
A Computational Method for Interactive Design of Marbling Patterns

Mario Gazziro, João Paulo Gois
Federal University of ABC

Santo André, Brazil
mario.gazziro@ufabc.edu.br

joao.gois@ufabc.edu.br

Candy Tenorio Gonzales, José F. Rodrigues Jr
University of São Paulo

São Paulo, Brazil
candytg@ime.usp.br

junio@icmc.usp.br

Abstract—Paper marbling is a painting process where the
artist makes use of special tools to carefully interact with
paints deposited on an aqueous surface to produce marble-
like paintings transferred to an absorbent paper. In this
work, we present an interactive and intuitive application that
simulates the marbling process digitally in real-time. To this
end, we first map the artist tools into a simple and intuitive
user interface. Secondly, we employ a Navier-Stokes equations
solver on the GPU with a multi-layer approach to handling
multiple colored paints with support to lighting and paints
undulations. Our system accomplishes interactive frame-rates
while manipulating tens of distinct colored paints, a requisite to
applications like digital games. Results show the effectiveness of
our real-time digital marbling system, providing to the artists
an intuitive work interface.

Keywords-Digital marbling ; Shader Programs ; Fluid Flow
Simulation ; Electronic tools.

I. INTRODUCTION

Paper marbling is a painting process where the artist
employs special tools - as combs and brushes - to care-
fully interact with paints deposited on an aqueous surface
to produce marble-like paintings (of abstract or even real
objects) that are transferred to an absorbent paper [1], [2].
The dynamical nature of the marbling process has been
receiving attention not only from artists but also from the
computer graphics community and digital artists, creating
the digital marbling systems field of research.

In general, digital marbling systems require two principal
features:

• The first is the fluid flow simulation. Most of the works
are based on 2D Navier-Stokes Equations since the
dynamic of the desired marbling effects is determined
by the artist interaction in a fluid-like representation.
Moreover, one must ensure specific properties for the
fluid flow simulation, e.g., the immiscibility of the
paints.

• The second is the user interface. It is fundamental to
design an interface application offering a computational
methodology process similar to the original artist pro-
cess.

Accordingly, any proposal for a possible digital marbling
system must reflect the traditional marbling context and also
be straightforward to learn and interact like the traditional

one. Besides, it is expected the system must be prepared
to receive current electronic tools (single or multi-touch
screens, graphics tablets or even mouses).

Objectives

Our primary objective relies on the development of
an interactive and intuitive system for real-time marbling
simulation. It provides access to the main tools used by
marbling artist. Since our simulation system has support for
multi-layer paint rendering, it also has enabled changing a
color paint along the simulation. Also, our multi-layer paint
rendering simulates 3D lighting and paint undulations that
provide a 3D aspect to the paintings. Concerning the user
interface, our system is implemented to support multiple
interaction input devices. Thus, the user can interact using a
mouse, multi-touch screen or a graphics tablet to manipulate
tens of color paints at real-time frame rates.

II. RELATED WORK

To the best of our knowledge, AtelierM [1] was the first
study about a digital marbling system. Like to most of its
successors, AtelierM employs computational fluid dynamics
(CFD) to simulate the paints flowing. According to the
results presented by their authors, AtelierM took up to 32
seconds for creating a single marbling pattern (running on
an Intel Pentium III 933MHz processor), in 2003.

For improving the time-processing, following techniques
employed the use of GPUs to perform the CFD. Jin et al.
[2] achieved interactive frame-rates by proposing a multi-
grid solver implemented for the Cg shader language. The
approach proposed by Ando & Tsuruno [3] employs both
CPU and GPU processor with CUDA, in which the paint is
represented and rendered as vector graphics.

Wen [4] simulated digital marbling on the GPU using
the GLSL shader language. The author used pre-computed
velocity field, which produced faster simulations, but this
system worked for one density color.

Further, instead of using CFD approaches, other systems
are using procedural techniques [5], [6]. Lu et al. presented

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 352

the Mathematical Marbling [5], where mathematical for-
mulas were proposed to mimic the paint transportations,
avoiding the computational cost of fluid simulation.

The most significant difference between the procedural
techniques and those implemented by CFD is the com-
putational cost. Furthermore, for CFD-based approaches,
hardware-accelerated algorithms are essential to ensure in-
teractivity frame-rates.

