
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1 /* Reads the po in t s from a f i l e and produces a s imple graph . */
2 int macro2 ( )
3 {
4 gROOT−>SetStyle ("Plain" ) ;
5 TCanvas* c=new TCanvas ( ) ;
6 c−>SetGrid ( ) ;
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7

8 TGraphErrors graph_expected ("./macro2_input_expected.txt" ,"%lg %lg %lg" ) ;
9 graph_expected . SetTitle ("Measurement XYZ and Expectation;lenght [cm];Arb.←↩

Units" ) ;
10 graph_expected . SetFillColor ( kYellow ) ;
11 graph_expected . DrawClone ("E3AL" ) ; // E3 draws the band
12

13 TGraphErrors graph ("./macro2_input.txt" ,"%lg %lg %lg" ) ;
14 graph . SetMarkerStyle ( kCircle ) ;
15 graph . SetFillColor (0 ) ;
16 graph . DrawClone ("PESame" ) ;
17

18 // Draw the Legend
19 TLegend leg ( . 1 , . 7 , . 3 , . 9 , "Lab. Lesson 2" ) ;
20 leg . SetFillColor (0 ) ;
21 leg . AddEntry(&graph_expected , "Expected Points" ) ;
22 leg . AddEntry(&graph , "Measured Points" ) ;
23 leg . DrawClone ("Same" ) ;
24

25 c−>Print ("graph_with_band.pdf" ) ;
26 return 0 ;
27 }

�le: macro2.cxx

Beyond looking at the plot, you can check the actual contents of the graph with the TGraph::Print() method
at any time, obtaining a printout of the coordinates of data points on screen. The macro also shows us how to
print a coloured band around a graph instead of error bars, quite useful for example to represent the errors of a
theoretical prediction.

4.2. Polar Graphs

With ROOT you can pro�t from rather advanced plotting routines, like the ones implemented in the TPolarGraph,
a class to draw graphs in polar coordinates. It is very easy to use, as you see in the example macro and the resulting
plot 4.1:

1 /* Bui lds a po la r graph in a square Canvas
2 */
3 void macro3 ( ) {
4 double rmin=0;
5 double rmax=TMath : : Pi ( ) *6 ;
6 const int npoints=300;
7 Double_t r [ npoints ] ;
8 Double_t theta [ npoints ] ;
9 for ( Int_t ipt = 0 ; ipt < npoints ; ipt++) {
10 r [ ipt ] = ipt *( rmax−rmin ) /( npoints−1.)+rmin ;
11 theta [ ipt ] = TMath : : Sin (r [ ipt ] ) ;
12 }
13 TCanvas* c = new TCanvas ("myCanvas" ,"myCanvas" , 600 ,600) ;
14 TGraphPolar grP1 ( npoints , r , theta ) ;
15 grP1 . SetTitle ("A Fan" ) ;
16 grP1 . SetLineWidth (3 ) ;
17 grP1 . SetLineColor (2 ) ;
18 grP1 . DrawClone ("AOL" ) ;
19 }

�le: macro3.cxx

A new element was added on line 4, the size of the canvas: it is sometimes optically better to show plots
in speci�c canvas sizes.

Some Python variants of this macro are shown and discussed in Chapter 8.
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4.3. 2D Graphs
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Figure 4.1.: The graph of a fan obtained with ROOT.

4.3. 2D Graphs

On some occasions it might be useful to plot some quantities versus two variables, therefore creating a bi-
dimensional graph. Of course ROOT can help you in this task, with the TGraph2DErrors class. The following
macro produces a bi-dimensional graph representing a hypothetical measurement, �ts a bi-dimensional function
to it and draws it together with its x and y projections. Some points of the code will be explained in detail. This
time, the graph is populated with data points using random numbers, introducing a new and very important
ingredient, the ROOT TRandom3 random number generator using the Mersenne Twister algorithm [6].

1 /* Create , Draw and f i t a TGraph2DErrors */
2 void macro4 ( ) {
3 gStyle−>SetPalette (1 ) ;
4 gROOT−>SetStyle ("Plain" ) ;
5

6 const double e = 0 . 3 ;
7 const int nd = 500 ;
8

9 TRandom3 my_random_generator ;
10 TF2 *f2 = new TF2 ("f2" ,"1000*(([0]*sin(x)/x)*([1]*sin(y)/y))+200"←↩

,−6 ,6 ,−6 ,6) ;
11 f2−>SetParameters ( 1 , 1 ) ;
12 TGraph2DErrors *dte = new TGraph2DErrors ( nd ) ;
13 // F i l l the 2D graph
14 double rnd , x , y , z , ex , ey , ez ;
15 for ( Int_t i=0; i<nd ; i++) {
16 f2−>GetRandom2 (x , y ) ;
17 rnd = my_random_generator . Uniform(−e , e ) ; // A random number in [−e , e ]
18 z = f2−>Eval (x , y ) *(1+rnd ) ;
19 dte−>SetPoint (i , x , y , z ) ;
20 ex = 0.05* my_random_generator . Uniform ( ) ;
21 ey = 0.05* my_random_generator . Uniform ( ) ;
22 ez = TMath : : Abs (z*rnd ) ;
23 dte−>SetPointError (i , ex , ey , ez ) ;
24 }
25 // Fit func t i on to generated data
26 f2−>SetParameters ( 0 . 7 , 1 . 5 ) ; // s e t i n i t i a l va lue s f o r f i t
27 f2−>SetTitle ("Fitted 2D function" ) ;
28 dte−>Fit ( f2 ) ;
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29 // Plot the r e s u l t
30 TCanvas *c1 = new TCanvas ( ) ;
31 f2−>Draw ("Surf1" ) ;
32 dte−>Draw ("P0 Same" ) ;
33 // Make the x and y p r o j e c t i o n s
34 TCanvas* c_p= new TCanvas ("ProjCan" ," The Projections" , 1000 ,400) ;
35 c_p−>Divide ( 2 , 1 ) ;
36 c_p−>cd (1 ) ;
37 dte−>Project ("x" )−>Draw ( ) ;
38 c_p−>cd (2 ) ;
39 dte−>Project ("y" )−>Draw ( ) ;
40 }

�le: macro4.cxx

� Line 3: This sets the palette colour code to a much nicer one than the default. Comment this line to give
it a try.

� Line 4: sets a style type without �ll color and shadows for pads. Looks much nicer on paper than the
default setting.

� Line 9: The instance of the random generator. You can then draw out of this instance random numbers
distributed according to di�erent probability density functions, like the Uniform one at lines 25,26. See the
on-line documentation to appreciate the full power of this ROOT feature.

� Line 10: You are already familiar with the TF1 class. This is its two-dimensional correspondent. At line 21
two random numbers distributed according to the TF2 formula are drawn with the method
TF2::GetRandom2(double& a, double&b).

� Line 26�28: Fitting a 2-dimensional function just works like in the one-dimensional case, i.e. initialisation
of parameters and calling of the Fit() method.

� Line 31: The Surf1 option draws the TF2 objects (but also bi-dimensional histograms) as coloured surfaces
with a wire-frame on three-dimensional canvases.

� Line 34�39: Here you learn how to create a canvas, partition it in two sub-pads and access them. It is very
handy to show multiple plots in the same window or image.
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CHAPTER 5

HISTOGRAMS

Histograms play a fundamental role in any type of Physics analysis, not only displaying measurements but being
a powerful form of data reduction. ROOT presents many classes that represent histograms, all inheriting from the
TH1 class. We will focus in this chapter on uni- and bi- dimensional histograms whose bin-contents are represented
by �oating point numbers 1 , the TH1F and TH2F classes respectively.

5.1. Your First Histogram

Let's suppose that you want to measure the counts of a Geiger detector put in proximity of a radioactive source
in a given time interval. This would give you an idea of the activity of your source. The count distribution in
this case is a Poisson distribution. Let's see how operatively you can �ll and draw a histogram in the following
example macro.

1 /*Create , F i l l and draw an Histogram which reproduces the
2 counts o f a s c a l e r l i nked to a Geiger counter . */
3

4 void macro5 ( ) {
5 TH1F* cnt_r_h=new TH1F ("count_rate" ,
6 "Count Rate;N_{Counts};# occurencies" ,
7 100 , // Number o f Bins
8 −0.5 , // Lower X Boundary
9 15 . 5 ) ; // Upper X Boundary
10

11 const float mean_count=3.6;
12 TRandom3 rndgen ;
13 // s imulate the measurements
14 for ( int imeas=0;imeas<400;imeas++)
15 cnt_r_h−>Fill ( rndgen . Poisson ( mean_count ) ) ;
16

17 gROOT−>SetStyle ("Plain" ) ;
18 TCanvas* c= new TCanvas ( ) ;
19 cnt_r_h−>Draw ( ) ;
20

21 TCanvas* c_norm= new TCanvas ( ) ;
22 cnt_r_h−>DrawNormalized ( ) ;
23

24 // Pr int summary
25 cout << "Moments of Distribution:\n"

26 << " - Mean = " << cnt_r_h−>GetMean ( ) << " +- "

27 << cnt_r_h−>GetMeanError ( ) << "\n"

28 << " - RMS = " << cnt_r_h−>GetRMS ( ) << " +- "

29 << cnt_r_h−>GetRMSError ( ) << "\n"

30 << " - Skewness = " << cnt_r_h−>GetSkewness ( ) << "\n"

31 << " - Kurtosis = " << cnt_r_h−>GetKurtosis ( ) << "\n" ;
32 }

�le: macro5.cxx

1To optimise the memory usage you might go for one byte (TH1C), short (TH1S), integer (TH1I) or double-precision
(TH1D) bin-content.
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Figure 5.1.: The result of a counting (pseudo) experiment.

Which gives you the following plot 5.1: Using histograms is rather simple. The main di�erences with respect to
graphs that emerge from the example are:

� line 5: The histograms have a name and a title right from the start, no prede�ned number of entries but a
number of bins and a lower-upper range.

� line 15: An entry is stored in the histogram through the TH1F::Fill method.

� line 19 and 22: The histogram can be drawn also normalised, ROOT automatically takes cares of the
necessary rescaling.

� line 25 to 31: This small snippet shows how easy it is to access the moments and associated errors of a
histogram.

5.2. Add and Divide Histograms

Quite a large number of operations can be carried out with histograms. The most useful are addition and division.
In the following macro we will learn how to manage these procedures within ROOT.

1 /*Divide and add 1D Histograms */
2

3 void format_h ( TH1F* h , int linecolor ) {
4 h−>SetLineWidth (3 ) ;
5 h−>SetLineColor ( linecolor ) ;
6 }
7

8 void macro6 ( ) {
9 gROOT−>SetStyle ("Plain" ) ;
10

11 TH1F* sig_h=new TH1F ("sig_h" ,"Signal Histo" , 50 , 0 , 10 ) ;
12 TH1F* gaus_h1=new TH1F ("gaus_h1" ,"Gauss Histo 1" , 30 , 0 , 10 ) ;
13 TH1F* gaus_h2=new TH1F ("gaus_h2" ,"Gauss Histo 2" , 30 , 0 , 10 ) ;
14 TH1F* bkg_h=new TH1F ("exp_h" ,"Exponential Histo" , 50 , 0 , 10 ) ;
15

16 // s imulate the measurements
17 TRandom3 rndgen ;
18 for ( int imeas=0;imeas<4000;imeas++){
19 bkg_h−>Fill ( rndgen . Exp (4 ) ) ;
20 if ( imeas%4==0) gaus_h1−>Fill ( rndgen . Gaus ( 5 , 2 ) ) ;
21 if ( imeas%4==0) gaus_h2−>Fill ( rndgen . Gaus ( 5 , 2 ) ) ;
22 if ( imeas%10==0)sig_h−>Fill ( rndgen . Gaus ( 5 , . 5 ) ) ; }
23

24 // Format Histograms
25 TH1F* histos [4 ]={ sig_h , bkg_h , gaus_h1 , gaus_h2 } ;
26 for ( int i=0;i<4;++i ) {
27 histos [ i]−>Sumw2 ( ) ; // *Very* Important

24



5.2. Add and Divide Histograms

0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8 9 10

G
au

s 
H

is
to

 1
 a

n
d

 G
au

s 
H

is
to

 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X axis
0 1 2 3 4 5 6 7 8 9 10

G
au

s 
H

is
to

 1
 / 

G
au

s 
H

is
to

 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 5.2.: The sum of two histograms and the ratio.

28 format_h ( histos [ i ] , i+1) ;
29 }
30

31 // Sum
32 TH1F* sum_h= new TH1F (* bkg_h ) ;
33 sum_h−>Add ( sig_h , 1 . ) ;
34 sum_h−>SetTitle ("Exponential + Gaussian" ) ;
35 format_h ( sum_h , kBlue ) ;
36

37 TCanvas* c_sum= new TCanvas ( ) ;
38 sum_h−>Draw ("hist" ) ;
39 bkg_h−>Draw ("SameHist" ) ;
40 sig_h−>Draw ("SameHist" ) ;
41

42 // Divide
43 TH1F* dividend=new TH1F (* gaus_h1 ) ;
44 dividend−>Divide ( gaus_h2 ) ;
45

46 // Graphical Maqui l lage
47 dividend−>SetTitle (";X axis;Gaus Histo 1 / Gaus Histo 2" ) ;
48 format_h ( dividend , kOrange ) ;
49 gaus_h1−>SetTitle (";;Gaus Histo 1 and Gaus Histo 2" ) ;
50 gStyle−>SetOptStat (0 ) ;
51 gStyle−>SetOptTitle (0 ) ;
52

53 TCanvas* c_divide= new TCanvas ( ) ;
54 c_divide−>Divide ( 1 , 2 , 0 , 0 ) ;
55 c_divide−>cd (1 ) ;
56 c_divide−>GetPad (1 )−>SetRightMargin ( . 0 1 ) ;
57 gaus_h1−>DrawNormalized ("Hist" ) ;
58 gaus_h2−>DrawNormalized ("HistSame" ) ;
59 c_divide−>cd (2 ) ;
60 dividend−>GetYaxis ( )−>SetRangeUser ( 0 , 2 . 4 9 ) ;
61 c_divide−>GetPad (2 )−>SetGridy ( ) ;
62 c_divide−>GetPad (2 )−>SetRightMargin ( . 0 1 ) ;
63 dividend−>Draw ( ) ;
64 }

�le: macro6.cxx

The plots that you will obtain are shown in 5.2 Some lines now need a bit of clari�cation:

� line 3: CINT, as we know, is also able to interpret more than one function per �le. In this case the function
simply sets up some parameters to conveniently set the line of histograms.

