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Abstract: This paper presents new perspectives on photonic technologies for capsule endoscopy. It
first presents a review of conventional endoscopy (upper endoscopy and colonoscopy), followed by
capsule endoscopy (CE), as well as their techniques, advantages, and drawbacks. The technologies
for CEs presented in this paper include integration with the existing endoscopic systems that are
commercially available. Such technologies include narrow-band imaging (NBI), photodynamic
therapy (PDT), confocal laser endomicroscopy (CLE), optical coherence tomography (OCT), and
spectroscopy in order to improve the performance of the gastrointestinal (GI) tract examination. In
the context of NBI, two optical filters were designed and fabricated for integration into endoscopic
capsules, allowing for the visualization of light centered at the 415 nm and 540 nm wavelengths.
These optical filters are based on the principle of Fabry-Perot and were made of thin films of titanium
dioxide (TiO2) and silicon dioxide (SiO2). Moreover, strategies and solutions for the adaptation of
ECs for PDT are also discussed.

Keywords: capsule endoscopy; endomicroscopy; endoscopy; GI tract; NBI; optical filters; PDT

1. Introduction

Since there is no single method for correctly identifying all types of pathologies of the
gastrointestinal tract (some methods are better at detecting tumors while others are better
at detecting bleeding, etc.) we need to combine several techniques in order to achieve the
best results using capsule endoscopy technology. This means that this paper is organized
in sections to describe some of these start-of-the-art techniques.

1.1. Organization of the Paper

After an introductory section explaining the origins and advent of endoscopic capsules,
the paper presents the benefits, contraindications, and drawbacks of its utilization. Next,
its use in the main pathologies that affect the gastrointestinal tract is presented, and some
of the commercial devices for capturing images and videos elucidating their technological
mechanisms of scientific operation are presented in detail.

1.2. Capsule Endoscopy Origins

Due to the rapid development of medical devices, procedures that were previously
invasive and causing discomfort became painless and almost imperceptible to the patients.

Bioengineering 2023, 10, 1347. https://doi.org/10.3390/bioengineering10121347 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10121347
https://doi.org/10.3390/bioengineering10121347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-3620-0533
https://orcid.org/0000-0002-6951-0063
https://orcid.org/0000-0002-8961-5196
https://orcid.org/0000-0001-7955-7503
https://doi.org/10.3390/bioengineering10121347
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10121347?type=check_update&version=1


Bioengineering 2023, 10, 1347 2 of 27

In this context, so-called “medical images” are intended to provide clinicians with the
ability to internally view the human body noninvasively and make the diagnosis more
accurate and secure [1–4]. To reach this level, optical techniques have been very important
for researchers and technology developers, because they are based on the analyses of light
as a result of its interaction with matter, e.g., reflection, transmission, absorption, refraction,
and diffraction [5–9].

In most cases, to perform the observation, diagnosis, and sometimes even treatment of
pathologies in the gastrointestinal (GI) tract, a technique called endoscopy is used. The en-
doscopy of the GI tract is divided into upper endoscopy (or esophagogastroduodenoscopy,
EGD) [10] and lower endoscopy (or colonoscopy) [11]. Figure 1a,b illustrate two types of
endoscopic procedures, upper and lower, respectively. It can be observed that there are still
some areas where conventional endoscopy is not able to reach. This restriction limits the
possibility of detecting common anomalies like bleeding, ulcers, and tumors while they are
in the early stages. In this way, the opportunity to control or even cure diseases before the
need for complex treatments is lost [12].
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Since the absence of accurate diagnosis often results in the degradation of symptoms
and the rapid development of a disease, in order to improve diagnostics, a group of re-
searchers from Baltimore invented the concept of a wireless endoscopic capsule in 1989 [13].
Later, in 2000, this concept was introduced by Given Imaging Inc., Duluth, GA, USA [14].
This technology brings to mind the futuristic concept in the 1966 movie “Fantastic Voyage”,
where a submarine along with its crew is reduced to a microscopic size and injected into
the bloodstream of a terminal patient to travel into a specific part of its body to destroy
a malignant tumor with a LASER gun. The technology of wireless endoscopic capsules
has revolutionized gastroenterology and simultaneously promoted a new diagnostic per-
spective on the GI tract that previously could only be achieved by surgery, such as certain
portions of the small intestine [14]. Figure 1c shows an endoscopic capsule exam in the
small intestine, which cannot be accessed with conventional endoscopy in most cases.

This paper focuses on the role of new endoscopic imaging technologies that emerged
from the need for better visualization of gastrointestinal tract mucosa. These improvements
are expected to provide more precise information for endoscopists, surgeons, physicians,
and radiologists.
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2. Capsule Endoscopy
2.1. Benefits of Capsule Endoscopy

There are multiple benefits offered by CE. First, the patients do not need sedation to
undergo a CE analysis. The CE can analyze the entire GI tract from the esophagus, passing
through the stomach, until the small intestine, which could not be properly analyzed
through conventional endoscopy. The capsule has the size of a conventional vitamin
capsule, and it can be easily swallowed, moving naturally through the GI tract until
excretion. This fact indicates a painless procedure compared with the discomfort suffered
by the long endoscopy sessions [15].