Stam [7] presented a CFD solver very popular for games
engine developers, named Stable Fluids. This approach
provides effects like swirling smoke trough emphasizing the
fluid’s stability and speed. This study was developed for both
2D and 3D environments. Jin et al. [2], mentioned above,
thus employed Stable Fluids for the swirly effect in their
marbling digital. Besides, recent studies present that a game
approach to art appreciation for children stimulates learning
through sensitivity, intuition, and creativity; obtaining as a
result natural learning and association with other cultures.
Therefore marbling painting would have great potential
being used as a game-oriented learning tool.

Recently even the VR technologies are exploring the
marbling techniques [8] allowing full immersion during
pattern development.

III. THE MARBLING SYSTEM

We assemble our marbling system aiming at the
trade-off between real-time fluid flow simulation and
user-interactivity. In the following sections, we present our
user-interface and the structure of our system, as well as
how we explore CPU and GPU to pursue our requirements.

A. Interface Design System

The interface contains the main marbling options in one
single widget. Namely, the system is composed of two areas
(Fig. 1): the design area, where the artist creates the digital
marbling patterns, and the painting toolbar, which contains
the different tools employed by the users such as colors,
size of the paint drops and the color selection. Especially,
the painting toolbar provides:

• Eyedropper: creates a single drop of paint;
• Brush: creates multiple drops of paints simultaneously.

Mainly, when using a multi-touch screen, the system
produces multiple drops by multiple touches (one for
each touch);

• Needle: performs a single spreading of the paint;
• Comb: performs multiple spreadings of the paint;
• Color Palette: sets the colors of the paints on the output

device;
• Layers: allows selecting the layers to change the colors;
• Size: sets the size of the paints to draw on the output

device.

Drawing toolbar

Design Area

Figure 1. The interface of the application is composed of two main areas:
the painting toolbar, which has the artist resources, and the design area
where the artist makes the art.

B. Method Pipelines

The processes of our marbling system perform massive
communications and data exchanges between the user inter-
face (paint rendering and processing input devices call) and
the fluid flow simulation. Each expected process leads to a
distinct sequence of tasks. Fig. 2 – through a collaboration
diagram – depicts one of this first process, which is the
insertion of the first drop of paint. Concisely, the tasks are:

Preparing the system to receive a drop of paint:: The
process begins with the user selecting the Eyedropper Tool
(Item 1). This information triggers all the sub-process to
simulate the drop of paint at the fluid flow solver as well as
to render it (Items 2 and 3).

Fluid Simulation:: At this moment, the fluid flow
simulation begins. Item 4 refers to the part of the solver that
calls in a loop Items 5 and 6 to compute the Navier-Stokes
Equations (Sec. III-D).

Domain Transformation and Density Computation::
The fluid flow solver is prepared to receive the user inputs,
which are transformed to the domain simulation coordinates
(Item 7). In this case, the system is prepared to receive the
drop of paint, which means to compute the density values
and store them in a frame buffer object [9] (Item 8).

Graphics Objects Configuration:: The texture objects
and rendering shaders [9] are created (Items 9 and 10) for
rendering the fluids.

Fluid to Shader Texture:: For rendering the drop of
paint, our OpenGL manager classes require the frame buffer
object that stores the density from the fluid flow solver (Item
11). The solver then sends the required buffer in a texture
(Item 12). Notice that the OpenGL manager must specify
the layer it will render (paintID).

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 353

: User

: Gradient

: Interface Widget

: MainWindow : OpenGL Manager : Solver

5: calculateNextVelocity()
6: calculateNextDensity()

8: addForceArea()

14: makeDefaultGradient()
15: fillVectorOfColors()

9: CreateVBOs()
10: CreateShaders()

1: Insert One Paint

2: EnablePaintBrush()

3: PaintBrushFunction()

4: iterateModel()
7: addDensity()

11: getTextureDensity(paintID)

12: Texture Density

13: initGradient()

16: Vector Object: GradientColors_GPU

17: Display: Paint Color

Figure 2. Collaboration Diagram: Example of inserting the first drop of paint.