� line 20 to 22: Some contracted C++ syntax for conditional statements is used to �ll the histograms with
di�erent numbers of entries inside the loop.

� line 27: This is a crucial step for the sum and ratio of histograms to handle errors properly. The method
TH1::Sumw2 causes the squares of weights to be stored inside the histogram (equivalent to the number of
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entries per bin if weights of 1 are used). This information is needed to correctly calculate the errors of each
bin entry when the methods TH1::Add and TH1::Divide are applied.

� line 33: The sum of two histograms. A weight can be assigned to the added histogram, for example to
comfortably switch to subtraction.

� line 44: The division of two histograms is rather straightforward.

� line 53 to 63: When you draw two quantities and their ratios, it is much better if all the information is
condensed in one single plot. These lines provide a skeleton to perform this operation.

5.3. Two-dimensional Histograms

Two-dimensional histograms are a very useful tool, for example to inspect correlations between variables. You
can exploit the bi-dimensional histogram classes provided by ROOT in a very simple way. Let's see how in the
following macro:

1 /* Draw a Bid imens iona l Histogram in many ways
2 toge the r with i t s p r o f i l e s and p r o j e c t i o n s */
3

4 void macro7 ( ) {
5 gROOT−>SetStyle ("Plain" ) ;
6 gStyle−>SetPalette (1 ) ;
7 gStyle−>SetOptStat (0 ) ;
8 gStyle−>SetOptTitle (0 ) ;
9

10 TH2F bidi_h ("bidi_h" ,
11 "2D Histo;Guassian Vals;Exp. Vals" ,
12 30 ,−5 ,5 , // X ax i s
13 30 ,0 ,10) ; // Y ax i s
14

15 TRandom3 rndgen ;
16 for ( int i=0;i<500000;i++)
17 bidi_h . Fill ( rndgen . Gaus ( 0 , 2 ) ,
18 10−rndgen . Exp (4 ) ) ;
19

20 TCanvas* c=new TCanvas ("Canvas" ,"Canvas" , 800 ,800) ;
21 c−>Divide ( 2 , 2 ) ;
22 c−>cd (1 ) ; bidi_h . DrawClone ("Contz" ) ;
23 c−>cd (2 ) ; bidi_h . DrawClone ("Colz" ) ;
24 c−>cd (3 ) ; bidi_h . DrawClone ("lego2" ) ;
25 c−>cd (4 ) ; bidi_h . DrawClone ("surf3" ) ;
26

27 // P r o f i l e s and Pro j e c t i on s
28 TCanvas* c2=new TCanvas ("Canvas2" ,"Canvas2" , 800 ,800) ;
29 c2−>Divide ( 2 , 2 ) ;
30 c2−>cd (1 ) ; bidi_h . ProjectionX ( )−>DrawClone ( ) ;
31 c2−>cd (2 ) ; bidi_h . ProjectionY ( )−>DrawClone ( ) ;
32 c2−>cd (3 ) ; bidi_h . ProfileX ( )−>DrawClone ( ) ;
33 c2−>cd (4 ) ; bidi_h . ProfileY ( )−>DrawClone ( ) ;
34 }

�le: macro macro7.cxx

Two kinds of plots are provided by the code, the �rst one containing three-dimensional representations (Fig-
ure 5.3) and the second one projections and pro�les (5.4) of the bi-dimensional histogram. When a projection
is performed along the x (y) direction, for every bin along the x (y) axis, all bin contents along the y (x) axis are
summed up (upper the plots of �gure 5.4). When a pro�le is performed along the x (y) direction, for every bin
along the x (y) axis, the average of all the bin contents along the y (x) is calculated together with their RMS and
displayed as a symbol with error bar (lower two plots of �gure). 5.4).
Correlations between the variables are quanti�ed by the methods Double_T GetCovariance()

and Double_t GetCorrelationFactor().
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Figure 5.3.: Di�erent ways of representing bi-dimensional histograms.
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CHAPTER 6

FILE I/O

6.1. Storing ROOT Objects

ROOT o�ers the possibility to write the instances of all the classes inheriting from the class TObject (basically
all classes in ROOT) on disk, into what is referred to as ROOT-�le, a �le created by the TFile class. One says
that the object is made �persistent� by storing it on disk. When reading the �le back, the object can be restored
to memory.

We can explore this functionality with histograms and two simple macros.

1 void write_to_file ( ) {
2

3 // I s t anc e o f our histogram
4 TH1F h ("my_histogram" ,"My Title;X;# of entries" ,100 ,−5 ,5) ;
5

6 // Let ' s f i l l i t randomly
7 h . FillRandom ("gaus" ) ;
8

9 // Let ' s open a TFile
10 TFile out_file ("my_rootfile.root" ,"RECREATE" ) ;
11

12 // Write the histogram in the f i l e
13 h . Write ( ) ;
14

15 // Close the f i l e
16 out_file . Close ( ) ;
17 }

�le: write_to_file.cxx

The RECREATE option forces ROOT to create a new �le even if a �le with the same name exists on disk.

Now, you may use the CINT command line to access information in the �le and draw the previously written
histogram:

1 >>> root my_rootfile . root
2 root [ 0 ]
3 Attaching file my_rootfile . root as _file0 . . .
4 root [ 1 ] _file0 . ls ( )
5 TFile** my_rootfile . root
6 TFile* my_rootfile . root
7 KEY : TH1F my_histogram ; 1 My Title

8 root [ 2 ] my_histogram . Draw ( )

Alternatively, you can use a simple macro to carry out the job:
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1 void read_from_file ( ) {
2

3 // Let ' s open the TFile
4 TFile* in_file= new TFile ("my_rootfile.root" ) ;
5

6 // Get the Histogram out
7 TH1F* h =(TH1F *) in_file−>GetObjectChecked ("my_histogram" ,"TH1F" ) ;
8

9 // Draw i t
10 h−>DrawClone ( ) ;
11

12 }

�le: read_from_file.cxx

Please note that the order of opening �les for write access and creating objects determines whether the ob-
jects are stored or not. You can avoid this behaviour by using the Write() function as shown in the previous
example.
Although you could access an object within a �le also with the Get function and a dynamic type cast, it is

advisable to use GetObjectChecked.

6.2. N-tuples in ROOT

6.2.1. Storing simple N-tuples

Up to now we have seen how to manipulate input read from ASCII �les. ROOT o�ers the possibility to do much
better than that, with its own n-tuple classes. Among the many advantages provided by these classes one could
cite

� Optimised disk I/O.

� Possibility to store many n-tuple rows (Millions).

� Write the n-tuples in ROOT �les.

� Interactive inspection with TBrowser.

� Store not only numbers, but also objects in the columns.

In this section we will discuss brie�y the TNtuple class, which is a simpli�ed version of the TTree class. A
ROOT TNtuple object can store rows of �oat entries. Let's tackle the problem according to the usual strategy
commenting a minimal example

1 /*
2 F i l l an n−tup l e and wr i t e i t to a f i l e s imu la t ing measurement o f
3 conduc t i v i ty o f a mate r i a l in d i f f e r e n t cond i t i on s o f p r e s su r e and temperature .
4 */
5

6 void write_ntuple_to_file ( ) {
7

8 // I n i t i a l i s e the TNtuple
9 TNtuple cond_data ("cond_data" ,
10 "Example N-Tuple" ,
11 "Potential:Current:Temperature:Pressure" ) ;
12

13 // F i l l i t randomly to fake the acqu i red data
14 float pot , cur , temp , pres ;
15 for ( int i=0;i<10000;++i ) {
16 pot=gRandom−>Uniform ( 0 . , 1 0 . ) ; // get vo l tage
17 temp=gRandom−>Uniform ( 2 5 0 . , 3 5 0 . ) ; // get temperature
18 pres=gRandom−>Uniform ( 0 . 5 , 1 . 5 ) ; // get p r e s su r e
19 cur=pot /(10 .+0.05* ( temp−300.) −0.2*(pres−1.) ) ; // c a l c u l a t e cur rent
20 // add some random smearing (measurement e r r o r s )
21 pot*=gRandom−>Gaus ( 1 . , 0 . 0 1 ) ; // 1% e r r o r on vo l tage
22 temp+=gRandom−>Gaus ( 0 . , 0 . 3 ) ; // 0 .3 abso lu t e e r r o r on temperature
23 pres*=gRandom−>Gaus ( 1 . , 0 . 0 2 ) ; // 1% e r r o r on pr e s su r e
24 cur*=gRandom−>Gaus ( 1 . , 0 . 0 1 ) ; // 1% e r r o r on cur rent
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25 // wr i t e to ntuple
26 cond_data . Fill ( pot , cur , temp , pres ) ;
27 }
28

29 // Open a f i l e , save the ntuple and c l o s e the f i l e
30 TFile ofile ("conductivity_experiment.root" ,"RECREATE" ) ;
31 cond_data . Write ( ) ;
32 ofile . Close ( ) ;
33 }

�le: write_ntuple_to_file.cxx

This data written to this example n-tuple represents, in the statistical sense, three independent variables (Poten-
tial or Voltage, Pressure and Temperature), and one variable (Current) which depends on the the others according
to very simple laws, and an additional Gaussian smearing. This set of variables mimics a measurement of an
electrical resistance while varying pressure and temperature.
Imagine your task now consists in �nding the relations among the variables � of course without knowing the

code used to generate them. You will see that the possibilities of the NTuple class enable you to perform this
analysis task. Open the ROOT �le (cond_data.root) written by the macro above in an interactive section and
use a TBrowser to interactively inspect it:

1 root [ 0 ] new TBrowser ( )

You �nd the columns of your n-tuple written as leafs. Simply clicking on them you can obtain histograms of
the variables!
Next, try the following commands at the shell prompt and in the interactive ROOT shell, respectively:

1 > root conductivity_experiment . root
2 Attaching file conductivity_experiment . root as _file0 . . .
3 root [ 0 ] cond_data . Draw ("Current:Potential" )

You just produced a correlation plot with one single line of code!
Try to extend the syntax typing for example

1 root [ 1 ] cond_data . Draw ("Current:Potential" ,"Temperature <270" )

What do you obtain?
Now try

1 root [ 2 ] cond_data . Draw ("Current/Potential:Temperature" )

It should have become clear from these examples how to navigate in such a multi-dimensional space of variables
and uncover relations between variables using n-tuples.

6.2.2. Reading N-tuples

For completeness, you �nd here a small macro to read the data back from a ROOT n-tuple

1 /*
2 Read the p r ev i ou s l y produced N−Tuple and pr in t on sc r e en i t s content
3 */
4

5 void read_ntuple_from_file ( ) {
6

7 // Open a f i l e , save the ntuple and c l o s e the f i l e
8 TFile in_file ("conductivity_experiment.root" ) ;
9 TNtuple* my_tuple = ( TNtuple *) in_file . GetObjectChecked ("cond_data" ,"TNtuple"←↩

) ;
10

11 float pot , cur , temp , pres ;
12 float* row_content ;
13

14 cout << "Potential\tCurrent\tTemperature\tPressure\n" ;
15 for ( int irow=0;irow<my_tuple−>GetEntries ( ) ;++irow ) {
16 my_tuple−>GetEntry ( irow ) ;
17 row_content = my_tuple−>GetArgs ( ) ;
18 pot = row_content [ 0 ] ;
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19 cur = row_content [ 1 ] ;
20 temp = row_content [ 2 ] ;
21 pres = row_content [ 3 ] ;
22 cout << pot << "\t" << cur << "\t" << temp << "\t" << pres << endl ;
23 }
24

25 }

�le: read_ntuple_from_file.cxx

The macro shows the easiest way of accessing the content of a n-tuple: after loading the n-tuple, its branches are
assigned to variables and GetEntry(long) automatically �lls them with the content for a speci�c row. By doing
so, the logic for reading the n-tuple and the code to process it can be split and the source code remains clear.

6.2.3. Storing Arbitrary N-tuples

It is also possible to write n-tuples of arbitrary type by using ROOT's TBranch class. This is especially important
as TNtuple::Fill() accepts only �oats. The following macro creates the ame n-tuple as before but the branches
are booked directly. The Fill() function then �lls the current values of the connected variables to the tree.

