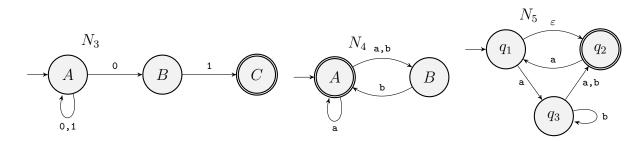

MCTA015-13 - LINGUAGENS FORMAIS E AUTOMATA CENTRO DE MATEMÁTICA, COMPUTAÇÃO E COGNIÇÃO UNIVERSIDADE FEDERAL DO ABC

Profs. Carla Negri Lintzmayer & Maycon Sambinelli

Lista 1 - Parte 2/5 (Autômatos finitos não-determinísticos)


Entrega: opcional, no dia da prova 1

- Seja o mais formal possível em todas as respostas.
- Não há necessidade de resolver todos os exercícios para entrega.
- Identifique devidamente cada exercício.
- Capriche na letra!
- A lista é uma forma de treino para a prova, que não terá consulta. Evite plágio!
- 1. Formalize a descrição das máquinas N_1 e N_2 a seguir e mostre as tabelas de computação das cadeias $\omega =$ abbaab e $\alpha =$ babaab sobre ambas, conforme o exemplo. Conclua: N_1 aceita ω ? N_1 aceita α ? N_2 aceita ω ? N_2 aceita α ?

- 2. Descreva por meio de diagrama um autômato finito não determinístico que reconhece as linguagens a seguir. Em alguns casos o número de estados é especificado.
 - (a) $\{\omega \in \{0,1\}^* \mid \omega \text{ começa com 1 e termina com 0}\}$
 - (b) $\{\omega \in \{0,1\}^* \mid \omega \text{ termina com 11}\}$ (use até 3 estados)
 - (c) $\{\omega \in \{0,1\}^* \mid \omega \text{ começa com 0 e tem comprimento impar ou começa com 1 e tem comprimento par} \}$ (até 5 estados)
 - (d) $\{\omega \in \{a, b\}^* \mid \omega \text{ contém um número par de a's ou contém exatamente dois b's}\}$ (até 6 estados)
 - (e) $\{\omega \in \{\mathtt{a},\mathtt{b}\}^* \mid \text{ao menos uma das 4 últimas posições de } \omega \in \mathtt{b}\}$
 - (f) $\{\omega \in \{0,1\}^* \mid \omega \text{ contém 111 ou 000 como subcadeia}\}$
 - (g) $\{\omega \in \{0,1\}^* \mid \omega \text{ entre dois 1's existe um número par de 0's} \}$
 - (h) $\{0^x 1^y 0^z \mid x \ge 0, y \ge 0, z \ge 1\}$
 - (i) $\{\omega \in \Sigma^* \mid \omega \text{ \'e um coment\'ario de bloco em linguagem C}\}, \text{ com } \Sigma = \{/, *, a, b, \dots, z\}$

3. Converta os AFNs N_4 , N_5 e N_6 a seguir em AFDs (usando o método de conversão visto em sala – Teorema 1.39 do livro do Sipser).