Gradient Color Paint:: In parallel, to enhance the
rendering quality, a gradient lookup table is created to
simulate fluid undulations and light interactions (Items 13-
15). This lookup table is sent to the GPU as a texture (Item
16).

Display Result:: This last stage is responsible for
combining into the GPU both the texture density and the
texture of gradient to display the paint color (Item 17).

C. Fluid Simulation

The simulation of the paint flow of our digital marbling
system is based on 2D incompressible fluid flows, modeled
by the Navier-Stokes Equations:

∂u
∂ t

=−
(
u ·∇

)
u− 1

ρ
∇p +ν∇2u+F (1)

∇ ·u = 0 (2)

where ρ is the fluid density (constant), ν is the kinematic
viscosity, and F represents any external forces that act on
the fluid [10]. We employ and adapt to our system the
syfluid library [11], which explores shader programs to
the fluid flow simulation. This approach is based on the
Stable Fluids technique [7]. This library allows not the
only real-time simulation but ensures favorable results for
marbling. Individually, tasks are distributed to render the
fluid properties to textures in real-time. While the CPU
manages the input/output routines for the user’s interaction
and starts the computation of paint undulations and lighting

(Sec III-D); the GPU manages the GLSL algorithms,
simulating the fluid flows, and combining the textures to
render the painting.

D. The System Architecture

The domain simulation is discretized into a two-
dimensional grid, in which both the velocity field and density
field are represented as textures. Henceforth, we will name
density texture to define the representation of the digital
paints (fluids) and velocity texture to define the vector field
in which the paints will be transported.

Since fluid flow simulation is executed on the GPU, there
is an interaction among all the shader programs (shaders for
rendering and the fluid simulation) used to provide real-time
feedback to the user. The whole process is systematized in
Fig. 3. The light blue objects represent routines of the fluid
flow library (syfluid [11]) that we explored and adapted to
our system, the yellow objects are responsible for rendering
the paints with undulations and light interactions. To these
purposes, we employed and adapted the routines provided
at [12]. The red objects correspond to our communications
and rendering approaches.

The CPU is responsible mainly for two tasks: the domain
transformations from the user position on the electronic
input devices to the fluid flow domain simulation, and the
generation of the gradient lookup tables used for simulat-
ing paint undulations and lighting. The GPU processor is
responsible for the three core process, each one represented
by a block in Fig. 3.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 354

CPU GPU

Input-device
(Electronic tools)

User input

A

Output-device
(Touchscreen)

Density field

Marbling paints

C

Velocity field

Domain position

B

Convert
motion

coordinates
to domain

3D Point Light

Color density

Generate
Gradient

Lookup Table

Generate GPU
Color TextureLookup table

GPU
Color Texture

Density color layer

Paint
sharpening

User color selection

Sharpening
Process

Blending Paint

Paint highlight

Multilayer Paints

Syfluid
density model

shaders

Calculate Density

Calculate Velocity

Syfluid
velocity model

shaders

Figure 3. Our digital marbling process: distribution of tasks of each processor in which the interaction between shaders is realized in the GPU processor.

Block A aims at creating the velocity texture and ensuring
the incompressibility property. At this block, the displace-

ment force vectors the users provided from the interface
interaction is received. This block is the first to be executed,

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 355

and the velocity field is sent to Block B.
Block B has the purpose of creating of the density texture,

that is the digital paints that will be generated according
to the colors selected by the users. This process is the
second to be executed. Both Blocks A and B have routines
that employ shader programs that solve Eq. 1-2 [11]. It is
worth to mention that shaders of this library were adapted
to our purpose to support multi-layer densities, allowing
manipulating effectively several color paints simultaneously.

Block C provides the multi-layer paint rendering (Sec.
III-E). This block processes two input textures: one for the
color assigned to the paint (GPU Color Texture) and other
for the fluid data density obtained from Block B (Density
field). These inputs are adequately blended to define the
final rendering painting. In the next section, we detail such
a rendering pipeline.

E. Multilayer Rendering

To guarantee that the distinct paint colors inserted by
the artist are preserved – the property of the traditional
paper marbling, named ox-gall effect [13] – we provide in
our system a GPU-based multilayer paints technique [2].
Besides, our multilayer rendering incorporates 3D lighting
and paint undulation to become the painting rendering more
realistic.