1 /*
2 F i l l an n−tup l e and wr i t e i t to a f i l e s imu la t ing measurement o f
3 conduc t i v i ty o f a mate r i a l in d i f f e r e n t cond i t i on s o f p r e s su r e and temperature .
4 us ing branches
5 */
6

7 void write_ntuple_to_file_advanced ( std : : string outputFileName = "←↩
conductivity_experiment.root" , unsigned int numDataPoints = 10000) {

8 // I n i t i a l i s e the TNtuple
9 TTree cond_data ("cond_data" , "Example N-Tuple" ) ;
10

11 // de f i n e the v a r i a b l e s and book them f o r the ntuple
12 float pot , cur , temp , pres ;
13 cond_data . Branch ("Potential" , &pot , "Potential/F" ) ;
14 cond_data . Branch ("Current" , &cur , "Current/F" ) ;
15 cond_data . Branch ("Temperature" , &temp , "Temperature/F" ) ;
16 cond_data . Branch ("Pressure" , &pres , "Pressure/F" ) ;
17

18 for ( int i=0;i<numDataPoints;++i ) {
19 // F i l l i t randomly to fake the acqu i red data
20 pot=gRandom−>Uniform ( 0 . , 1 0 . ) *gRandom−>Gaus ( 1 . , 0 . 0 1 ) ;
21 temp=gRandom−>Uniform ( 2 5 0 . , 3 5 0 . )+gRandom−>Gaus ( 0 . , 0 . 3 ) ;
22 pres=gRandom−>Uniform ( 0 . 5 , 1 . 5 ) *gRandom−>Gaus ( 1 . , 0 . 0 2 ) ;
23 cur=pot /(10 .+0.05* ( temp−300.) −0.2*(pres−1.) ) *gRandom−>Gaus ( 1 . , 0 . 0 1 ) ;
24

25 // wr i t e to ntuple
26 cond_data . Fill ( ) ;
27 }
28

29 // Open a f i l e , save the ntuple and c l o s e the f i l e
30 TFile ofile ( outputFileName . c_str ( ) ,"RECREATE" ) ;
31 cond_data . Write ( ) ;
32 ofile . Close ( ) ;
33 }

�le: write_ntuple_to_file_advanced.cxx

The Branch() function requires a pointer to a variable and a de�nition of the variable type. Table 6.1 lists
some of the possible values. Please note that ROOT is not checking the input and mistakes are likely to result in
serious problems. This holds especially if values are read as another type than they have been written, e.g. when
storing a variable as �oat and reading it as double.
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Table 6.1.: List of variable types that can be used to de�ne the type of a branch in ROOT.

type size C++ identi�er

signed integer
32 bit int I
64 bit long L

unsigned integer
32 bit unsigned int i
64 bit unsigned long l

�oating point
32 bit �oat F
64 bit double D

boolean - bool O

6.2.4. Processing N-tuples Spanning over Several Files

Usually n-tuples or trees span over many �les and it would be di�cult to add them manually. ROOT thus kindly
provides a helper class in the form of TChain. Its usage is shown in the following macro which is very similar to
the previous example. The constructor of a TChain takes the name of the TTree (or TNuple) as an argument. The
�les are added with the function Add(fileName), where one can also use wild-cards as shown in the example.

1 /*
2 Read s e v e r a l p r ev i ou s l y produced N−Tuples and pr in t on sc r e en i t s content
3

4 you can e a s i l y c r e a t e some f i l e s with the f o l l ow i n g statement :
5 f o r i in 0 1 2 3 4 5 ; do root − l −x −b −q "wr i te_ntuple_to_f i l e . cxx (\"←↩

conductivity_experiment_${ i } . root \" , 100) " ; done
6 */
7

8 void read_ntuple_with_chain ( ) {
9 // i n i t i a t e a TChain with the name o f the TTree to be proce s sed
10 TChain in_chain ("cond_data" ) ;
11 in_chain . Add ("conductivity_experiment*.root" ) ; // add f i l e s , w i ldcards work
12

13 // de f i n e v a r i a b l e s and a s s i gn them to the corre spond ing branches
14 float pot , cur , temp , pres ;
15 my_tuple−>SetBranchAddress ("Potential" , &pot ) ;
16 my_tuple−>SetBranchAddress ("Current" , &cur ) ;
17 my_tuple−>SetBranchAddress ("Temperature" , &temp ) ;
18 my_tuple−>SetBranchAddress ("Pressure" , &pres ) ;
19

20 cout << "Potential\tCurrent\tTemperature\tPressure\n" ;
21 for ( size_t irow=0; irow<in_chain . GetEntries ( ) ; ++irow ) {
22 in_chain . GetEntry ( irow ) ; // loads a l l v a r i a b l e s that have been connected to ←↩

branches
23 cout << pot << "\t" << cur << "\t" << temp << "\t" << pres << endl ;
24 }
25 }

�le: read_ntuple_with_chain.cxx

6.2.5. For the advanced user: Processing trees with a selector script

Another very general and powerful way of processing a TChain is provided via the method TChain::Process().
This method takes as arguments an instance of a � user-implemented� class of type TSelector, and � optionally
� the number of entries and the �rst entry to be processed. A template for the class TSelector is provided by
the method TTree::MakeSelector, as is shown in the little macro makeSelector.C below.
It opens the n-tuple conductivity_experiment.root from the example above and creates from it the header

�le MySelector.h and a template to insert your own analysis code, MySelector.C.

1 {
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2 // c r ea t e template c l a s s f o r S e l e c t o r to run on a t r e e
3 // ////////////////////////////////////////////////////
4 //
5 // open root f i l e conta in ing the Tree
6 TFile *f = TFile : : Open ("conductivity_experiment.root" ) ;
7 // c r ea t e TTree ob j e c t from i t
8 TTree *t = ( TTree *) f−>Get ("cond_data" ) ;
9 // t h i s g ene ra t e s the f i l e s MySelector . h and MySelector .C
10 t−>MakeSelector ("MySelector" ) ;
11 }

�le: makeMySelector.C
The template contains the entry points Begin() and SlaveBegin() called before processing of the TChain starts,
Process() called for every entry of the chain, and SlaveTerminate() and Terminate() called after the last entry
has been processed. Typically, initialization like booking of histograms is performed in SlaveBegin(), the analysis,
i. e. the selection of entries, calculations and �lling of histograms, is done in Process(), and �nal operations like
plotting and storing of results happen in SlaveTerminate() or Terminate().
The entry points SlaveBegin() and SlaveTerminate() are called on so-called slave nodes only if parallel

processing via PROOF or PROOF lite is enabled, as will be explained below.
A simple example of a selector class is shown in the macro MySelector.C. The example is executed with the

following sequence of commands:

1 > TChain *ch=new TChain ("cond_data" , "My Chain for Example N-Tuple" ) ;
2 > ch−>Add ("conductivity_experiment*.root" ) ;
3 > ch−>Process ("MySelector.C+" ) ;

As usual, the �+� appended to the name of the macro to be executed initiates the compilation of the MySelector.C
with the system compiler in order to improve performance.
The code in MySelector.C, shown in the listing below, books some histograms in SlaveBegin() and adds

them to the instance fOutput, which is of the class TList1 The �nal processing in Terminate() allows to access
histograms and store, display or save them as pictures. This is shown in the example via the TList fOutput. See
the commented listing below for more details; most of the text is actually comments generated automatically by
TTree::MakeSelector.

1 #define MySelector_cxx
2 // The c l a s s d e f i n i t i o n in MySelector . h has been generated automat i ca l l y
3 // by the ROOT u t i l i t y TTree : : MakeSelector ( ) . This c l a s s i s der ived
4 // from the ROOT c l a s s TSe lec tor . For more in fo rmat ion on the TSe lector
5 // framework see $ROOTSYS/README/README.SELECTOR or the ROOT User Manual .
6

7 // The f o l l ow i n g methods are de f ined in t h i s f i l e :
8 // Begin ( ) : c a l l e d every time a loop on the t r e e s t a r t s ,
9 // a convenient p lace to c r e a t e your histograms .
10 // SlaveBegin ( ) : c a l l e d a f t e r Begin ( ) , when on PROOF ca l l e d only on the
11 // s l av e s e r v e r s .
12 // Process ( ) : c a l l e d f o r each event , in t h i s func t i on you dec ide what
13 // to read and f i l l your histograms .
14 // SlaveTerminate : c a l l e d at the end o f the loop on the tree , when on PROOF
15 // c a l l e d only on the s l av e s e r v e r s .
16 // Terminate ( ) : c a l l e d at the end o f the loop on the tree ,
17 // a convenient p lace to draw/ f i t your histograms .
18 //
19 // To use t h i s f i l e , t ry the f o l l ow i n g s e s s i o n on your Tree T:
20 //
21 // Root > T−>Process ("MySelector .C")
22 // Root > T−>Process ("MySelector .C" ," some opt ions ")
23 // Root > T−>Process ("MySelector .C+")
24 //
25

26 #include "MySelector.h"

27 #include <TH2. h>

1The usage of fOutput is not really needed for this simple example, but it allows re-usage of the exact code in parallel
processing with PROOF (see next section).

34



6.2. N-tuples in ROOT

28 #include <TStyle . h>
29 #include <TCanvas . h>
30

31 // user de f ined v a r i a b l e s may come here :
32 UInt_t fNumberOfEvents ; TDatime tBegin , tNow ;
33

34 TH1F *h_pot ,* h_cur ,* h_temp ,* h_pres ,* h_resistance ;
35

36 void MySelector : : Begin ( TTree * /* t r e e */ )
37 {
38 // The Begin ( ) func t i on i s c a l l e d at the s t a r t o f the query .
39 // When running with PROOF Begin ( ) i s only c a l l e d on the c l i e n t .
40 // The t r e e argument i s deprecated ( on PROOF 0 i s passed ) .
41

42 TString option = GetOption ( ) ;
43

44 // some time measurement
45 tBegin . Set ( ) ; printf ("*==* ---------- Begin of Job ---------- " ) ;
46 tBegin . Print ( ) ;
47 }
48

49 void MySelector : : SlaveBegin ( TTree * /* t r e e */ )
50 {
51 // The SlaveBegin ( ) func t i on i s c a l l e d a f t e r the Begin ( ) func t i on .
52 // When running with PROOF SlaveBegin ( ) i s c a l l e d on each s l av e s e r v e r .
53 // The t r e e argument i s deprecated ( on PROOF 0 i s passed ) .
54

55 TString option = GetOption ( ) ;
56

57 //book some histograms
58 h_pot=new TH1F ("pot" ,"potential" , 100 , −0 .5 ,10 .5) ;
59 h_cur=new TH1F ("cur" ,"current" , 100 , −0 .1 ,1 .5 ) ;
60 h_temp=new TH1F ("temp" ,"temperature" , 1 0 0 , 2 00 . , 4 00 . ) ;
61 h_pres=new TH1F ("pres" ,"pressure" , 100 , −0 . , 2 . ) ;
62 h_resistance=new TH1F ("resistance" ,"resistance" , 1 0 0 , 5 . , 1 5 . ) ;
63

64 // add a l l booked histograms to output l i s t ( only r e a l l y needed f o r PROOF)
65 fOutput−>AddAll ( gDirectory−>GetList ( ) ) ;
66 }
67

68 Bool_t MySelector : : Process ( Long64_t entry )
69 {
70 // The Process ( ) func t i on i s c a l l e d f o r each entry in the t r e e ( or po s s i b l y
71 // keyed ob j e c t in the case o f PROOF) to be proce s sed . The entry argument
72 // s p e c i f i e s which entry in the cu r r en t l y loaded t r e e i s to be proce s sed .
73 // I t can be passed to e i t h e r MySelector : : GetEntry ( ) or TBranch : : GetEntry ( )
74 // to read e i t h e r a l l or the r equ i r ed par t s o f the data . When pro c e s s i ng
75 // keyed ob j e c t s with PROOF, the ob j e c t i s a l r eady loaded and i s a v a i l a b l e
76 // v ia the fObject po in t e r .
77 //
78 // This func t i on should conta in the "body" o f the ana l y s i s . I t can conta in
79 // s imple or e l abo ra t e s e l e c t i o n c r i t e r i a , run a lgor i thms on the data
80 // o f the event and t y p i c a l l y f i l l h i s tograms .
81 //
82 // The p ro c e s s i ng can be stopped by c a l l i n g Abort ( ) .
83 //
84 // Use fS ta tu s to s e t the re turn value o f TTree : : Process ( ) .
85 //
86 // The return value i s cu r r en t l y not used .
87

88 // − − − − − − − − − begin p ro c e s s i ng
89 GetEntry ( entry ) ;
90
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91 // count number o f e n t r i e s (=events ) . . .
92 ++fNumberOfEvents ;
93

94 // ana l s i y s code comes here − f i l l h i s tograms
95 h_pot−>Fill ( Potential ) ;
96 h_cur−>Fill ( Current ) ;
97 h_temp−>Fill ( Temperature ) ;
98 h_pres−>Fill ( Pressure ) ;
99 h_resistance−>Fill ( Potential/Current ) ;
100

101 return kTRUE ; //kFALSE would abort p ro c e s s i ng
102 }
103

104 void MySelector : : SlaveTerminate ( )
105 {
106 // The SlaveTerminate ( ) func t i on i s c a l l e d a f t e r a l l e n t r i e s or ob j e c t s
107 // have been proce s sed . When running with PROOF SlaveTerminate ( ) i s c a l l e d
108 // on each s l av e s e r v e r .
109

110 // some s t a t i s t i c s at end o f job
111 printf ("\n *==* ---------- End of Slave Job ---------- " ) ;
112 tNow . Set ( ) ; tNow . Print ( ) ;
113 printf ("Number of Events: %i, elapsed time: %i sec, rate: %g evts/sec\n" ,
114 fNumberOfEvents ,
115 tNow . Convert ( )−tBegin . Convert ( ) ,
116 float ( fNumberOfEvents ) /( tNow . Convert ( )−tBegin . Convert ( ) ) ) ;
117 }
118

119 void MySelector : : Terminate ( )
120 {
121 // The Terminate ( ) func t i on i s the l a s t func t i on to be c a l l e d during
122 // a query . I t always runs on the c l i e n t , i t can be used to pre sent
123 // the r e s u l t s g r aph i c a l l y or save the r e s u l t s to f i l e .
124

