Busca
em
Grafos

Buxca em Grafos

- Usamos algouitmos de busca para obter mais informacos sobve ar estutura de eem grafo
- Encontrar un cominho entre dois vétices.
- tistar se o grafo é conesca.
- calaular a distancia entre dois veítics.
- verificar se o grafo possii cida.
- Sevem de lase para vários algontinos impoatantis.
$u v$-cominhos
2ligemos que um cominho $P=\omega_{0}, \omega_{1}, \omega_{2}, \ldots, w_{k}$ é un μv-caminho se $\omega_{0}=\mu$ e $\omega_{k}=v$

Exemplo de ae-cominho

Vértice Alcancóvel
2lijemos que um véctice $v e^{e}$ alcomcóvel a partir de um veritice w se excite um uv-cominho.

Busca em Grafos

- Mritos dos problemas e propriedades que surgern em grafos dependern de sabermos se existe un cominhe entre dois vértices
- Por inso é importante saber es vétics alcancávis a partor de un dado vertice.

Busca em Grafoo

- Vamos burcar os vertics alcomcávecis a partir de un véricas
- s será a raiz da busca.

Proposiciãa
Se es e alcancável a partir de s e $u v \in E(G)$, entaio v é alconcabiél a partir de s.

Busca em Grafos
1 Fungáo $\operatorname{BuscA}(G, s)$
Δ onde G é um grafo e s $\in V(G)$
2 Seja $T=(\{\Delta\}, \varnothing)$
3 Enquanto $E_{G}(V(T)) \neq \varnothing$ faca
4
5
6 $\quad\left[\begin{array}{l}\text { Seja uv } \in E_{G}(v(T)) \text {, onde } u \in V(T) \\ V(T)=V(T) \cup\{v\} \\ E(T)=E(T) \cup\{u v\}\end{array}\right.$
7 Devolva T

Burca en Grafos
Obs Note que esse procedimento gera una arvone

- Órvor geradora da componente H que contín s.
Lema se T é uma ávove, entāo $T+u v e^{\prime}$ uma ávore, onde $u \in v(T)$ e v e'um vétice novo.
Demonstraçáve (Exercicia)

Busca em Grafos

- Busca (G, s) termina com una ávon geradora da componenter conerca do grafo que contén 1 .
- Procidimento assin costuman ser chamados de buscar es a añon resultante é chamada de árvore de busca
- Digamos que essa ánoue é enraizada en s

Busca em Grafos
a funcãia Busca $(6,4)$ possui várias opcós de como estender a árvove.
Dependendo do citerica utilizade podemos ter informaces adicionais.

- Burca en largura (BFS - Breadth-firt seanch)
- expande o vérticr com o menor tempo de descaberta
- primeiro a entrar, primeiro a sair
- Busca em profundidade (DFS-Depth-first Search)
- expande o vétice com o mavio temps de descaberta
- uiltime a entrar, piimeire a sair

Crivore Enraizada
Uma árvore enraizada í una ávore T e un vétice $\mu \in V(T)$ chamado de raiz

geralmente desentramos una árvovore enraizada por "camadas"

Ávore Enraizada
Uma árvore enraizada é una ávore T e un vétice $\mu \in V(T)$ chamado de raiz

Ávore Enraizada
Uma árvore enraizada é una ávore T e un vétice $\mu \in V(T)$ chamado de raiz
raiz dado um veitice w EV(T),

u dizenos que $v \in V(T)$ é o pai de u em T se v precede imediatamente θ vétice μ no comimho da raij s até u. abém disso. tambén dizemos que u é o filho de v.

Ávore Enraizada
Uma árvore enraizada í una ávore T e un vétice $\mu \in V(T)$ chamado de raiz
raiz dado um veitice w EV(T),
 dizemos que $\omega \in V(T)$ é um
ancestial de e se ω precede u no caminho da raig s até w. Além disso, tambén dizemos que u é um descendenter de ω.