For each layer color, the rendering pipeline is triggered.
It begins with a blending of the GPU Color Texture with
the Density field. Then, Paint Sharpening (next section) is
applied to correct the paint contours.

The next step relies on simulating the 3D lighting and
paint undulation. In this stage, we employ the technique
proposed by [12] that computes light effects and gradient
colors on lookup tables on CPU. These data are transferred
to the GPU as textures where we apply a shader-based a
point light rendering.

Paint Sharpening: In the process of creating textures by
fluid flow simulation, blurring effect is expected to arise
(Fig. 4-(a)) due to the dissipation effect produced by the
solver [14]. Therefore, to improve the quality of the paint
contours, we applied a shock filter [15], [16], which we
also implemented in a shader program. The effect of this
filter can be seen in Fig. 4-(b). However, the shock filter
can produce aliased contours, as expected. Indeed, we
also needed to apply the anti-aliasing of the OpenGL, as
depicted in Fig. 4-(c).

IV. RESULTS

To illustrate the use of our prototype during the creation
of digital marbling patterns, in the next we present
functionalities of our system.

(a) (b) (c)

Figure 4. Paint Sharpening: The top row presents a initial blue drop of
paint and the bottom row presents a zoom-in at the contour of the drop.
(a) Initial paint flow, (b) paint with Shock Filter, (c) paint with shock filter
and antialiasing.

A. Creating paints

Fig. 5 provides a sequence of steps to create paint
using the Eyedropper Tool. In detail, the user chooses the
Eyedropper Tool from the painting toolbar. After the user
selects paint color and then optionally sets the maximum
size of the drop paint. Next, the user puts the paint on the
design area with a single click (with the touchscreen, mouse
or drawing table) in which a small drop is defined. If the
user holds (or increase the pressure with of the pen of the
drawing table), the drop increases until the maximum size
previously defined. If the user holds and drags, a stripe-shape
of paint is inserted. Finally, the user saves and exit of the
window.

Figure 5. Create paint with Eyedropper Tool.

Figure 6 depicts the creation of multiple (two in the
example) paints at the same time using a multi-touch screen.
Specifically, the user chooses the tool Brush from the

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 356

painting toolbar. After that, optionally, the user selects paint
color since the default color is blue and chooses the size
of the paint to draw. Next, the user creates the paint in the
design area with two touches onto the screen. Finally, the
user saves and exit of the window.

Figure 6. Create paint with brush.

B. Marbling Patterns

Digital marbling patterns are the results of paint move-
ments performed by the user while using the needle and
comb tools mentioned in Sec. III-A.

Needle tool allows making one movement per time (Fig.
7), whereas the comb tool allows to multiple movements
(Fig. 8).

In Figure 7, it is presented the use of the needle tool and
the eyedrop. First, it is created the layers, i.e. each color
with eyedropper tool (Fig. 7-(b), (c), (d), (i)) and then is
made a texture spreading (Fig. 7-(e), (f), (g), (h)), creating
the final pattern (Fig. 7-(j)).

The comb tool allows moving the paints in different
directions. These movements are essential to get unique
marbling patterns. Fig. 8 shows this tool and the final
pattern obtained with five colors (layers) with bottom-up
movements.

C. Change Color Paint

Our system provides color changes for existing paints, i.e.,
in the case where a user wants to change the color of the
paints created in the design area, the user can accomplish
this task. In Fig. 9-(a) can observe up a butterfly in the design
area. It is possible to change the paint color by layer option
of our system. For this, consider a sequence the steps to
accomplish this task, starting when the user creates the paints
or design in the design area. After that, the user chooses
the Layers option from the painting toolbar, then selects the
color layer to change in the pop-up window (Layer in Fig.

9-(a)). Finally, the user selects the color wanted to replace
(Fig. 9-(b)).

With previous information, artists can create their designs.
Some results obtained through our systems are shown in Fig.
10.

D. Performance

We develop our application entirely on C++ and GLSL
shader language. We performed our tests for two PC con-
figurations: a PC with an Intel i5 processor, 4GB memory
and NVIDIA GeForce GT 540M graphics card; and a PC
with an Intel i7 processor, with 32GB memory and NVIDIA
GeForce GTX 970 4GB graphics card, indicated as GPU1
and GPU2, respectively, in Table I. The results are presented
in frames per second (FPS), in which eight layers were used
for GPU1 and 20 layers for GPU2. In each layer was applied
the comb tool for the creation of marbling patterns.