125 // f i n a l l y , s t o r e a l l output
126 TFile hfile ("MySelector_Result.root" ,"RECREATE" ,"MuonResults" ) ;
127 fOutput−>Write ( ) ;
128

129 //Example to r e t r i e v e output from output l i s t
130 h_resistance=dynamic_cast<TH1F *>(fOutput−>FindObject ("resistance" ) ) ;
131 TCanvas c_result ("cresult" ,"Resistance" , 100 ,100 ,300 ,300) ;
132 h_resistance−>Draw ( ) ;
133 c_result . SaveAs ("ResistanceDistribution.png" ) ;
134

135 tNow . Set ( ) ; printf ("*==* ---------- End of Job ---------- " ) ;
136 tNow . Print ( ) ;
137 }

�le: MySelector.C

6.2.6. For power-users: Multi-core processing with PROOF lite

The processing of n-tuples via a selector function of type TSelector through TChain::Process(), as described at
the end of the previous section, o�ers an additional advantage in particular for very large data sets: on distributed
systems or multi-core architectures, portions of data can be processed in parallel, thus signi�cantly reducing the
execution time. On modern computers with multi-core CPUs or hyper-threading enabled, this allows a much
faster turnaround of analyses, since all the available CPU power is used.
On distributed systems, a PROOF server and worker nodes have to be set up, as is described in detail in the

ROOT documentation. On a single computer with multiple cores, PROOF lite can be used instead. Try the
following little macro, RunMySelector.C, which contains two extra lines compared to the example above (adjust
the number of workers according to the number of CPU cores):

1 {
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2 // s e t up a TChain
3 TChain *ch=new TChain ("cond_data" , "My Chain for Example N-Tuple" ) ;
4 ch−>Add ("conductivity_experiment*.root" ) ;
5 //
6 // eventua l ly , s t a r t Proof L i t e on co r e s
7 TProof : : Open ("workers=4" ) ;
8 ch−>SetProof ( ) ;
9 //
10 ch−>Process ("MySelector.C+" ) ;
11 }

�le: RunMySelector.C
The �rst command, TProof::Open() starts a local PROOF server, and the command ch->SetProof(); enables
processing of the chain using PROOF. Now, when issuing the command ch->Process("MySelector.C+);, the
code in MySelector.C is compiled and executed on each slave node. The methods Begin() and Terminate()

are executed on the master only. The list of n-tuple �les is analysed, and portions of the data are assigned
to the available slave processes. Histograms booked in SlaveBegin() exist in the processes on the slave nodes,
and are �lled accordingly. Upon termination, the PROOF master collects the histograms from the slaves and
merges them. In Terminate() all merged histograms are available and can be inspected, analysed or stored. The
histograms are handled via the instances fOutput of class TList in each slave process, and can be retrieved from
this list after merging in Terminate.
To explore the power of this mechanism, generate some very large n-tuples using the script from Section 6.2.3

- you could try 10 000 000 events (this results in a large n-tuple of about 160 MByte in size). You could also
generate a large number of �les and use wildcards to add the to the TCHain. Now execute
> root -l RunMySelector.C

and watch what happens:

1 Processing RunMySelector . C . . .
2 +++ Starting PROOF−Lite with 4 workers +++
3 Opening connections to workers : OK (4 workers )
4 Setting up worker servers : OK (4 workers )
5 PROOF set to parallel mode (4 workers )
6

7 Info in <TProofLite : : SetQueryRunning>: starting query : 1
8 Info in <TProofQueryResult : : SetRunning>: nwrks : 4
9 Info in <TUnixSystem : : ACLiC>: creating shared library ~/DivingROOT/macros/←↩

MySelector_C . so
10 *==* −−−−−−−−−− Begin of Job −−−−−−−−−− Date/Time = Wed Feb 15 23 : 00 : 04 2012
11 Looking up for exact location of files : OK (4 files )
12 Looking up for exact location of files : OK (4 files )
13 Info in <TPacketizerAdaptive : : TPacketizerAdaptive>: Setting max number of ←↩

workers per node to 4
14 Validating files : OK (4 files )
15 Info in <TPacketizerAdaptive : : InitStats>: fraction of remote files 1.000000
16 Info in <TCanvas : : Print>: file ResistanceDistribution . png has been created

17 *==* −−−−−−−−−− End of Job −−−−−−−−−− Date/Time = Wed Feb 15 23 : 00 : 08 2012
18 Lite−0: all output objects have been merged

Log �les of the whole processing chain are kept in the directory ~.proof for each worker node. This is very
helpful for debugging or if something goes wrong. As the the method described here also works without using
PROOF, the development work on an analysis script can be done in the standard way on a small subset of the
data, and only for the full processing one would use parallelism via PROOF.

6.2.7. Optimisation Regarding N-tuples

ROOT automatically applies compression algorithms on n-tuples to reduce the memory consumption. A value
that is in most cases only zero will consume only small space on your disk (but it has to be de�ated on reading).
Nevertheless, you should think about the design of your n-tuples and your analyses as soon as the processing time
exceeds some minutes.

� Try to keep your n-tuples simple and use appropriate variable types. If your measurement has only a limited
precision, it is needless to store it with double precision.

� Experimental conditions that do not change with every single measurement should be stored in a separate
tree. Although the compression can handle redundant values, the processing time increase with every
variable that has to be �lled.
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� The function SetCacheSize(long) speci�es the size of the cache for reading a TTree object from a �le.
The default value is 30MB. A manual increase may help in certain situations. Please note that the caching
mechanism can cover only one TTree object per TFile object.

� You can select the branches to be covered by the caching algorithm with AddBranchToCache and deactivate
unneeded branches with SetBranchStatus. This mechanism can result in a signi�cant speed-up for simple
operations on trees with many branches.

� You can measure the performance easily with TTreePerfStats. The ROOT documentation on this class
also includes an introductory example. For example, TTreePerfStats can show you that it is bene�cial to
store meta data and payload data separately, i. e. write the meta data tree in a bulk to a �le at the end of
your job instead of writing both trees interleaved.
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CHAPTER 7

FUNCTIONS AND PARAMETER ESTIMATION

After going through the previous chapters, you already know how to use mathematical functions (class TF1),
and you got some insight into the graph (TGraphErrors) and histogram classes (TH1F) for data visualisation. In
this chapter we will add more detail to the previous approximate explanations to face the fundamental topic
of parameter estimation by �tting functions to data. For graphs and histograms, ROOT o�ers an easy-to-
use interface to perform �ts - either the �t panel of the graphical interface, or the Fit method. The class
TVirtualFitter allows access to the detailed results, and can also be used for more general tasks with user-
de�ned minimisation functions.
Very often it is necessary to study the statistical properties of analysis procedures. This is most easily achieved

by applying the analysis to many sets of simulated data (or �pseudo data�), each representing one possible version
of the true experiment. If the simulation only deals with the �nal distributions observed in data, and does not
perform a full simulation of the underlying physics and the experimental apparatus, the name �Toy Monte Carlo�
is frequently used1. Since the true values of all parameters are known in the pseudo-data, the di�erences between
the parameter estimates from the analysis procedure w. r. t. the true values can be determined, and it is also
possible to check that the analysis procedure provides correct error estimates.

7.1. Fitting Functions to Pseudo Data

In the example below, a pseudo-data set is produced and a model �tted to it.
ROOT o�ers various �t methods, all inheriting from a virtual class TVirtualFitter. The default �tter in

ROOT is MINUIT, a classical �tting package originally implemented in the FORTRAN programming language.
Recently, a C++ version, MINUIT2, has been added, and the new package FUMILI. All of these methods
determine the best-�t parameters, their errors and correlations by minimising a χ2 or a negative log-likelihood
function. A pointer to the active �tting method is accessible via an instance of class TVirtualFitter. Methods of
this class allow to set initial values or allowed ranges for the �t parameters, provide means for �xing and releasing
of parameters and o�er steering options for the numerical precision, and - most importantly - allow to retrieve
the status of the �t upon completion and the �t results. The documentation of the class TVirtualFitter gives a
list of all currently implemented methods.
The complexity level of the code below is intentionally a little higher than in the previous examples. The

graphical output of the macro is shown in Figure 7.1:

1 /* Def ine and play with TF1s */
2

3 void format_line ( TAttLine* line , int col , int sty ) {
4 line−>SetLineWidth (5 ) ;
5 line−>SetLineColor ( col ) ;
6 line−>SetLineStyle ( sty ) ; }
7

8 double the_gausppar ( double* vars , double* pars ) {
9 return pars [ 0 ] * TMath : : Gaus ( vars [ 0 ] , pars [ 1 ] , pars [ 2 ] )+
10 pars [3 ]+ pars [ 4 ] * vars [0 ]+ pars [ 5 ] * vars [ 0 ] * vars [ 0 ] ; }
11

1 �Monte Carlo� simulation means that random numbers play a role here which is as crucial as in games of pure chance in
the Casino of Monte Carlo.
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12 int macro8 ( ) {
13 gROOT−>SetStyle ("Plain" ) ;
14 gStyle−>SetOptTitle (0 ) ;
15 gStyle−>SetOptStat (0 ) ;
16 gStyle−>SetOptFit (1111) ;
17 gStyle−>SetStatX ( . 8 9 ) ; gStyle−>SetStatY ( . 8 9 ) ;
18 gStyle−>SetStatBorderSize (0 ) ;
19

20 TF1 parabola ("parabola" ,"[0]+[1]*x+[2]*x**2" , 0 , 20 ) ;
21 format_line(&parabola , kBlue , 2 ) ;
22

23 TF1 gaussian ("gaussian" ,"[0]*TMath::Gaus(x,[1],[2])" , 0 , 20 ) ;
24 format_line(&gaussian , kRed , 2 ) ;
25

26 TF1 gausppar ("gausppar" , the_gausppar ,−0 ,20 ,6) ;
27 double a=15; double b=−1.2; double c=.03;
28 double norm=4; double mean=7; double sigma=1;
29 gausppar . SetParameters ( norm , mean , sigma , a , b , c ) ;
30 gausppar . SetParNames ("Norm" ,"Mean" ,"Sigma" ,"a" ,"b" ,"c" ) ;
31 format_line(&gausppar , kBlue , 1 ) ;
32

33 TH1F histo ("histo" ,
34 "Signal plus background;X vals;Y Vals" ,
35 50 ,0 ,20) ;
36 histo . SetMarkerStyle (8 ) ;
37

38 // Fake the data
39 for ( int i=1;i<=5000;++i )
40 histo . Fill ( gausppar . GetRandom ( ) ) ;
41

42 /* Reset the parameters be f o r e the f i t and s e t
43 by eye a peak at 6 with an area o f more or l e s s 50 */
44 gausppar . SetParameter (0 , 50 ) ;
45 gausppar . SetParameter ( 1 , 6 ) ;
46 int npar=gausppar . GetNpar ( ) ;
47 for ( int ipar=2;ipar<npar;++ipar )
48 gausppar . SetParameter ( ipar , 1 ) ;
49

50 // perform f i t . . .
51 histo . Fit(&gausppar ) ;
52

53 // . . . and r e t r i e v e f i t r e s u l t s
54 TVirtualFitter *fit = TVirtualFitter : : GetFitter ( ) ; // get f i t method
55 fit−>PrintResults ( 2 , 0 . ) ; // p r i n t f i t r e s u l t s
56 // get covar iance Matrix an pr in t i t
57 TMatrixD *covMatrix = new TMatrixD ( npar , npar , fit−>GetCovarianceMatrix ( ) ) ;
58 covMatrix−>Print ( ) ;
59

60 // Set the va lue s o f the gauss ian and parabola
61 for ( int ipar=0;ipar<3;ipar++){
62 gaussian . SetParameter ( ipar , gausppar . GetParameter ( ipar ) ) ;
63 parabola . SetParameter ( ipar , gausppar . GetParameter ( ipar+3) ) ; }
64

65 histo . GetYaxis ( )−>SetRangeUser (0 ,250) ;
66 histo . DrawClone ("PE" ) ;
67 parabola . DrawClone ("Same" ) ; gaussian . DrawClone ("Same" ) ;
68 TLatex latex (2 ,220 , "#splitline{Signal Peak over}{background}" ) ;
69 latex . DrawClone ("Same" ) ;
70 return 0 ;
71 }

�le:macro8.cxx
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� Line 3-6: A simple function to ease the make-up of lines. Remember that the class TF1 inherits from
TAttLine.

� Line 8-10: De�nition of a customised function, namely a Gaussian (the �signal�) plus a parabolic function,
the �background�.

� Line 13-18: Some maquillage for the Canvas. In particular we want that the parameters of the �t appear
very clearly and nicely on the plot.

� Line 26-31: de�ne and initialise an instance of TF1.

� Line 33-40: de�ne and �ll a histogram.

� Line 42-48: for convenience, the same function as for the generation of the pseudo-data is used in the
�t; hence, we need to reset the function parameters. This part of the code is very important for each �t
procedure, as it sets the initial values of the �t.

� Line 51: A very simple command, well known by now: �t the function to the histogram.

� Line 53�58: retrieve the output from the �t Here, we simply print the �t result and access and print the
covariance matrix of the parameters.