Arvore Evraizada

- Na pática, naio construimos un grafo para representar una ávore enraizada, usamos un vetor
- $\operatorname{ped}[V(T)]$ notacàre para dizer que o vetor é indexcado pelos elementos do conjunto
- Para todo vétice el diferente da raiz pred $[u]=v \Leftrightarrow v e^{\prime} o$ pai de u
- Se u é a raiz, então

$$
\operatorname{pred}[u]=u
$$

Crrroer Enraizada

- Seja T una ánvar enraizada em 0

Pred | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 5 | 3 | 2 |

$$
E(T)=\{\{\omega, \text { pred }(\omega)\}: u \in V(T) \backslash s\}
$$

Aivore Emaizoda: Reaperande o Caminho

Funcōe Impime-camimho (μ, pred) Se $\operatorname{pred}[u]=$ NiL impuime w Senone

Impime-Comimho (pred[w], pred)
Impime u

pred | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 0 | 2 | 3 | 3 |

Ávore Emanizoda: Reaperonde o Caminho

Funcáre Impiime-camimha (μ, pred)
Se $\operatorname{pred}[u]=\mathrm{NiL}$
imprime w

Impime-Cominho (pred $[w]$, pred)
Impime u

Complexido de: $O($ compimate de caminhlo $)=O(v)$

Burca em Grafos
Fumpā̃ Busca $(6,5)$
Para toda $v \in V(G)$ paca

$$
\begin{aligned}
& \text { vis[v] }=F \\
& \text { pred[v] }=\text { NulL } \\
& \text { vis }[s]=T \\
& \text { predcs] }=s
\end{aligned}
$$

Enquonto $\{u v \in E(G):$ vis $[u]=T$ e $v i s[v]=F\} \neq \varnothing$ Paca
Seja $x y \in E(6)$, onde $v i s[x]=T$ e vis $[y]=F$

$$
\operatorname{vis}[y]=T
$$

$$
\operatorname{pred}[y]=x
$$

Devalue pred
$B F S$

Busca em Laargura (BFS)
a ideia é expandis a arvore pela vizinhanca do vétice que entron, inmeira na arvou
"pimerro a entrar, pimero a sair" Procussa os verticis por "camada" \uparrow distincia da raing

Buxca em Leargura (BFS)
Esse algoritmo pode ser usado para:

- encentrar comporento conercas
- calcular distancia entre vética.
- encontrar cominhos entre vétices
- aletectar cidos
- verificar se un grafo í bipartida Ce produzin uma em case afirmativa)
- encontrar una ávore geradora da compenente contendo a raiz.

Execucã̃e da BFS
Fila

vis
 pred \square

Funcaio Busca-Largura (G, s)
para tada $\mu \in V(G)$

- G é um grafo e s $\in V(6)$

$$
\left[\begin{array}{l}
\text { vis }[u]=F \\
\text { pred }[\mu]=\text { NULL }
\end{array}\right.
$$

$\operatorname{pred}[s]=s$

$$
v \text { is }[s]=T
$$

Cria fila F
Enfiluira (F, s)
Enquanto $|F|>0$
$u=$ Desenfiliira (F)
para toche vertice $v \in W(\mu)$
se vis $[v]==F$
$v \Delta[v]=T$
pred $[v]=u$
Enfiluira (F, v)

20 evaha pred

Funcäo Busca-Largura (G, s)
para tada $\mu \in V(G)$

$$
\left[\begin{array}{l}
\text { vis }[u]=F \\
\text { pred }[\mu]=\text { NULL }
\end{array}\right.
$$

$$
\operatorname{pred}[s]=1
$$

$$
\text { vis }[s]=\tau
$$

Cria fila F
Enfiliirci (F, s)
Enquanta $|\dot{F}|>0$

$$
u=\text { Desenfilivira (F) }
$$

para tode verticu $v \in N(u)$ se vis $[v]==F$ $v \Delta[v]=T$ pred $[v]=u$ Enfiluira (F, v)

Fila:

20 evalva pred

BFS (Complexidade)
Funciao Busca-Largura (G, s)
pana toda $\mu \in U(G)$

$$
\begin{aligned}
& \operatorname{vis}[\mu]=F \\
& \operatorname{pred}[m]=\text { NuLL } \\
& \operatorname{pred}[s]=s \\
& \operatorname{vis}[s]=T
\end{aligned}
$$