Table I. Fluid Flow Solver Domain vs. PC configuration: Results presented
in FPS.

GPU1 GPU2
256×256 10 41.6
512×512 1.42 27
1024×1024 0.43 6.36

In Table II we present the processing time footprint when
shock filter is applied, considering the GPU2. It can be
observed that shock filters only increase 4% for the lowest
grid resolution and 16% for the highest-resolution grid. On
average, when considering the 512×512 grid, which is the
default resolution employed in our tests, the shock filters
costs in average 10%.

Table II. Fluid Flow Solver Domain vs. Visual Effect: Results presented in
FPS.

With
Shock Filter

Without
Shock Filter

256×256 43.4 41.6
512×512 29.5 27
1024×1024 7.4 6.36

Even though our system can create digital paintings with
multiple colors, it is limited to the capabilities of the GPU.
In particular, the GPU2 delivers up to 25 colors with a 512×
512 grid resolution.

Finally, this performance is reflecting in Fig. 11, when
we present the employment of our application by users
in a digital table in real-time and in Fig. 12 we show a
blending of results of our technique with paper-like texture,
simulating the transfer of the (digital) painting to a paper.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 357

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Pattern Marbling using the needle tool: (a) Eyedropper and needle tools, (b) First layer, (c) Second layer, (d) Third layer, (e) Up-bottom movement,
(f) Left-right movement, (f) Right-left movement, (e) Bottom-up movement, (g) Fourth layer, and (h) Final design.

Figure 8. Pattern Marbling using comb tool with 3 teeth.

V. CONCLUSION

We have successfully developed a real-time digital mar-
bling system, which provides the artists with an more natural
work interface, with the same working tools on its digital
version.

Crucial future work is the development of a undo simula-
tion tool. There are enormous challenges in the development
of an effectively undo approach. For instance, we should
track both previous time-steps of the fluid simulation and
the artist manipulation. Trivial solutions lead to large mem-
ory footprint, with is prohibitive for real-time simulations.
Indeed, an in-depth investigation related to GPU-based data
structures [17], [18] and systems of fluid flow simulation
with support to restarting fluid simulation [19], [10] must
be conducted.

Acar & Boulanger [20] presented a multi-scale fluid
model that allows simulating both laminar and turbulent
flows. This approach also enables to control the effect of
the paint fluctuations at distinct scales. The provided results
were exciting. However, to the best of our knowledge, the

(a)

(b)

Figure 9. Change the colors of a layer of paint: (a) Initial painting; (b)
re-painting after changing the color.

authors did not discuss how to tailor their approach to
an easy user-interface. Specifically, the behavior of their

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 358

(a) (b)

(c) (d)

Figure 10. Results from our Digital Marbling System: (a) 5 layers, (b) 6 layers, (c) 17 layers and (d) 13 layers.

technique when simulating the traditional marbling patterns
as well as arguing about real-time simulation and GPU-
based implementations. We believe this work opens up
essential avenues to improve the fluid-simulation of the
present technique.

Moreover, to provide users with greater options for the
creation of patterns, other spreads on the paints could be
implemented, based on the implementation performed in this
work. The University of Washington Library [21] provides
32 distinct patterns drawn around the world through paper

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 359

Figure 11. Examples of the use of our application in a Digital Drawing
Table

marbling.

Acknowledgements

We thank FAPESP-Brazil (PROC. NO. 2014/11067-1)
for grant support and CAPES-Brazil for the scholarship to
Candy Tenorio Gonzales.

REFERENCES

[1] X. Mao, T. Suzuki, and A. Imamiya, “Atelierm: A physically
based interactive system for creating traditional marbling
textures,” in Proceedings of the 1st International Conference
on Computer Graphics and Interactive Techniques in
Australasia and South East Asia, ser. GRAPHITE ’03. New
York, NY, USA: ACM, 2003, pp. 79–ff. [Online]. Available:
http://doi.acm.org/10.1145/604471.604489.