� Line 60�end: plot the pseudo-data, the �tted function and the signal and background components at the
best-�t values.
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Figure 7.1.: Function �t to pseudo-data

7.2. Toy Monte Carlo Experiments

Let us look at a simple example of a toy experiment comparing two methods to �t a function to a histogram, the
χ2 method and a method called �binned log-likelihood �t�, both available in ROOT.
As a very simple yet powerful quantity to check the quality of the �t results, we construct for each pseudo-data

set the so-called �pull�, the di�erence of the estimated and the true value of a parameter, normalised to the
estimated error on the parameter, (pestim− ptrue)/σp. If everything is OK, the distribution of the pull values is a
standard normal distribution, i. e. a Gaussian distribution centred around zero with a standard deviation of one.
The macro performs a rather big number of toy experiments, where a histogram is repeatedly �lled with

Gaussian distributed numbers, representing the pseudo-data in this example. Each time, a �t is performed
according to the selected method, and the pull is calculated and �lled into a histogram. Here is the code:

1 /* Toy Monte Carlo example
2 check pu l l d i s t r i b u t i o n to compare ch i2 and binned log−l i k e l i h o o d methods
3 */
4 void pull ( int n_toys = 10000 ,
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5 int n_tot_entries = 100 ,
6 int nbins = 40 ,
7 bool do_chi2=true ) {
8

9 gROOT−>SetStyle ("Plain" ) ;
10

11 TString method_prefix ("Log-Likelihood " ) ;
12 if ( do_chi2 )
13 method_prefix="#chi^{2} " ;
14

15 // Create h i s t o
16 TH1F* h4 = new TH1F ( method_prefix+"h4" , method_prefix+" Random Gauss" , nbins←↩

,−4 ,4) ;
17 h4−>SetMarkerStyle (21) ;
18 h4−>SetMarkerSize ( 0 . 8 ) ;
19 h4−>SetMarkerColor ( kRed ) ;
20

21 // Histogram f o r sigma and pu l l
22 TH1F* sigma = new TH1F ( method_prefix+"sigma" , method_prefix+"sigma from gaus ←↩

fit" , 5 0 , 0 . 5 , 1 . 5 ) ;
23 TH1F* pull = new TH1F ( method_prefix+"pull" , method_prefix+"pull from gaus fit←↩

" , 50 , −4 . , 4 . ) ;
24

25 // Make n i c e canvases
26 TCanvas* c0 = new TCanvas ( method_prefix+"Gauss" , method_prefix+"Gauss"←↩

, 0 , 0 , 320 ,240) ;
27 c0−>SetGrid ( ) ;
28

29 // Make n i c e canvases
30 TCanvas* c1 = new TCanvas ( method_prefix+"Result" , method_prefix+"Sigma -←↩

Distribution" , 0 , 300 ,600 ,400) ;
31

32 c0−>cd ( ) ;
33

34 float sig , mean ;
35 for ( int i=0; i<n_toys ; i++){
36 // Reset h i s t o contents
37 h4−>Reset ( ) ;
38 // F i l l h i s t o
39 for ( int j = 0 ; j<n_tot_entries ; j++ )
40 h4−>Fill ( gRandom−>Gaus ( ) ) ;
41 // perform f i t
42 if ( do_chi2 ) h4−>Fit ("gaus" ,"q" ) ; // Chi2 f i t
43 else h4−>Fit ("gaus" ,"lq" ) ; // L ike l i hood f i t
44 // some con t r o l output on the way
45 if ( ! ( i%100) ) {
46 h4−>Draw ("EP" ) ;
47 c0−>Update ( ) ;
48 }
49 // Get sigma from f i t
50 TF1 *fitfunc = h4−>GetFunction ("gaus" ) ;
51 sig = fitfunc−>GetParameter (2 ) ;
52 mean= fitfunc−>GetParameter (1 ) ;
53 sigma−>Fill ( sig ) ;
54 pull−>Fill ( mean/sig * sqrt ( n_tot_entries ) ) ;
55 } // end o f toy MC loop
56 // p r in t r e s u l t
57 c1−>cd ( ) ;
58 pull−>Fit ("gaus" ) ;
59 pull−>Draw ("EP" ) ;
60 c1−>Update ( ) ;
61 }
62
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63 void macro9 ( ) {
64 int n_toys=10000;
65 int n_tot_entries=100;
66 int n_bins=40;
67 cout << "Performing Pull Experiment with chi2 \n" ;
68 pull ( n_toys , n_tot_entries , n_bins , true ) ;
69 cout << "Performing Pull Experiment with Log Likelihood\n" ;
70 pull ( n_toys , n_tot_entries , n_bins , false ) ;
71 }

�le: macro9.cxx

Your present knowledge of ROOT should be enough to understand all the technicalities behind the macro.
Note that the variable pull in line 54 is di�erent from the de�nition above: instead of the parameter error
on mean, the �tted standard deviation of the distribution divided by the square root of the number of entries,
sig/sqrt(n_tot_entries), is used.

� What method exhibits the better performance with the default parameters?

� What happens if you increase the number of entries per histogram by a factor of ten? Why?

7.3. Fitting in General

In the examples above, we used the simpli�ed �tting interface of ROOT, and the default minimisation functions.
In general, however, �tting tasks often require special, user-de�ned minimisation functions. This is the case
when data cannot be represented as one- or two-dimensional histograms or graphs, when errors are correlated
and covariance matrices must be taken into account, or when external constrains on some of the �t parameters
exist. The default minimiser in ROOT is MINUIT, a package that has been in use since decades. It o�ers several
minimisation methods and a large number of features accessible through the class TMinuit. A more modern,
generalised interface allowing to use other minimises also exists (see class TVirtualFitter), but still lacks some
of the original features o�ered by TMinuit.

The macro below provides a rather general example. Data is read from a �le, stored in an n-tuple for repeated
access, and an extended negative log-likelihood function is calculated and minimised with respect to the �t
parameters.

1 /*
2 Example o f a negat ive l og l i k e l i h o o d f i t ( unbinned )
3 based on the ROOT c l a s s e s TVi r tua lF i t t e r and TMinuit
4 */
5 // g l oba l v a r i a b l e s f o r t h i s macro
6 TF1 *PDF ; // p r obab i l i t y dens i ty func t i on f o r the f i t
7 TNtuple *inpdata ; //n−tup l e to hold input data
8 int NFitPar=2; // s p e c i f y number o f f i t parameters
9

10 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 //The func t i on to be minimized , c a l l e d by MINUIT, must have t h i s form .
12 void fFCN ( Int_t &npar , // number o f parameters , op t i ona l
13 double *gin , // array o f d e r i v a t i v e s w. r . t . parameters , op t i ona l
14 double &n2lL , // the func t i on value
15 double *par , // array o f parameters
16 int iflag ) // i n e r n a l f l a g
17 {
18 // c a l c u l a t e negat ive l og l i k e l i h o o d
19 n2lL=0. ;
20 // s e t parameters o f PDF
21 PDF−>SetParameters ( par [ 0 ] , par [ 1 ] ) ;
22 // c a l c u l a t e −l og L , i . e . loop over ntuple
23 float *ntrow ;
24 for ( int i=0; i < inpdata−>GetEntries ( ) ; ++i ) {
25 inpdata−>GetEntry (i ) ; ntrow=inpdata−>GetArgs ( ) ;
26 n2lL −= log ( PDF−>Eval ( ntrow [ 0 ] ) ) ;
27 }
28 n2lL *= 2 . ; //mult ip ly by two ( as common e l s ewhere in ROOT)
29 }
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30

31 // −−−−−−−−−−− main program , f i t c on t r o l
32 void negLogLfit ( ) {
33

34 // de f i n e a p r obab i l i t y dens i ty funct ion , normal ized to one !
35 PDF=new TF1 ("eplusconstPDF" ,
36 "(1.-[1])*(exp(-x/[0])-exp(-5./[0]))/[0]+[1]/(5.)" , 0 . , 5 . ) ;
37 // exponent i a l in range [ 0 , 5 . ] p lus o f f−s e t
38

39 // input data come from a f i l e and are s to r ed in an NTuple
40 inpdata=new TNtuple ("InputData" ,"InputData" ,"x" ) ;
41 // read data from f i l e and s t o r e in ntuple
42 ifstream inp ; double x ;
43 inp . open ("expob.dat" ) ;
44 while ( ! ( inp >> x )==0){inpdata−>Fill (x ) ; }
45 inp . close ( ) ;
46

47 // c r ea t e f i t t e r i n s t anc e and i n i t i a l i z e ( us ing Minuit )
48 TVirtualFitter : : SetDefaultFitter ("Minuit" ) ;
49 TFitter *fit=(TFitter *) TVirtualFitter : : Fitter ( NULL , NFitPar ) ;
50 /* the above type ca s t i s a b i t ugly − needed to gain ac c e s s to
51 TMinuit object , which i s p o s s i b l e only v ia c l a s s TFitter ) */
52

53 fit−>SetFCN ( fFCN ) ; // a s s i gn func t i on to be minimized
54

55 // s e t i n i t i a l va lue s o f parameters
56 fit−>SetParameter (0 , // parameter index
57 "tau" , // parameter name
58 1 . , // i n i t i a l va lue
59 0 . 1 , // i n i t i a l uncerta inty , 0 f i x e s parameter
60 0 , // upper l im i t − 0 : not s e t
61 0) ; // lower l im i t − 0 : not s e t
62 // # name va l e r r low up
63 fit−>SetParameter (1 , "off" , 0 . 5 , 0 . 1 , 0 , 0) ;
64

65 // run the f i t
66 double arglist [ 2 ]={5000 , 0 . 01} ; // {max . number o f func t i on c a l l s , t o l e r an c e }
67 fit−>ExecuteCommand ("MINIMIZE" , arglist , 2) ; // performs SIMPLEX + MIGRAD←↩

a lgor i thms
68 fit−>ExecuteCommand ("MINOS" , arglist , 0) ; // MINOS e r r o r eva lua t i on
69

70 // −−−− r e t r i e v e output
71 int nvpar , nparx ; double amin , edm , errdef ;
72 if ( fit−>GetStats ( amin , edm , errdef , nvpar , nparx )==3){
73 cout<<endl<<"*==* Fit converged:"

74 << " nlL="<<amin<<" edm="<<edm<<" nvpar="<<nvpar<<" nparx="<<nparx<<←↩
endl<<endl ;

75 fit−>PrintResults (4 , amin ) ; }
76 // get covar iance Matrix an pr in t i t
77 TMatrixD *covMatrix = new TMatrixD ( nparx , nparx , fit−>GetCovarianceMatrix ( ) ) ;
78 covMatrix−>Print ( ) ;
79

80 // p lo t data , f i t r e s u l t , and parameter contours
81 TCanvas *c = new TCanvas ("c" ,"contours" , 10 ,10 ,400 ,600) ;
82 c−>Divide ( 1 , 2 ) ;
83 c−>cd (1 ) ;
84 inpdata−>Draw ("x" ) ;
85 TH1F *htemp = ( TH1F *) gPad−>GetPrimitive ("htemp" ) ;
86 TH1F *ht =(TH1F *) htemp−>Clone ( ) ;
87 ht−>SetLineWidth (2 ) ;
88 ht−>SetLineColor ( kBlue ) ;
89 // PDF must be s ca l ed to take account o f # o f Ent r i e s and bin width
90 ht−>Eval ( PDF ) ; ht−>Scale ( inpdata−>GetEntries ( ) * ht−>GetBinWidth (1 ) ) ;

44



7.3. Fitting in General

91 ht−>Draw ("C SAME" ) ;
92

93 // p lo t contours
94 c−>cd (2 ) ;
95 //Get contour f o r parameter 0 ver sus parameter 1 f o r ERRDEF=4
96 fit−>SetErrorDef (4 ) ; // note 4 and not 2 !
97 TMinuit *minuit= fit−>GetMinuit ( ) ;
98 TGraph *gr2 = ( TGraph *) minuit−>Contour ( 40 , 0 , 1 ) ;
99 gr2−>SetTitle ("1#sigma and 2#sigma contours ;tau;off-set" ) ;
100 gr2−>SetFillColor (42) ;
101 gr2−>Draw ("alf" ) ;
102 //Get contour f o r parameter 0 ver sus parameter 1 f o r ERRDEF=1
103 fit−>SetErrorDef (1 ) ;
104 TGraph *gr1 = ( TGraph *) minuit−>Contour ( 40 , 0 , 1 ) ;
105 gr1−>SetFillColor (38) ;
106 gr1−>Draw ("lf" ) ;
107

108 // c l ean up
109 delete inpdata ; delete PDF ;
110 }

�le: negLogLfit.cxx

You already know most of the code fragments used above. The new part is the user-de�ned minimisation function
fFCN, made known to the minimiser via the method SetFCN(void *f).

� Lines 11�29: de�nition of function to be minimised; the parameter list (number of parameters, eventually
analytically calculated derivatives w.r.t. the parameters, the return value of the function, the array of
parameters, and a control �ag) is �xed, as it is expected by the minimisation package. This function is
repeatedly called by the minimisation package with di�erent values of the function parameters.

� Lines 35�63: initialisation of the �t: de�nition of a probability density function as a TF1, creation and �lling
of an n-tuple containing the data read from a �le, and the de�nition of the �t parameters and their initial
values and ranges. The minimiser is instantiated in lines 48 and 49.

� Lines 66�68 execute the �t, �rst a general minimisation, and then an error analysis using the MINOS method.

� Lines 70�106: retrieval of �t results after completion of the �t; this part needs access to the data and serves
for a comparison of the �t result with the data - here, we show the �tted function on top of a histogram of
the input data. Note that the PDF of a likelihood �t needs to be scaled to take into account the bin width
of the histogram.

� Line 63�91: The function printFit illustrates how to access the best-�t values of the parameters and their
errors and correlations from an object of TMinuit. Here, they are written to standard output; it is easy to
redirect this into a �le or some other data structure, if required.