2.2. Drawbacks of Capsule Endoscopy

Despite all the benefits that a capsule endoscopy may offer, the drawbacks must also
be considered. These disadvantages are divided into technical and physiological. The first
group is related to the capsule itself, and the other one is related to the human body, or to
be more specific, to the gastrointestinal system.

Sussman and Kulkarni gathered data from different perspectives about the risks
encountered during capsule endoscopy [16]. The primary topics discussed in this study in-
cluded capsule retention [17], patency [18–20], difficulty swallowing and aspiration [17,21],
incomplete examination and suboptimal results [17,22,23], pediatric capsule endoscopy [24],
and bowel preparation [17,25–27]. Among the technical complications, the most common
problems were the presence of gaps in the recording, short duration or malfunction of the
battery, failure in the capsule activation, and the inability to download the images [17].

Moreover, Penazzio’s study concluded that the endoscopic capsule could not be
used to obtain biopsy specimens or for endoscopic treatment and could not be controlled
remotely either [28]. Therefore, the risks of capsule endoscopy should be carefully reviewed,
since every patient must be informed about possible complications that might arise after
capsule examination.

2.3. Indications of the Capsule Endoscopy

The use indication of a capsule endoscopy is mainly for small bowel disease evaluation,
due to the difficulty of diagnosis in this specific area. According to Jain [29], the indications
are divided into two subsections: small bowel and esophagus.

Related to small bowel analysis, the indications are: obscure gastrointestinal (GI)
bleeding, occult bleeding (positive FOBT), evaluation of iron deficiency anemia, Crohn’s
disease, indeterminate colitis, assessment of mucosal healing, abdominal pain, graft-versus-
host disease, surveillance of polyposis syndromes, celiac disease, suspected small bowel
tumors, follow-up of small bowel tumors, follow-up of small intestine transplantation,
evaluation of abnormal small bowel imaging, and evaluation of drug-induced injury.

Related to esophagus analysis, the indications are: Barrett’s esophagus (BE) and
esophagitis and variceal evaluation. The main indications of each type of capsule are
described in the following section. We note, however, that indications for esophagus
analysis are a matter of ongoing research studies.

2.4. Contraindications of Capsule Endoscopy

Capsule endoscopy contraindications have been divided into groups to better under-
stand safety issues. The two types of contraindications are the absolute and the relative ones.
Absolute use contraindications include bowel obstruction, extensive and active Crohn’s
disease, fistulas and strictures, intestinal pseudo-obstruction, and young children [29];
relative contraindications are for patients that have dysphagia, previous abdominal surgery,
pregnancy, diverticulosis, cardiac pacemakers, and implanted electro-medical devices [29].
Suspected esophageal injuries or traumatic ruptures, hiatus hernias, and any follow-up
for swallowed corpus alienum are also contraindications. The last two contraindications
have been excluded from the absolute group, since some studies noted no interference of
capsule endoscopy in the functioning of implantable devices [30,31].