[2] X. Jin, S. Chen, and X. Mao, “Computer-generated marbling
textures: A gpu-based design system,” Computer Graphics
and Applications, IEEE, vol. 27, no. 2, pp. 78–84, March
2007.

[3] R. Ando and R. Tsuruno, “Vector fluid: A vector
graphics depiction of surface flow,” in Proceedings of
the 8th International Symposium on Non-Photorealistic
Animation and Rendering, ser. NPAR ’10. New York,
NY, USA: ACM, 2010, pp. 129–135. [Online]. Available:
http://doi.acm.org/10.1145/1809939.1809954.

[4] S. Wen, “Digital Marbling: a GPU Approach with Pre-
computed Velocity Field,” Internet, University of Waterloo,
Tech. Rep. [Online]. Available: https://cs.uwaterloo.ca/sites/
ca.computer-science/files/uploads/files/CS-2014-08.pdf.

[5] S. Lu, A. Jaffer, X. Jin, H. Zhao, and X. Mao, “Mathemat-
ical marbling,” Computer Graphics and Applications, IEEE,
vol. 32, no. 6, pp. 26–35, Nov 2012.

[6] R. Grossman, Digital Painting Fundamentals with Corel
Painter 11, 1st ed. USA: Course Technology PTR, 2009.

[7] J. Stam, “Real-time fluid dynamics for games,”
in Proceedings of the Game Developer Conference,
vol. 18. Citeseer, 2003. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6736.

[8] S. Eroglu, B. Weyers, and T. Kuhlen, “Fluid sketching:
Bringing ebru art into vr,” in Mensch und Computer 2018
- Workshopband, R. Dachselt and G. Weber, Eds. Bonn:
Gesellschaft fr Informatik e.V., 2018.

[9] D. Wolff, OpenGL 4 Shading Language Cookbook, 2nd ed.
Packt Publishing, 2013.

[10] M. Tomé, J. Cuminato, N. Mangiavacchi, S. McKee et al.,
“GENSMAC3D: a numerical method for solving unsteady
three-dimensional free surface flows,” International Journal
for Numerical Methods in Fluids, vol. 37, no. 7, pp. 747–796,
2001.

[11] sy2002, “Syfuid,” http://www.sy2002.de/, 2014, [Online; ac-
cessed 2016-06-30].

[12] Phagor, “Simple Fluid Dynamics Sketch,” https:
//www.openprocessing.org/sketch/197, 2013, [Online;
accessed 2016-06-20].

[13] H. Zhao, X. Jin, S. Lu, X. Mao, and J. Shen, “Atelierm++: A
fast and accurate marbling system,” Multimedia Tools Appl.,
vol. 44, no. 2, pp. 187–203, Sep. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11042-009-0290-z.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 360

Figure 12. Blending of results of our technique with a paper-like texture, simulating the transfer of the (digital) painting to the paper.

[14] J. Stam, “Stable fluids,” in Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’99. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121–
128. [Online]. Available: http://dx.doi.org/10.1145/311535.
311548

[15] J. Novosad, “Advanced High-Quality Filtering,” 2005.
[16] S. Osher and L. I. Rudin, “Feature-oriented image

enhancement using shock filters,” SIAM J. Numer. Anal.,
vol. 27, no. 4, pp. 919–940, Aug. 1990. [Online]. Available:
http://dx.doi.org/10.1137/0727053.

[17] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D.
Owens, “Glift: Generic, efficient, random-access gpu data
structures,” ACM Transactions on Graphics (TOG), vol. 25,
no. 1, pp. 60–99, 2006.

[18] M. Labschütz, S. Bruckner, M. E. Gröller, M. Hadwiger,
and P. Rautek, “Jittree: a just-in-time compiled sparse gpu
volume data structure,” IEEE transactions on visualization
and computer graphics, vol. 22, no. 1, pp. 1025–1034, 2016.

[19] H. Jasak, A. Jemcov, Z. Tukovic et al., “OpenFOAM: A C++
library for complex physics simulations,” in International
workshop on coupled methods in numerical dynamics, vol.
1000. IUC Dubrovnik, Croatia, 2007, pp. 1–20.

[20] R. Acar and P. Boulanger, “Digital marbling: a multiscale
fluid model,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 4, pp. 600–614, July 2006.