� Code starting at line 93 illustrates how contour lines of two �t parameters of one and two σ are produced.
The correlation of the two variables tau and off-set is clearly visible (Figure 7.2).
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CHAPTER 8

ROOT IN PYTHON

ROOT also o�ers an interface named PyRoot, see http://root.cern.ch/drupal/content/pyroot, to the Python
programming language. Python is used in a wide variety of application areas and one of the most used scripting
languages today. With its very high-level data types with dynamic typing, its intuitive object orientation and the
clear and e�cient syntax Python is very suited to control even complicated analysis work �ows. With the help
of PyROOT it becomes possible to combine the power of a scripting language with ROOT methods.
Introductory material toPython is available from many sources in the Internet, see e. g. http://docs.python.org/.

There are additional very powerful Python packages, like numpy , providing high-level mathematical functions
and handling of large multi-dimensional matrices, or matplotlib, providing plotting tools for publication-quality
graphics. PyROOT additionally adds to this access to the vast capabilities of the ROOT universe.
To use ROOT from Python, the environment variable PYTHONPATH must include the path to the library path,

$ROOTSYS/lib, of a ROOT version with Python support. Then, PyROOT provides direct interactions with
ROOT classes from Python by importing ROOT.py into Python scrips via the command import ROOT; it is
also possible to import only selected classes from ROOT, e. g. from ROOT import TF1.

8.1. PyROOT

The access to ROOT classes and their methods in PyROOT is almost identical to C++ macros, except for the
special language features of Python, most importantly dynamic type declaration at the time of assignment.
Coming back to our �rst example, simply plotting a function in ROOT, the following C++ code:

1 TF1 *f1 = new TF1 ("f2" ,"[0]*sin([1]*x)/x" , 0 . , 1 0 . ) ;
2 f1−>SetParameter ( 0 , 1 ) ;
3 f1−>SetParameter ( 1 , 1 ) ;
4 f1−>Draw ( ) ;

in Python becomes:

1 import ROOT

2 f1 = ROOT . TF1 ("f2" ,"[0]*sin([1]*x)/x" , 0 . , 1 0 . )
3 f1 . SetParameter ( 0 , 1 )
4 f1 . SetParameter ( 1 , 1 )
5 f1 . Draw ( ) ;

A slightly more advanced example hands over data de�ned in the macro to the ROOT class TGraphErrors.
Note that a Python array can be used to pass data between Python and ROOT. The �rst line in the Python
script allows it to be executed directly from the operating system, without the need to start the script from
python or the highly recommended powerful interactive shell ipython. The last line in the python script is there
to allow you to have a look at the graphical output in the ROOT canvas before it disappears upon termination
of the script.
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Here is the C++ version:

1 void TGraphFit ( ) {
2 //
3 //Draw a graph with e r r o r bars and f i t a func t i on to i t
4 //
5 gStyle−>SetOptFit (111) ; // superimpose f i t r e s u l t s
6 // make n i c e Canvas
7 TCanvas *c1 = new TCanvas ("c1" ,"Daten" , 200 ,10 ,700 ,500) ;
8 c1−>SetGrid ( ) ;
9 // de f i n e some data po in t s . . .
10 const Int_t n = 10 ;
11 Float_t x [ n ] = {−0.22 , 0 . 1 , 0 . 25 , 0 . 35 , 0 . 5 , 0 . 61 , 0 . 7 , 0 . 85 , 0 . 89 , 1 . 1 } ;
12 Float_t y [ n ] = {0 . 7 , 2 . 9 , 5 . 6 , 7 . 4 , 9 . , 9 . 6 , 8 . 7 , 6 . 3 , 4 . 5 , 1 . 1 } ;
13 Float_t ey [ n ] = { . 8 , . 7 , . 6 , . 5 , . 4 , . 4 , . 5 , . 6 , . 7 , . 8 } ;
14 Float_t ex [ n ] = { . 0 5 , . 1 , . 0 7 , . 0 7 , . 0 4 , . 0 5 , . 0 6 , . 0 7 , . 0 8 , . 0 5 } ;
15 // and hand over to TGraphErros ob j e c t
16 TGraphErrors *gr = new TGraphErrors (n , x , y , ex , ey ) ;
17 gr−>SetTitle ("TGraphErrors with Fit" ) ;
18 gr−>Draw ("AP" ) ;
19 // now perform a f i t ( with e r r o r s in x and y ! )
20 gr−>Fit ("gaus" ) ;
21 c1−>Update ( ) ;
22 } �le: TGraphFit.C

In Python it looks like this:

1 # ! / usr / bin /env python
2 #

3 # Draw a graph with error bars and f i t a func t i on to i t
4 #

5 from ROOT import gStyle , TCanvas , TGraphErrors

6 from array import array

7 gStyle . SetOptFit (111) # superimpose fit results

8 c1=TCanvas ("c1" ,"Data" , 200 ,10 ,700 ,500) #make nice Canvas

9 c1 . SetGrid ( )
10 #define some data po in t s . . .
11 x = array ( 'f' , (−0.22 , 0 . 1 , 0 . 25 , 0 . 35 , 0 . 5 , 0 . 61 , 0 . 7 , 0 . 85 , 0 . 89 , 1 . 1 ) )
12 y = array ( 'f' , ( 0 . 7 , 2 . 9 , 5 . 6 , 7 . 4 , 9 . , 9 . 6 , 8 . 7 , 6 . 3 , 4 . 5 , 1 . 1 ) )
13 ey = array ( 'f' , ( . 8 , . 7 , . 6 , . 5 , . 4 , . 4 , . 5 , . 6 , . 7 , . 8 ) )
14 ex = array ( 'f' , ( . 0 5 , . 1 , . 0 7 , . 0 7 , . 0 4 , . 0 5 , . 0 6 , . 0 7 , . 0 8 , . 0 5 ) )
15 nPoints=len (x )
16 # . . . and hand over to TGraphErros ob j e c t
17 gr=TGraphErrors ( nPoints , x , y , ex , ey )
18 gr . SetTitle ("TGraphErrors with Fit" )
19 gr . Draw ("AP" ) ;
20 gr . Fit ("gaus" )
21 c1 . Update ( )
22 # r eque s t user ac t i on be f o r e ending ( and d e l e t i n g graph i c s window)
23 raw_input ( 'Press <ret> to end -> ' ) �le: TGraphFit.py

Comparing the C++ and Python versions in these two examples, it now should be clear how easy it is to
convert any ROOT Macro in C++ to a Python version.
As another example, let us revisit macro3 from Chapter 4. A straight-forward Python version relying on the

ROOT class TMath:

1 # ! / usr / bin /env python
2 # ( the f i r s t line a l l ows execut ion d i r e c t l y from the l i nux s h e l l )
3 #

4 #−−−−−−−− macro3 as python s c r i p t −−−−−−−−−−−−−−−−−−−−−−−−−−−−
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5 # Author : G. Quast Oct . 2013
6 # dependenc ies : PYTHON v2 . 7 , pyroot
7 # l a s t modi f i ed :
8 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 #

10 # *** Bui lds a po la r graph in a square Canvas
11

12 from ROOT import TCanvas , TGraphPolar , TMath
13 from array import array

14

15 rmin=0.
16 rmax=6.*TMath . Pi ( )
17 npoints=300
18 r=array ( 'd' , npoints * [ 0 . ] )
19 theta=array ( 'd' , npoints * [ 0 . ] )
20 e=array ( 'd' , npoints * [ 0 . ] )
21 for ipt in range (0 , npoints ) :
22 r [ ipt ] = ipt *( rmax−rmin ) /( npoints−1.)+rmin
23 theta [ ipt ]=TMath . Sin (r [ ipt ] )
24 c=TCanvas ("myCanvas" ,"myCanvas" , 600 ,600)
25 grP1=TGraphPolar ( npoints , r , theta , e , e )
26 grP1 . SetTitle ("A Fan" )
27 grP1 . SetLineWidth (3 )
28 grP1 . SetLineColor (2 )
29 grP1 . Draw ("AOL" )
30

31 raw_input ( 'Press <ret> to end -> ' ) �le: macro3.py

8.1.1. More Python- less ROOT

You may have noticed already that there are some Python modules providing functionality similar to ROOT
classes, which �t more seamlessly into your Python code.
A more �pythonic� version of the above macro3 would use a replacement of the ROOT class TMath for the

provisoining of data to TGraphPolar. With the math package, the part of the code becomes

1 import math

2 from array import array

3 from ROOT import TCanvas , TGraphPolar
4 . . .
5 ipt=range (0 , npoints )
6 r=array ( 'd' , map ( lambda x : x*( rmax−rmin ) /( npoints−1.)+rmin , ipt ) )
7 theta=array ( 'd' , map ( math . sin , r ) )
8 e=array ( 'd' , npoints * [ 0 . ] )
9 . . .

Using the very powerful package numpy and the built-in functions to handle numerical arrays makes the Python
code more compact and readable:

1 import numpy as np

2 from ROOT import TCanvas , TGraphPolar
3 . . .
4 r=np . linspace ( rmin , rmax , npoints )
5 theta=np . sin (r )
6 e=np . zeros ( npoints )
7 . . . �le: macro3_numpy.py

Customised Binning

This example combines comfortable handling of arrays in Python to de�ne variable bin sizes of a ROOT his-
togram. All we need to know is the interface of the relevant ROOT class and its methods (from the ROOT
documentation):
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1 TH1F ( const char* name , const char* title , Int_t nbinsx , const Double_t* xbins )

Here is the Python code:

1 import ROOT

2 from array import array

3 arrBins = array ( 'd' , ( 1 , 4 , 9 , 16 ) ) # array of bin edges

4 histo = ROOT . TH1F ("hist" , "hist" , len ( arrBins )−1, arrBins )
5 # f i l l i t with equa l l y spaced numbers
6 for i in range (1 , 16 ) :
7 histo . Fill (i )
8 histo . Draw ( ) �le: histrogram.py

A �t example in Python using TMinuit from ROOT

One may even wish to go one step further and do most of the implementation directly in Python, while using
only some ROOT classes. In the example below, the ROOT class TMinuit is used as the minimizer in a χ2-�t.
Data are provided as Python arrays, the function to be �tted and the χ2-function are de�ned in Python and
iteratively called by Minuit. The results are extracted to Python objects, and plotting is done via the very
powerful and versatile python package matplotlib.

1 # ! / usr / bin /env python
2 #

3 #−−−−−−−− python s c r i p t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 # EXAMPLE showing how to s e t up a f i t with MINUIT using pyroot
5 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 # Author : G. Quast May 2013
7 # dependenc ies : PYTHON v2 . 7 , pyroot , numpy , matp lot l ib , array
8 # l a s t modi f i ed : Oct . 6 , 2013
9 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 #

11 from ROOT import TMinuit , Double , Long
12 import numpy as np

13 from array import array as arr

14 import matplotlib . pyplot as plt

15

16 # −−> define some data
17 ax = arr ( 'f' , ( ←↩

0 . 0 5 , 0 . 3 6 , 0 . 6 8 , 0 . 8 0 , 1 . 0 9 , 1 . 4 6 , 1 . 7 1 , 1 . 8 3 , 2 . 4 4 , 2 . 0 9 , 3 . 7 2 , 4 . 3 6 , 4 . 6 0 ) )
18 ay = arr ( 'f' , ( ←↩

0 . 3 5 , 0 . 2 6 , 0 . 5 2 , 0 . 4 4 , 0 . 4 8 , 0 . 5 5 , 0 . 6 6 , 0 . 4 8 , 0 . 7 5 , 0 . 7 0 , 0 . 7 5 , 0 . 8 0 , 0 . 9 0 ) )
19 ey = arr ( 'f' , ( ←↩

0 . 0 6 , 0 . 0 7 , 0 . 0 5 , 0 . 0 5 , 0 . 0 7 , 0 . 0 7 , 0 . 0 9 , 0 . 1 0 , 0 . 1 1 , 0 . 1 0 , 0 . 1 1 , 0 . 1 2 , 0 . 1 0 ) )
20 nPoints = len ( ax )
21

22 # −−> Set parameters and f unc t i on to f i t
23 # a l i s t with convenient names ,
24 name = [ "a" ,"m" ,"b" ]
25 # the i n i t i a l values ,
26 vstart = arr ( 'd' , ( 1 . 0 , 1 . 0 , 1 . 0 ) )
27 # and the i n i t i a l s tep s i z e
28 step = arr ( 'd' , ( 0 . 0 01 , 0 . 001 , 0 . 001 ) )
29 npar =len ( name )
30 #

31 # this d e f i n e s the func t i on we want to f i t :
32 def fitfunc (x , npar , apar ) :
33 a = apar [ 0 ]
34 m = apar [ 1 ]
35 b = apar [ 2 ]
36 f = Double (0 )
37 f=a*x*x + m*x + b

38 return f

39 #
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40

41 # −−> this i s the d e f i n i t i o n o f the func t i on to minimize , here a ch i^2− f unc t i on
42 def calcChi2 ( npar , apar ) :
43 chisq = 0.0
44 for i in range (0 , nPoints ) :
45 x = ax [ i ]
46 curFuncV = fitfunc (x , npar , apar )
47 curYV = ay [ i ]
48 curYE = ey [ i ]
49 chisq += ( ( curYV − curFuncV ) * ( curYV − curFuncV ) ) / ( curYE*curYE )
50 return chisq

51

52 #−−− the func t i on fcn − c a l l e d by MINUIT repea t ed ly with vary ing parameters
53 # NOTE: the func t i on name i s s e t v ia TMinuit . SetFCN
54 def fcn ( npar , deriv , f , apar , iflag ) :
55 """ meaning of parametrs:

56 npar: number of parameters

57 deriv: aray of derivatives df/dp_i (x), optional

58 f: value of function to be minimised (typically chi2 or negLogL)

59 apar: the array of parameters

60 iflag: internal flag: 1 at first call , 3 at the last , 4 during ←↩
minimisation