Cria pila F
Enfiliura (F, s)
Enquanta $\left|F^{\prime}\right|>0$
$u=$ Desenfiliira (F)
para tode veitice $v \in W(u)$
se vis $[v]==F$

$$
\mid v \Delta[v]=T
$$

$$
\operatorname{pred}[v]=u
$$

$$
\text { Enfiliura }(F, v)
$$

20 evalua pred

BFS (Complexidade)
Funcaio Busca-Largura (G, s) pana toda u $\in V(G)$
vis[u] $\left[\begin{array}{l}\text { pred }[\mu]=\text { NULL }\end{array}\right] \quad A=O(V)$

$$
\operatorname{pred}[a]=1
$$

$$
\left.\begin{array}{l}
\text { pred }[s]=s \\
\text { vis }[s]=\tau \\
\text { Cria pila } F \\
\text { Enfiluind }(F, s)
\end{array}\right]
$$

$$
B=O(1)
$$

Enquanta $|F|>0$

$$
u=\text { Desenfiliira (F) }
$$

$$
c=O(v)
$$

para tode veitice $v \in N(u)$

2 evalua pred] $E=O(1)$

- Podemos implementar as operacás de fila Enfileira, Desenfiluica e cria Fila em O(1) usando una lista ligada
- Un vétice visitado nunca deica de ser vrsitado e apenas vétics que näo foram visitads (vis [u] $==$ F) são adicionados a fila. Pertanto cada veitice é enfiluiado no mácimo uma vez e o lace Enquanto exceata no máncimo $O(v)$
$O(v)$ se matriz ady
$O(d(u))$ se lista adj

BFS (Complexidade)

Funciào Busca-Largura (G, s)

$$
\begin{aligned}
& \text { pana toda } \mu \in V(G) \\
& {\left[\begin{array}{l}
\text { Vis }[\mu]=F \\
\text { pred }[\mu]=\text { NULL }
\end{array}\right] \quad A=O(V)}
\end{aligned}
$$

pred $[s]=s$

$$
\left.\begin{array}{l}
\text { prea[s] }=s \\
\text { vis }[s]-\tau \\
\text { cria pila } F \\
\text { Emfiliera }(F, s)
\end{array}\right] \quad B=O(1)
$$

Enquanta $|F|>0$

$$
\mu=\text { Desenflibira (F) }
$$

$$
c=O(v)
$$

para tode veitice $v \in N(u)$

20 evabra pred $\quad E=O(1)$
G é um grafo en $s \in V(6)$

- Vamos analisar o custo de D ao longo de todas as iteracas do proyrama. Essa análise é chamada de analise agregada.
- Se G for implementada como matriy de adj. entä̃

$$
D=O\left(v^{2}\right)
$$

- Se G por implementado como lista de adj

$$
D=\sum_{\mu \in V(G)} d(\omega)=z|E(\sigma)|=0(E)
$$

$O(v)$ se matriz ady $O(d(u))$ se lista adj

BFS (Complexidade)

Funciã Busca-Largura (G, s) pana toda $\mu \in V(G)$
$\left[\begin{array}{l}\text { Vis[} \mu]=F \\ \text { Pred }[\mu]=\text { NULL }\end{array}\right] \quad A=O(V)$ $\operatorname{pred}[n]=s$

$$
\left.\begin{array}{l}
\text { pis }[s)={ }^{2} \tau \\
\text { cria pila } F \\
\text { Enfilina }(F, s)
\end{array}\right] \quad B=O(1
$$

Enquanta $|F|>0$

$$
u=\text { Desenflibira (F) }
$$

$$
c=O(v)
$$

para tode veitice $v \in W(u)$

20 evalva pred $E=O(1)$
G é um grafo e $s \in V(6)$

$$
\begin{aligned}
T(6) & =A+B+C+D+E \\
& =O(v)+O(1)+O(v)+D+O(1) \\
& =O(V+1+V+1)+D \\
& =O(v)+D
\end{aligned}
$$

$O(v)$ se matriz ady $O(d(u))$ se lista ady

BFS (Complexidade)

Funcião Busca-Largura (G, s)
 $\operatorname{pred}[s]=3$

$$
\left.\begin{array}{l}
\text { Uis }[s]-\tau \\
\text { cria pila } F \\
\text { Enfilieina }(F, s)
\end{array}\right] \quad B=O(1)
$$

Enquanta $|F|>0$
$\mu=$ Desenflibira (F)
para tode veirtice $v \in N(u)$

2eevalva pred] $E=O(1)$
-G é um grafo a s $\in V(6)$

$$
T(6)=O(v)+D
$$

Se 6 fai implementado pou matring

$$
\begin{aligned}
D & =O\left(v^{2}\right) \\
T(G) & =O(v)+O\left(v^{2}\right)=O\left(v^{2}\right)
\end{aligned}
$$

$C=O(v)$ Se G foi implementado por lista

$$
\begin{aligned}
& D=O(E) \\
& T(G)=O(V)+O(E)=O(V+E)
\end{aligned}
$$(v) se matriz ady $O(d(u))$ se lista adj

Obsenaciaes

- A aivere resultante do BFS é chamada de ávore de busca en largura. an áwow da BFS.