[21] U. of Washington Libraries, “Marbled Paper Patterns,” http:
//content.lib.washington.edu/dpweb/patterns.html, 2017, [On-
line; accessed 2017-01-11].

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 361

View publication stats

https://www.researchgate.net/publication/330940964

© Sparvoli et al. Published by
BCS Learning and Development Ltd.
Proceedings of Proceedings of EVA London 2017, UK

DOI: http://dx.doi.org/10.14236/ewic/EVA2017.7

42

NUI-Marbling

Marina Sparvoli Candy Tenorio Mario Gazziro João Paulo Gois
UFABC UFABC UFABC UFABC

Santo André, SP, Brazil Santo André, SP, Brazil Santo André, SP, Brazil Santo André, SP, Brazil
marina.sparvoli@ufabc.edu.br candy.tenorio@ufabc.edu.br mario.gazziro@ufabc.edu.br joao.gois@ufabc.edu.br

1. INTRODUCTION

Natural user interface (NUI) can be defined as
human-computer interaction systems in which the
user employs intuitive actions based on the human
behaviour. Common examples of NUI interfaces
are those ones that use multi-touch screens,
gesture and sound recognition systems, and
painting tablet devices. Paper marbling is a painting
approach in which the artist uses proper tools – as
combs and brushes – to interact with the paints
deposited on an aqueous surface, producing thus
marble-like paintings. These paintings are then
transferred to an absorbent paper, which are used,
for instance, as book cover. In this work, we
present a computational marbling system that
incorporate NUI to easy the generation of marbling
patterns.

2. PROCESSING AND DESIGNING

The NUI-marbling system was designed to be
capable of producing results in real-time and a
friendly user interface with support to graphics
tablets and multi-touch screen.

The user-interface, presented in Figure 1, provides
the main marbling options in one single window.
Namely, the system is composed of two regions:
the design area, where the artist paints her digital
marbling patterns; and the painting toolbar, which
offers tools employed by the artists and to adjust
the marbling simulation. User input is done by a
graphics tablet model Wacom PTK840 with 12×8
inches (Figure 2).

Our marbling system requires heavily processing
and data exchanges between the user interface
(paint rendering and processing input devices) with
solver of the Navier-Stokes equations. Specifically,
the process to create a marbling relies on:

 The preparation of system to receive the
paint by the artist;

 The computation of the domain
transformations and of the fluid density;

 The configuration of the graphics objects;
 The computation of the fluid flow

simulation;
 The conversion of the fluid flow simulation

to textures;
 The generation of the gradient colour paint;
 The displaying of the final result.

Specifically, the domain simulation is discretized
into a Cartesian two-dimensional grid, where the
velocity field and density field are stored in shader
textures. Since fluid flow simulation is executed on
the GPU, there is an interaction among all the
shader programs (for rendering and also for the
fluid simulation) used to provide a real-time
feedback to the user.

Our NUI-marbling system provides a support to
GPU-based multilayer paints ensure that the
distinct paint colours inserted by the artist are
preserved. It is a property of the traditional paper
marbling ensured by our approach.

The artistic results are presented in Figures 3 to 6.

4. ACKNOWLEDGMENTS

We thank the local artists Mirtes Ribeiro, Marina
Sparvoli, Fernanda Wassano and Ana Queiroz for
voluntarily using our tool and producing the artistic
results presented in this paper.

5. REFERENCES

Jin, X., Chen, S., Mao, X. (2007) Computer-
generated marbling textures: A GPU-based design
system. Computer Graphics and Applications, IEEE
27(2), pp. 78–84.

Stam, J. (1999) Stable fluids. In Proceedings of the
26th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH '99). ACM
Press/Addison-Wesley Publishing Co., New York,
NY, USA, pp. 121–128.

NUI-Marbling
Mario Gazziro, Candy Tenorio, Lucio Freitas & João Paulo Gois

43

Wigdor, D., Wixon, D. (2011) Brave NUI World:
Designing Natural User Interfaces for Touch and
Gesture, 1st. ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Figure 1: The interface of the application.

Figure 2: Natural interaction with a graphics tablet.

Figure 3: Two-Hearts painting.

Figure 4: Sakura blossom.

Figure 5: Tulips.

Figure 6: Chocolate Art Lady.