61 """

62 f [ 0 ] = calcChi2 ( npar , apar )
63 #

64

65 # −−> se t up MINUIT
66 myMinuit = TMinuit ( npar ) # initialize TMinuit with maximum of npar parameters

67 myMinuit . SetFCN ( fcn ) # set function to minimize

68 arglist = arr ( 'd' , 2 * [ 0 . 0 1 ] ) # set error definition

69 ierflg = Long (0 )
70 arglist [ 0 ] = 1 . # 1 sigma is Delta chi^2 = 1
71 myMinuit . mnexcm ("SET ERR" , arglist , 1 , ierflg )
72

73 # −−> Set s t a r t i n g va lue s and s tep s i z e s for parameters
74 for i in range (0 , npar ) : # Define the parameters for the fit

75 myMinuit . mnparm (i , name [ i ] , vstart [ i ] , step [ i ] , 0 ,0 , ierflg )
76 arglist [ 0 ] = 6000 # Number of calls to FCN before giving up .
77 arglist [ 1 ] = 0 .3 # Tolerance

78 myMinuit . mnexcm ("MIGRAD" , arglist , 2 , ierflg ) # execute the minimisation

79

80 # −−> check TMinuit s t a tu s
81 amin , edm , errdef = Double ( 0 . ) , Double ( 0 . ) , Double ( 0 . )
82 nvpar , nparx , icstat = Long (0 ) , Long (0 ) , Long (0 )
83 myMinuit . mnstat ( amin , edm , errdef , nvpar , nparx , icstat )
84 # meaning o f parameters :
85 # amin : va lue o f f cn at minimum (=ch i ^2)
86 # edm : est imated d i s t ance to mimimum
87 # e r r d e f : de l ta_fcn used to define 1 sigma e r r o r s
88 # nvpar : number o f v a r i a b l e parameters
89 # nparx : t o t a l number o f parameters
90 # i c s t a t : s t a tu s o f error matrix :
91 # 3=accurate
92 # 2=fo r c ed pos . de f
93 # 1= approximative
94 # 0=not c a l c u l a t ed
95 myMinuit . mnprin (3 , amin ) # print−out by Minuit

96

97 # −−> get r e s u l t s from MINUIT
98 finalPar = [ ]
99 finalParErr = [ ]
100 p , pe = Double (0 ) , Double (0 )
101 for i in range (0 , npar ) :
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102 myMinuit . GetParameter (i , p , pe ) # retrieve parameters and errors

103 finalPar . append ( float (p ) )
104 finalParErr . append ( float ( pe ) )
105 # get covar i ance matrix
106 buf = arr ( 'd' , npar*npar * [ 0 . ] )
107 myMinuit . mnemat ( buf , npar ) # retrieve error matrix

108 emat=np . array ( buf ) . reshape ( npar , npar )
109

110 # −−> provide formatted output o f r e s u l t s
111 print "\n"

112 print "*==* MINUIT fit completed:"

113 print ' fcn@minimum = %.3g' %(amin ) ," error code =" , ierflg , " status =" , icstat
114 print " Results: \t value error corr. mat."

115 for i in range (0 , npar ) :
116 print ' %s: \t%10.3e +/- %.1e '%(name [ i ] , finalPar [ i ] , finalParErr [ i ] ) ,
117 for j in range (0 , i ) :
118 print '%+.3g ' %(emat [ i ] [ j ] / np . sqrt ( emat [ i ] [ i ] ) /np . sqrt ( emat [ j ] [ j ] ) ) ,
119 print ' '

120

121 # −−> plo t r e s u l t using matp lo t l i b
122 plt . figure ( )
123 plt . errorbar (ax , ay , yerr=ey , fmt="o" , label='data' ) # the data

124 x=np . arange ( ax [ 0 ] , ax [ nPoints−1] , abs ( ( ax [ nPoints−1]−ax [ 0 ] ) /100 . ) )
125 y=fitfunc (x , npar , finalPar ) # function at best−fit−point
126 plt . title ("Fit Result" )
127 plt . grid ( )
128 plt . plot (x , y , label='fit function' )
129 plt . legend ( loc=0)
130 plt . show ( ) �le: fitting-example.py
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CONCLUDING REMARKS

This is the end of our guided tour through ROOT for beginners. There is still a lot coming to mind to be said, but
by now you are experienced enough to use the ROOT documentation, most importantly the ROOT home page

and the ROOT reference guide with the documentation of all ROOT classes, or the ROOT users guide.
A very useful way for you to continue exploring ROOT is to study the examples in the sub-directory tutorials/

of any ROOT installation.
There are some powerful additions to ROOT, e. g. packages named RooFit and RooStats providing a frame

work for model building, �tting and statistical analysis. The ROOT class TMVA o�ers multi-variate analysis
tools including an arti�cial neural network and many other advanced methods for classi�cation problems. The
remarkable ability of ROOT to handle large data volumes was already mentioned in this guide, implemented
through the class TTree. But there is still much more for you to explore ...

End of this guide ... but hopefully not of your interaction with ROOT !
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APPENDIX A

ROOFILAB

A.1. Root-based tool for �tting: RooFiLab

Although simple in principle, the fomulation of a problem in C++ and the complex environment of the ROOT
framework pose a relativly high hurdle to overcome for the beginner. A simpli�cation and extension of avialable
standard methods for function �tting to one-dimesional distributions is the package RooFiLab (�Root Fits for
Laboratory courses�). Based on ROOT, this program developed at KIT (Karlsruhe Institute of Technology,
URL http://www-ekp.physik.uni-Karlsruhe.de/ quast/RooFiLab) o�ers an easy-to-use, structured graphical user
interface and an ASCII input format for typical use cases in student laboratory courses. Correlated erros on
both the x- and y-coordinate are also supported. In the most general case, covariance matrices of the x- and
y-coordinates can be speci�ed. There is also a simpli�ed possibility for special cases of fully correlated absolute
or relative errors on the measurements. An example �t is shown in FigureA.1.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Graph 1
Function

X Axis

Y
 A

xi
s

RooFiLab

Title of Graphic

Figure A.1.: Example of a straight-line �t with independent and correlated (systematic) errors on both
the x- and y-directions.

High �exibility in the de�nition of the model is achieved by direct usage of the ROOT interpreter, which has
been extended to use named parameters instead of parameter numbers. In addition, more complex models can
be implemented as C or C++ functions, wich are compiled and linked at run-time.

The elements of the gra�cal user interface (see FigureA.2) and control via the input �le are described in the
manual (�le RooFiLab.pdf in the subdirectory RooFiLab/doc, in German language). A brief overview is given
here.
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A. RooFiLab

A.1.1. Installation

RooFiLab is availalbe, fully installed along with ROOT in a virtual machine1 based on the Ubuntu distribution.
The compressed disk image is most easily imported into the freely available virtualisation tool VirtualBox for the
most common Linux distributions, for Windows versions XP and later and for Macintosh operating systems.

The program code of RooFiLab is distributed from the URL given above as a compressed archive RooFiLab.tar.gz.
After unpacking, the installation under Linux proceeds by executing make; the �le Makefile contains all necces-
sary instructions. A ROOT installation must be present and initialized, i.e. the environment variable PATH must
contain the path to the ROOT executable and LD_LIBRARY_PATH must point to the ROOT libraries.

A.1.2. Usage of RooFiLab

RooFiLab o�ers two windows: one is used for control, the other is for graphics output. The control window, as
depicted in FigureA.2, is separated into four Shutters, o�ering the following actions

� data input and de�nition of functions and parameters

� �xing of start values and �Fit-by-Eye�

� execution of the �t, eventually iteratively by �xing some of the free parameters

� options for graphical output

Figure A.2.: The gra�cal user interface of RooFiLab.

During execution, ROOT functionality is also available. Of particular importance are procedures for interactive
manilulations of the output graphcis and their export. As usual, the context menu is opened by right-klicking of
the components of the graph or via the Toolbar at the top of the graphics window.

In addition to interactive usage of the controls of the graphical interface, �ts can also be executed automatically
by speci�cation of control options in the input �le de�nig the data inputs. After an interactive �t, options can
thus be archived in the input �le and then be used for repeated, automated �ts.

A.2. Examples with RooFiLab

The following subsections show simple examples illustrating the usage of RooFiLab and may serve as the basis
for own applications.

1http://www-ekp.physik.uni-karlsruhe.de/~quast/VMroot
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A.2. Examples with RooFiLab

A.2.1. Straight-line �t with correlated erros in x and y

This RooFiLab input �le contains several control lines and documents the available options. Control lines are
comment lines starting with #! followed by a keyword. The control command #! dofit = true triggers an
automated �t de�ned by the input data and the control options in the �le.

# straight-line fit to data with errors in x and y, incl. simple correlations

# ===========================================================================

#! staterrors = xy

#! systerrors = 0.02 0.04 rel rel

#! fit = "m*x+b" "m,b" "roofilab.fit"

#! initialvalues = 0.015 0

### command to execute fit

#! dofit = true

### show systematic erros as second error bar

#! secondgraph = syst

#! title = "Fit to data with correlated errors"

#! graphlegend = "Data" bottom right

#! functionlegend = "Model" bottom right

#! xaxis = "X-values"

#! yaxis = "Y-values or f(x)"

#! markersettings = 1.5 4 24

#! functionsettings = 1 3 2

#! grid = y

#! logscale = 0

#! savegraphic = "roofilab.eps"

# =================Eingabe der Daten ===================================

# values in up to four columns separated by whitespaces

# (except for linebreaks or linefeeds)

# x y ex ey

4.05 0.035 0.12 0.006

4.36 0.056 0.13 0.007

4.68 0.052 0.09 0.005

4.80 0.044 0.09 0.005

5.09 0.048 0.14 0.007

5.46 0.055 0.14 0.007

5.71 0.066 0.17 0.009

5.83 0.048 0.21 0.011

6.44 0.075 0.22 0.011

8.09 0.070 0.28 0.014

8.72 0.097 0.32 0.016

9.36 0.080 0.37 0.018

9.60 0.120 0.39 0.020
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A. RooFiLab

A.2.2. Averaging correlated measurements

Averaging correlated measurements formally corresponds to a �t of a constant. The measurements in this example
are the individual measurements of the mass of the Z Boson at the electron-positron collider LEP at CERN. The
common error of 1.7MeV results from uncertainties in the centre-of-mass energy of the accelerator. The line
#! systerrors = 0 0.0017 abs abs speci�es this common aboslute error on each measurement.

# Mesurements of Z-Mass by AELPH, DELPHI, L3 and OPAL

# ---------------------------------------------------

# graphics options

#! markersettings = 1.5 4 24

#! functionsettings = 1 3 3

#! grid = y

# logscale = 0

# savegraphic = "roofilab.eps"

# saverfl = "data.rfl"

# plot lables

#! title = "averaging measurements"

#! xaxis = "n"

#! yaxis = "Mass of Z boson"

#! graphlegend = "Z mass measurements" bottom right

#! functionlegend = "average Z mass" bottom right

# fit control

#! fit = "m" "m" "average.fit"

#! initialvalues = 91.2

#! dofit = true

#! staterrors = y # control-command

#! systerrors = 0 0.0017 abs abs

# the data, LEP electroweak working group, CERN 2000

1 91.1893 0.0031

2 91.1863 0.0028

3 91.1894 0.0030

4 91.1853 0.0029
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A.2. Examples with RooFiLab

A.2.3. Fit of a polynomyal to data with Poisson errors

This example show the �t of a fourth-order polynomial to data with uncorrelated, Poissonian errors, i. e. erros
given by the square root of the data points. Although the errors are non-Gaussion in this case, a χ2-�t often
results in acceptable results. With the option #! fitmethod = likelihood a likelihood method can be selected.
In this case, the statistical errors are ignored and may be ommitted. For technical reasons, the x-values must be
equi-distant in this case (due to usage of ROOT-class TH1).

##########################################################

# example: fit of an angular distribution

##########################################################

# plot commands

#! title = "angular distribution "

#! xaxis = "cos(theta)"

#! yaxis = "number of events"

#! graphlegend ="observed rate " top left

#! functionlegend ="fitted cos(theta) distribution " top left

#! markersettings = 1.5 2 5

#! functionsettings = 1 3 3

# fit control

#! fit = "a4*x^4+a3*x^3+a2*x^2+a1*x+a0" "a0,a1,a2,a3,a4" "v_vs_cost.fit"

#! dofit = true

# fitmethod = likelihood # uncomment to perform a Log Likelihood fit

# definition of data

#! staterrors = y

# cost N sqrt(N)

-0.9 81. 9.0

-0.7 50. 7.1

-0.5 35. 5.9

-0.3 27. 5.2

-0.1 26. 5.1

0.1 60. 7.7

0.3 106. 10.3

0.5 189. 13.7

0.7 318. 17.8

0.9 520. 22.8
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A. RooFiLab

A.2.4. Correlated measurements with full covariance matrix

As a more complex example the averaging procedure for measurements of the W Boson mass is shown here.
Measurements of the four LEP experiments in two �nal states have di�erent systematic errors, which are correlated
among groups of measurements. These are speci�ed in the full 8×8 covariance matrix, which is composed of 4×4
block matrices. The control line #! covmatrices = 0 wmass.cov . speci�es that not covariance matrix in x
and the matrix wmass.cov are to be used in the �t.