Vistoncia em Grafos

BFS e Distancia

- Podemos modificon a BFS de forma que ela cormpute a distancia entre a rain s e qualquer outroe veítice na grafo
2lados dois véticis u e vem um grafa, a distañcia entre u e v, denatada por dist (u, v), é o menor comprimenta de um uv-caminha. Se nāo existe um cominho entre u ev, definimos $\operatorname{dist}(u, v)=\infty$

$$
\operatorname{dist}(u, v)=\min \left\{e(P): P e^{\prime} u n u v \text {-cominhua }\right\}
$$

- Ademais, podemos fager a BFS exibri esse cominho mais aurto

BFS e Distancia
Problema Single Sauce Shatest Path (SSSP)
Entrada: Um grafo G e uma rain $s \in v(\sigma)$
Saíde: a distañcio de s para todoo eo véticice de G (e um cominho mais curto de s para cada veŕtice de 6)

BES

- Vamos usar un vetor d $[w]$ para armazenar a distañcia de s até u
- Vamos usar a ánore de busca pred[] para armozenar dos caminhos mais curtos

Burca Leargura 2listamcia
Funcaio Busca-Largura (G, s)
para toda $\mu \in U(G)$.

$$
\begin{aligned}
& \operatorname{Vis}[u]=F \\
& \operatorname{Pred}[n]=\text { NULL } \\
& d[\mu]=\infty
\end{aligned} \quad \begin{aligned}
& \operatorname{pred}[\rho]=9 \\
& \operatorname{dis}[s]=T]=0
\end{aligned}
$$

Cria pila F
Enfiluira (F, s)
Enquanta $|F|>0$
$u=$ Desenfiliva (F)
para tode vértice $v \in W(u)$

$$
\begin{aligned}
& \text { se vis }[v]==F \\
& \qquad \begin{array}{l}
v \Delta[v]=T \\
\text { pred }[v]=u \\
d[v]=d[\mathrm{w}]+1 \\
\text { enfileira }(F, v)
\end{array}
\end{aligned}
$$

2evahra pred, d

Busca Leargura 2 listancia
Funcaio Buxca-Larguna (G, s)
pana tods ue \boldsymbol{c} U(G)

$$
\left\{\begin{array}{l}
\text { Uis }[\mu]=F \\
\operatorname{Pred}[m]=\text { NULL } \\
d[\mu]=\infty \\
1[0
\end{array}\right.
$$

$$
\begin{aligned}
& \operatorname{pred}[\rho]=1 \\
& \operatorname{vis}^{2}[s]-\tau
\end{aligned}
$$

$$
d[s]=0
$$

cria fila F
Enfiluirai (F, s)
Enquants $|F|>0$
$\mu=\operatorname{Desenflibira~(F)~}$
para tode vértice $v \in N(u)$

$$
\left[\begin{array}{ll}
\text { se vis }[v]==F & \\
\begin{array}{ll}
v \Delta[v]=T & \text { vis } \\
p \operatorname{ved}[v]=\mu & \text { pred } \\
d[v]=d[\mu]+1 & \text { enfiluiver }(F, v)
\end{array}
\end{array}\right.
$$

0	1	2	3	4	5

2Oevelua pred, d

Busca Leargura 2listancia
Funcäo Busca-Largura (G, s)
para toda ue $\in U(G)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { vis }[\mu]=F \\
\text { pred }[\mu \mu]=\text { NULL } \\
d[\mu]=00
\end{array}\right. \\
& \operatorname{pred}[1]=0 \\
& \text { is[s]-T } \\
& \text { cria pila } F
\end{aligned}
$$

Enfiluina (F, S)
Enquants $|F|>0$
$u=\operatorname{Desenfilinira~(F)~}$
para tode vértice $v \in N(\mu)$

$$
\left[\begin{array}{l}
\text { se vis }[v]==F \\
\quad \begin{array}{l}
v \Delta[v]=T \\
p \operatorname{vid}[v]=u \\
d[v]=d[u]+1 \\
\text { enfiluive }(F, v)
\end{array}
\end{array}\right.
$$

20evelua pred; d

Complexidade
lista: $O(v+E)$
Motriz: $O\left(v^{2}\right)$

Objetive

- Mostar que $d[u]=\operatorname{dist}_{G}(s, u)$ para tode $\mu \in V(\sigma)$.
- Vitar predej difine un Cowore de Burca en Reanguar com raing em s.