# Mesurements of W-Mass by AELPH, DELPHI, L3 and OPAL

# ---------------------------------------------------

# ### example of fit with covariance matrix#

# --- graphics options

#! markersettings = 1.5 4 24

#! functionsettings = 1 3 3

#! grid = y

#! title = "averaging measurements"

#! xaxis = "n"

#! yaxis = "Mass of W boson"

#! graphlegend = "W mass measurements" top right

#! functionlegend = "average W mass" top right

# --- fit control

#! fit = "m" "m" "Wmittelung.fit"

#! initialvalues = 80.5

#! dofit = true

# --- the data (LEP electroweak working group, CERN 2006)

#! staterrors = 0

#! systerrors = 0 0 abs abs

#! covmatrices = 0 wmass.cov

1 80.429 0.059 # qqlv ALEPH

2 80.340 0.076 # qqlv DELPHI

3 80.213 0.071 # qqlv L3

4 80.449 0.062 # qqlv OPAL

5 80.475 0.082 # qqqq ALEPH

6 80.310 0.102 # qqqq DELPHI

7 80.323 0.091 # qqqq L3

8 80.353 0.081 # qqqq OPAL

//file wmass.cov

0.003481 0.000316 0.000316 0.000316 0.000383 0.000383 0.000383 0.000383

0.000316 0.005776 0.000316 0.000316 0.000383 0.000383 0.000383 0.000383

0.000316 0.000316 0.005041 0.000316 0.000383 0.000383 0.000383 0.000383

0.000316 0.000316 0.000316 0.003844 0.000383 0.000383 0.000383 0.000383

0.000383 0.000383 0.000383 0.000383 0.006724 0.001741 0.001741 0.001741

0.000383 0.000383 0.000383 0.000383 0.001741 0.010404 0.001741 0.001741

0.000383 0.000383 0.000383 0.000383 0.001741 0.001741 0.008281 0.001741

0.000383 0.000383 0.000383 0.000383 0.001741 0.001741 0.001741 0.006561
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APPENDIX B

MARKERS, COLOURS, SYMBOLS

B.1. Colour Wheel and Graph Markers
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Figure B.1.: The wheel shows all available colours in ROOT and the codes to specify them and The
markers provided by ROOT.

Table B.1.: Alternative symbols to select the ROOT markers for graphs.

Integer Description Literal Integer Description Literal

1 dot kDot 21 full square kFullSquare
2 + kPlus 22 full triangle up kFullTriangleUp
3 * kStar 23 full triangle down kFullTriangleDown
4 o kCircle 24 open circle kOpenCircle
5 x kMultiply 25 open square kOpenSquare
6 small dot kFullDotSmall 26 open triangle up kOpenTriangleUp
7 medium dot kFullDotMedium 27 open diamond kOpenDiamond
8 large scalable dot kFullDotLarge 28 open cross kOpenCross
20 full circle kFullCircle 29 open star kOpenStar

61



B. Markers, Colours, Symbols

B.2. Lines and Arrows
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"<|----"

"<|----|>"
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Figure B.2.: The arrows styles available in ROOT.

B.3. Latex Symbols

♣ #club

℘ #voidn

≤ #leq

≈ #approx

∈ #in

⊃ #supset

∩ #cap

 #ocopyright

 #trademark

× #times

• #bullet

ƒ #voidb

″ #doublequote

 #lbar

 #arcbottom

↓ #downarrow

↔ #leftrightarrow

⇓ #Downarrow

⇔ #Leftrightarrow

 #void8

h #hbar

♦ #diamond

ℵ #aleph

≥ #geq

≠ #neq

∉ #notin

⊆ #subseteq

∪ #cup

 #copyright

 #void3

÷ #divide

° #circ

∞ #infty

∠ #angle

 #cbar

 #arctop

← #leftarrow

⊗ #otimes

⇐ #Leftarrow

∏ #prod

#Box

#parallel

♥ #heart

ℑ #Jgothic

〈 #LT

≡ #equiv

⊂ #subset

⊇ #supseteq

∧ #wedge

 #oright

Å #AA

± #pm

… #3dots

∇ #nabla

↵ #downleftarrow

 #topbar

 #arcbar

↑ #uparrow

⊕ #oplus

⇑ #Uparrow

∑ #sum

#perp

♠ #spade

ℜ #Rgothic

〉 #GT

∝ #propto

⊄ #notsubset

∅ #oslash

∨ #vee

 #void1

å #aa

⁄ #/

⋅ #upoint

∂ #partial

¬ #corner

 #ltbar

 #bottombar

→ #rightarrow

√ #surd

⇒ #Rightarrow

∫ #int

#odot

Lower case Upper case Variations

alpha : α

beta : β

gamma : γ

delta : δ

epsilon : ∈

zeta : ζ

eta : η

theta : θ

iota : ι

kappa : κ

lambda : λ

mu : µ

nu : ν

xi : ξ

omicron : ο

pi : π

rho : ρ

sigma : σ

tau : τ

upsilon : υ

phi : φ

chi : χ

psi : ψ

omega : ω

Alpha : Α

Beta : Β

Gamma : Γ

Delta : ∆

Epsilon : Ε

Zeta : Ζ

Eta : Η

Theta : Θ

Iota : Ι

Kappa : Κ

Lambda : Λ

Mu : Μ

Nu : Ν

Xi : Ξ

Omicron : Ο

Pi : Π

Rho : Ρ

Sigma : Σ

Tau : Τ

Upsilon : Υ

Phi : Φ

Chi : Χ

Psi : Ψ

Omega : Ω

varepsilon : ε

vartheta : ϑ

varsigma : ς

varUpsilon : ϒ

varphi : ϕ

varomega : ϖ

Figure B.3.: The main Latex symbols that can be interpreted by the TLatex class.
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APPENDIX C

MOST RELEVANT CLASSES AND THEIR METHODS

This list of classes and methods shows the most relevant ones, which have been considered in this guide. It is an
excerpt from the ROOT class reference guide.

TGraphErrors: the graph class with error bars
create Graph frm �le TGraphErrors(const char* filename, const char* format = "%lg %lg %lg %lg", Option_t* option = "")

create graph fom C-arrays TGraphErrors(Int_t n, const Float_t* x, const Float_t* y, const Float_t* ex = 0, const Float_t* ey = 0)

create graph from histogram TGraphErrors(const TH1* h)

�t a function .Fit(TF1* f1, Option_t* option = "", Option_t* goption = "", Axis_t xmin = 0, Axis_t xmax = 0)

.Fit(const char* formula, Option_t* option = "", Option_t* goption = "", Axis_t xmin = 0, Axis_t xmax = 0)

draw .Draw("AP") and .DrawClone("AP")

draw options methods of classes TGraph, TGraphPainter

TH1F: the histogram class with �oat bin contents
create (�book�) histogram TH1F(const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup)

store also squared weights .Sumw2()

�ll a value .Fill(Double_t x)

�ll with weight .Fill(Double_t x, Double_t w)

set bin content .SetBinContent(Int_t bin, Double_t content)

get bin content Double_t .GetBinContent(Int_t bin) const

�ll with random numbers .FillRandom(const char* fname, Int_t ntimes)

clear .Reset()

copy to C-array Float_t* .GetArray()

set maximum on y-axis .SetMaximum(Double_t ymax)

set minimum on y-axix .SetMinimum(Double_t ymin)

get mean Double_t GetMean(1)

get RMS Double_t GetRMS(1)

draw .Draw(Option_t* option = "")

useful draw options "SAME" "E" "P"
see documentation of class THistPainter

TH2F: 2-dimensional histogram class with �oat bin contents
book TH2F(const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup, Int_t nbinsy, Double_t ylow, Double_t yup)

�ll Fill(Double_t x, Double_t y)

�ll with weight Fill(Double_t x, Double_t y, Double_t w)

get mean along axis i Double_t GetMean(i)

get RMS along axis i Double_t GetRMS(i)

get covariance Double_t GetCovariance()

get correlation Double_t GetCorrelationFactor()

draw .Draw(Option_t* option = "") and .DrawClone

useful draw options "" "SAME" "BOX" "COL" "LEGO" "SURF"
see documentation of class THistPainter

TPro�le: "pro�le representation" for 2-dim histograms
book pro�le histogram TProfile(const char* name,const char* title,Int_t nbinsx,Double_t xlow,Double_t xup,Double_t ylow,Double_t yup,Option_t* option = "")

�ll a value .Fill(Double_t x)

�ll with weight .Fill(Double_t x, Double_t w)

draw .Draw() and .DrawClone()

TF1: the mathematical function
de�ne function in TFormula syntax TF1(const char* name, const char* formula, Double_t xmin = 0, Double_t xmax = 1)

prede�ned functions "gaus" "expo" "pol0" ... "pol9" "landau"
de�ne function via pointer TF1(const char* name, void* fcn, Double_t xmin, Double_t xmax, Int_t npar)

evaluate at x .Eval(Double_t x)

calculate derivative Double_t .Derivative(Double_t x)

calculate integral a to b Double_t .Integral(Double_t a, Double_t b)

get random number Double_t .GetRandom()

set parameter i .SetParameter(Int_t i, Double_t parvalue)

set parameters .SetParameters(const Double_t* params)

�t function *f to graph *gr or histogram *h gr->Fit(TF1 *f) or h->Fit(TF1 *f)|
get parameter i Double_t .GetParameter(Int_t i)

get error on parameter i Double_t .GetParError(Int_t i)

TRandom3: the calss used to generate random sequences of high quality
initialize random generator with random seed TRandom(0)

initialize random generator with seed TRandom(UInt_t seed)

get actual seed UInt_t .GetSeed()

uniform random number ]0,x1] Double_t .Uniform(Double_t x1=1)

uniform random number ]x1,x2] Double_t .Uniform(Double_t x1, Double_t x2)

random number from binomial distribution Int_t .Binomial(Int_t ntot, Double_t prob)

random Poisson number Int_t .Poisson(Double_t mean)

random number from exponential Double_t .Exp(Double_t tau)

random number from Gaussian distribution Double_t .Gaus(Double_t mean=0, Double_t sigma=1)

pre-initialised random generator gRandom points to global instance of TRandom3

TCanvas: con�guring the graphics canvas
create canvas of size ww x wh TCanvas(const char* name, const char* title, Int_t ww, Int_t wh)

subdivide into pads .Divide(Int_t nx = 1, Int_t ny = 1, Float_t xmargin = 0.01, Float_t ymargin = 0.01, Int_t color = 0)

chage to subpad .cd(Int_t subpadnumber = 0)

update canvas .Update()

mark as modi�ed to trigger re-draw .Modified(Bool_t flag = 1)

draw canvas .Draw(Option_t* option = "") and .DrawClone
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C. Most Relevant Classes and their Methods

TLegend: the legend in a plot. Fundamental for the understanding of the contents
create Legend TLegend(Double_t x1,Double_t y1,Double_t x2,Double_t y2,const char* header, Option_t* option = brNDC)

add an entry .AddEntry(TObject* obj, const char* label, Option_t* option = lpf)

add text entry .AddEntry(const char* name, const char* label, Option_t* option = lpf)

draw .Draw() and .DrawClone();

TLatex: LaTEX formatting

create Text TLatex(Double_t x, Double_t y, const char* text)

draw .Draw() and .DrawClone();

TFile: �le I/O

create �le TFile(const char* fname, Option_t* option = "", const char* ftitle = "", Int_t compress = 1)

options " NEW" "CREATE" "RECREATE" "READ"
change direcotry to �e .cd()

write histogram *h to �le h1->Write()

close �le at the end .Close()

read histogram *h from �le *f TH1F *h1=(TH1F*)f.Get(const char* histname)

TNtuple: variables in ntuples
create TNtuple(const char* name, const char* title, const char* varlist)

format varlist: "x0:x2:...:xn" (n<15)
�ll .Fill(Float_t x0,Float_t x1=0,Float_t x2=0, ... ,Float_t x14=0)

initialize from �le .ReadFile(const char* filename)

plot variables .Draw(const char* varexp, const char* selection)

e.g. plot variable xi .Draw("xi")

e.g. plot variable with cut on others .Draw("xi","xj<3")

e.g. 2-dim plot of variables xi and xj .Draw("xi:xj")

�ll existing histogram from ntuple .Project(const char* hname, const char* varexp, const char* selection = "")

global pointers gStyle and gSystem as instances of classes TStyle and TSystem

show statistics box gStyle->SetOptStat(11...1)

show �t parameters in statistics box gStyle->SetOptFit(11...1)

suppress title boxes on graphs and histograms gStyle->SetOptTitle(0)

for animations: add pause in milliseconds gSystem->Sleep(UInt_t t)

TVirtualFitter: Fitting
set default �tter, e. g. name="Minuit" TVirtualFitter::SetDefaultFitter("(const char* name = "")

create Fitter instance TVirtualFitter::Fitter(0,Int_t maxpar=25);

de�ne a parameter Int_t .SetParameter(Int_t ipar,const char* parname,Double_t value,Double_t verr,Double_t vlow,Double_t vhigh)

set function to be minimized .SetFCN(void (*)(Int_t&, Double_t*,Double_t&f,Double_t*,Int_t) fcn)

�x a parameter .FixParameter(Int_t ipar)

release parameter .ReleaseParameter(Int_t ipar)

get pointer to active �tter instance static TVirtualFitter* .GetFitter()

interaction with �tter Int_t .ExecuteCommand(const char* command, Double_t* args, Int_t nargs)

example: start �t with MINUIT: double arglist[2]={5000,0.01}; .ExecuteCommand("MINIMIZE",arglist,2)

example: error evaluation MINUIT / MINOS: ExecuteCommand("MINOS",arglist,0)

get pointer to covariance matrix Double_t* .GetCovarianceMatrix() const

interaction with MINUIT via global pointer gMinuit of class TMinuit

set DeltaChi2 value for error determination gMinuit->SetErrorDef(float DeltaChi2)

get coutour line as TGraph (TGraph*)gMinuit->Contour(npoints, int par1, int par2)
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