Funcīo Busca-Largura (G, s)
pana toda ue $\in(G)$

$$
\left[\begin{array}{l}
\text { vis }[\mu]=F \\
\operatorname{ded}[\mu]=\text { NULL } \\
d[\mu]=00
\end{array}\right.
$$

$\operatorname{pred}[s]=s$

$$
\operatorname{vis}_{\text {is }}[s]=\tau
$$

cria fila F
Enfiliura (F, s)
Enquanta $|F|>0$
Obs: Note que $d[w]$,

$$
d[s]=0
$$ pred[u], vis[u] nunca mudam após inseuirms u na fila

$u=$ Desenfiliira (F)
para tode vétice $v \in W(\mu)$

$$
\left[\begin{array}{l}
\text { se } \operatorname{vi\Delta }[v]==F \\
\qquad \begin{array}{l}
v \Delta[v]=T \\
\operatorname{pred}[v]=u \\
d[v]=d[w]+1 \\
\text { enfiluica }(F, v)
\end{array}
\end{array}\right.
$$

2evaluer pred, d

Alguns Leemas
Lema 1
Se $d[\mu]<\infty$, entaie us pertencr à arvou T induyidor por pred [] e θ caminhe de s a ev em T tem comprimenta d[u].

Condária 2.
2 lurante a excecucóne do algoitiono vale o seguinte imvariante $d[v] \geqslant \operatorname{dist}(s, v)$ para tode $v \in V(G)$.

$$
d[v]=\operatorname{dist}_{T}(1, v) \geqslant \operatorname{dist}_{G}(s, v)
$$

Lema 3 Sejom G um grafo e s $\in V(G)$. Na excecucão de Busca-Llargura-2listañcia (G, s), se u ev sáo dois vértices que estào na fila e u entrou na fila antes de v, entāo

$$
\begin{gathered}
d[u] \leqslant d[v] \leqslant d[u]+1 \\
F=\left\langle x_{1}^{\downarrow}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}^{\downarrow}\right\rangle \\
x_{v} \\
v_{1} \\
d\left[x_{1}\right] \leqslant d\left[x_{2}\right] \leqslant d\left[x_{3}\right] \leqslant \cdots \leqslant d\left[x_{6}\right] \leqslant d\left[x_{1}\right]+1 \\
8
\end{gathered}
$$

- Note que temos no máscime duas distáncia na fila.

Teo Sejom G um grafor e s $\in V(G)$. Do fim de Buxca-Lhargura-2histōncia (G, s), para todo $v \in V(G)$, vale que $d[v]=\operatorname{dist}_{G}(s, v)$.

Teo Sejarn G um grafo e $s \in V(G)$. Do fim de Busca-Lhargura-2listañcia (G, s), para todo $v \in V(G)$, vale que $d[v]=\operatorname{dist}_{G}(s, v)$.
Demonstracàa

- Pala Condária 2, $d[v] \geqslant \operatorname{dist}_{G}(1, v) \forall v \in V(6)$ Condária 2
2 Ourante a execreconer do algoitmo vale a seguinte imvorionte $d[v] \geqslant \operatorname{dist}(s, v)$ para tode $v \in V(G)$
- Agora vomos mostar que $d[v] \leqslant \operatorname{dist}(s, v) \quad \forall v \in V(G)$ $\operatorname{dist}(s, v) \leq d[v] \leq \operatorname{dist}(s, v)$
- Suponha, para fins de contradicäe, que exciste un vèrtia i para θ equal $d[\mu]>\operatorname{dist}(1, \mu)$
- Wentre todos os véticos u tais que $d[u]>\operatorname{dist}(s, w)$, seja v un com a memor distaincia para s $\operatorname{dist}_{G}(s, v)=\min \left\{\operatorname{dist}(s, \mu): \mu \in V(G)\right.$ ed[u]>$\left.>\operatorname{dist}_{G}(s, u)\right\}$
- Seja $P=s, \ldots, u, v$ un caminho mais curto de sa v
- $e(p)=\operatorname{dist}_{G}(\Delta, v)$
- Note que $\operatorname{dist}(s, v)=\operatorname{dist}(s, u)+1$
- Pela escalha de v e por (A), temos que $d[u] \leqslant \operatorname{dist}(s, u) e$, consequentemente que $d[w]=$ $\operatorname{dist}_{6}(s, \mu)$
- assim, $d[v]>\operatorname{dist}(s, v)=d(s, u)+1=d[u]+1$
- Considere θ momento en que Busca-Loargura. 2listancia ($6, s$) removen u de F.
- Considere o momento en que Busca-Loargura. 2listañcia ($6, s$) removen μ de F.
(1) v havia sido visitado; ou
(2) v näo havia sido visitado
- caso 1: v havia sido visitado
- um vizinho $\omega \neq \mu$ visitou v
- $d[v]=d[\omega]+1$
- w sain de F antes de μ

Pelo Lema $3, d[w] \leqslant d[w]$
Por (B)

Lema 3 Sejam G um grafo è sev(o). Na exceução de Burca-Leargura-2nstaincia (G, s), se u e v sà̀

$$
d[v]>d[w]+1
$$ dois vértices que estäo na fila e eu entrous na fila antes de v, entaco

$$
\begin{aligned}
& d[w] \leqslant d[v] \leqslant d[u]+1 \\
& d[v]>d[w]+1 \geqslant d[w]+1=d[v]
\end{aligned}
$$

- Caso 2: v náo havia sido visitado.
- v é visitado
- $v e^{\prime}$ inserido en F
$-d[v]=d[w]+1$
Por (B), $d[v]>d[m]+1$

$$
d[v]>d[u]+1=d[v]
$$

Lema A
Sija 6 um grafo (X, Y)-bipartida e sija $\mu_{1} \in X$.
Se $P=\mu_{1}, \mu_{2}, \mu_{3}, \ldots, \mu_{l}$, entāo
(a) $\mu_{i} \in X$ se i é ímpar
(b) $u_{i} \in Y$ se i é par
DFS

Busca em Profundidade (DFS)

- A idevia é expandir a aívore pela vezinh $a n c a$ do uiltimo vétice adicionado a awore.
"ítimo a entrar, primeiro a sair"

Exemplo

Busca em Prafundidade (DFS)
Esse algoritmos pode ser usado para:

- encontrar comporento conercas
- encontrar cominios entre vertices
- aletectar cidos
- verificar se un grafo í bipartida (e produgin una em case afirmativas
- encontrar una ánvore geradora da componente contendo a raiz.
- Encontrar aresta de corte
- Encantrar vértica de corte

Execucãre da DFS

Pilha

DFS

Funcião $\operatorname{DFS}(G, s)$ Func̣ão DFs-SEARCH $(6, w)$ Para tode $u \in V(G) \quad$ vis $[\mu]=T$

$$
\begin{aligned}
& \text { vis }[u]=F \\
& \text { pred }[u]=\text { NOLL }
\end{aligned}
$$

pred [s] $=S$

$$
\text { DFS - SEARCH }(6, \Delta)
$$

Para tode $v \in N(\mu)$

$$
\text { Se vis }[v]==F
$$

$\mid \operatorname{pred}[v]=w$

$$
\operatorname{DFS}-\operatorname{SEARCH}(G, v)
$$

Execução DFS

$$
\begin{gathered}
\text { Funcāa } \operatorname{DFS}(G, s) \\
\text { Para toda } \mu \in V(G) \\
{\left[\begin{array}{l}
\text { vis }[\mu]=F \\
\text { pred }[\mu]=\text { NOLL }
\end{array}\right.} \\
\operatorname{Pred}[s]=S \\
\operatorname{DFS}-\operatorname{SEARCH}(6, s)
\end{gathered}
$$

vis

Execução DFS

Funcāa $\operatorname{DFS}(G, s)$
Para toda u $\in V(G)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { vis }[w]=F \\
\text { pred }[w]=\operatorname{NULL}
\end{array}\right. \\
& \text { Pred }[s]=S \\
& \text { DFS }-\operatorname{SEARCH}(6, s)
\end{aligned}
$$

Vamos escolher o como raiz

Execução DFS

Funcāa $\operatorname{DFS}(G, s)$ Para toda u $\in V(G)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { Vis }[w]=F \\
\text { pred }[\mu]=\operatorname{NOLL}
\end{array}\right.} \\
& \text { } \operatorname{Pred}[s]=s \\
& \rightarrow \operatorname{DFS}-\operatorname{SEARCH}(6, s)
\end{aligned}
$$

$\operatorname{DS}(0)$

Execuçāo DFS

Funcão Dfs-SEARCH $(6, w)$

$$
\rightarrow \operatorname{Vis}[u]=T
$$

Para tode $r \in N(u)$

$$
\left\{\begin{array}{l}
\operatorname{Se} v \operatorname{vis}[v]==F \\
\quad\left[\begin{array}{l}
\operatorname{Pred}[v]=w \\
\operatorname{DFS}-\operatorname{SEARCH}(G, v)
\end{array}\right.
\end{array}\right.
$$

DS(0)

Execuçāo DFS

Funcão dfs-Search $(6, w)$

$$
\operatorname{Vis}[\mu]=T
$$

Para toda $r \in N(u)$

$$
\rightarrow \left\lvert\, \begin{array}{ll}
\text { Se vis }[v]==F \\
& \begin{array}{l}
\operatorname{pred}[v]=w \\
\operatorname{DFS}-\operatorname{SEARCH}(G, v)
\end{array}
\end{array}\right.
$$

vis

$$
0123
$$

pred

DS(0)

$$
u=0 \quad v=1
$$

Execuçāo DFS

Funcão dfs-Search $(6, w)$

$$
\operatorname{Vis}[u]=T
$$

Para tode $r \in N(u)$

$$
\left\lvert\, \begin{aligned}
& \operatorname{Se} \operatorname{vis}[v]=F \\
& \quad \left\lvert\, \begin{array}{l}
\operatorname{Pred}[v]=w \\
\operatorname{DFS}-\operatorname{SEARCH}(6, v)
\end{array}\right.
\end{aligned}\right.
$$

DS(0)
Ds(1)

$$
u=0 \quad v=1
$$

DFS (Complarcidade)

Funcäo DFS-SEARCH $(6, w)$

DFS (Complarcidade)

Funcā̃ DFS-SEARCH $(6, w)$
Funçã $\operatorname{DFS}(G, s)$
Para tode u $\in V(G)$

$$
A \quad v i s[\mu]=T]^{C}
$$

$$
\text { vis }[w]=F
$$

$$
\begin{aligned}
& \operatorname{Pred}[s]=s \\
& \operatorname{DFS}-\operatorname{SEARCH}(6, \Delta)]^{B} \theta(1)
\end{aligned}
$$

$\theta(v)$ para tode $v \in N(u)$

$$
\text { pred }[u]=\text { NOLL }
$$

$$
\left.\theta(i) \left\lvert\, \begin{array}{ll}
\text { if } & \text { vis }[v]==F \\
& \begin{array}{l}
\operatorname{Pred}[v]=w \\
\operatorname{DFS}-\operatorname{SEARCH}(6, v)
\end{array}
\end{array}\right.\right]
$$

$$
\begin{aligned}
T(G) & =A+B+C+D \\
& =O(v)+O(1)+O(V)+O(D) \\
& =O(v+1+V+D)=O(V+D) \xrightarrow[\text { LATRIZ }]{\text { Lista }} O(V+E)
\end{aligned}
$$

Obsenac̣ás

- Complexidade DFS
- lista de adjacéncia: $O(V+E)$
- matury de adjacincia: $O\left(V^{2}\right)$
- A ávore resultante da DFS é shamada de ávore de burca em Profundidade, an ẫore da DFS.

the diagrams on either side of this page, which show the progress of DFS and BFS for our sample graph mediumG.txt, make plain the differences between the paths that are discovered by the two approaches.DFS wends its way through the graph, storing on the stack the points where other paths branch off; BFS sweeps through the graph, using a queue to remember the frontier of visited places. DFS explores the graph by looking for new vertices far away from the start point, taking closer vertices only when dead ends are encountered; BFS completely covers the area close to the starting point, moving farther away only when everything nearby has been examined. DFS paths tend to be long and winding; BFS paths are short and direct. Depending upon the application, one property or the other may be desirable (or properties of paths may be immaterial). In Section 4.4, we will be considering other implementations of the Paths API that find paths having other specified properties.