Bioengineering 2023, 10, 1347 4 of 27

2.5. The Problem of Capsule Mobility

Up to now, it is undeniable that an EC is a major comprehensive device for physio-
logical measurements, with imaging and optical biopsy, as well as immunologic cancer
recognition [6]. Unfortunately, the available ECs are passive, meaning that it is impossible
to control their locomotion and steering for obtaining a better illumination and a higher
rate of images within a selected mucosa spot [32]. New approaches have been researched
in order to allow for the inclusion of such functions in ECs. In these contexts, two main
approaches are candidates for locomotion control: internal and external. The internal
approaches lead to on-board actuators such as vibratory actuators for self-propulsion [33],
pedundulatory locomotion [34], legged locomotion [35], or even a swimming capsule with
propellers [36]. These approaches reduce the tissue friction or push aside tissue around the
capsule to pass through a collapsed bowel of fold. Nevertheless, these approaches reduce
the EC’s life time and enlarge the size far beyond what is the standard (e.g., 26 mm in length
and 11 mm in diameter) [37]. Moreover, the vibration approach causes effects on the capsule
vision [38], whereas the legged approach could lead to the perforation of tissue or, even
worse, to a stuck position where a surgical intervention is required for capsule removal.
Additionally, these approaches need a considerable space for locomotion at the bowel wall.
Alternatively, the external approaches focus on a magnetic field established between the
EC and an external magnet controlled by an operator. Moreover, magnetic actuation is a
very important trend in future applications of ECs [39,40]. The magnetic approach does
not have mechanical parts, and therefore, it is not limited through the batteries, and at
the same time, it does not cause effects on capsule vision. An elastic magnetic bracelet for
attachment into ECs by covering its central portion was developed by Carpi et al. [41] and
allows the user to steer the capsule according to the operator needs. However, this solution
increases the total diameter of the EC, and it can result in an increased risk for the patient,
because the magnetic bracelet can release from the EC during an exam. One alternative
active magnetic platform for guiding endoscopic capsules (ECs) inside the human body
was developed by Silva et al. [42] using two permanent magnets of neodymium (Nd-Fe-B)
with a cylindrical shape and with a magnetization level of N48. One of the permanent
magnets is external, while the other is internal to the human body. The external magnet
provides a maximum magnetic field of 1.5 T and has a diameter of 11 mm and a length of
26 mm. The external magnet interacts with a small magnet placed inside the unit of an
EC with a diameter of 3 mm and a length of 8 mm. The mobility tests of their EC concept
were successfully validated through ex vivo clinical tests in porcine intestine. Another
magnetic approach was developed by Keller et al. [43] and is based on a modified MRI
system to control the navigation inside a water-filled stomach. This application provides
10 functions for basic capsule movements. The maneuverability of the EC is achieved by a
complex set of electromagnetic coils (from the MRI systems). This set contains 12 coils for
obtaining 5 + 1 degrees of freedom (DOF). This set of DOFs allows for magnetic steering in
five degrees and an additional one to turn the patient [43]. Finally, the work by Tai et al. [44]
resulted in a complex system of coils for providing magnetic levitation of the capsule by
way of electromagnetic forces and, thus, for facilitating and controlling its motion.

3. Indications of Esophageal Capsules
3.1. Screening for Barrett’s Esophagus

Barrett’s esophagus consists of a metaplastic change of the esophageal mucosa’s lining,
meaning that the columnar epithelium replaces the squamous epithelium that normally
overlays the distal esophagus [45–47]. Barrett’s esophagus is an important risk factor
for indication of esophageal adenocarcinoma, and several studies have indicated that its
incidence has increased rapidly over the years [48,49]. The studies comparing the diagnostic
yield between CE and conventional EGD demonstrated that CE was feasible, safe, and
well tolerated by the patients. Moreover, the patients always preferred CE over unsedated
EGD. On the other hand, the sensitivity of the esophageal capsule was variable between the
detection of BE and another esophageal disease: 60–100% and 50–89%, respectively [50,51].
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Although the results in terms of sensitivity are promising, studies have suggested that EGD
is more cost-effective than CE for BE screening [52].

3.2. Screening for Esophageal Varices

The use of CE for detecting esophageal varices is not well defined due to the fact that
all the studies present considerable heterogeneity between their findings.

Pena et al. found that an esophageal capsule could be used in the assessment of
esophageal varices (EV). The sensitivity calculated in this study was 68.4% in detecting
EV using CE against 95% using EGD. However, due to the minimal discomfort, lack of
sedation, and low risk offered by CE, this technology is a possible substitute for EGD [53].

Groce’s study showed a sensitivity of CE in detecting EV around 78% and that CE
may be superior to EGD for identification of small EV [54]. On the other hand, Einsen’s and
Smith’s study indicated a better perspective on CE tests, with sensitivity reaching up to
100% [55,56]. The same results were found in Ragunath’s study [57]. The lowest sensitivity
was showed in Jensen’s study, where it was only 8.3%, with modest accuracy of the CE in
the identification of EV [58].

4. Indications of Intestinal Capsules
4.1. Intestinal Tumors

Tumors found in the small bowel (SB) represent 5% of all GI tract tumors and 2% of the
cancer rates, despite a very low accuracy of the estimative, since the current methodologies
have been proven to be inadequate [59]. On the other hand, the investigation of small bowel
tumors with CE, an effective diagnostic modality, was established in 2004, and 8.9% of the
patients who underwent the procedure were diagnosed with SB tumors. The expectation of
the clinicians was that CE may lead to earlier detection and treatment of SB tumors, thereby
improving the results for patients with neoplasms [60].

4.2. Obscure GI Bleeding

Obscure GI bleeding can be defined by episodes of digestive bleeding, a positive fecal
occult blood test, or chronic iron-deficiency anemia [61,62]. The complexity of GI bleeding
relates to the fact that the bleeding can occur from multiple lesions at many sites in the
GI tract. This pathology is evident to the patient but can be from a source which is not
easily identifiable via conventional upper or lower endoscopy [63]. For that reason, and
based on meta-analysis studies, the diagnostic yield of intestinal capsules ranges from
55% to 81%, which confirmed the superiority of CE diagnosis against other modalities of
conventional endoscopy [64–66]. Figure 2 shows the small bowel findings of obscure GI
bleeding achieved with intestinal CE.

4.3. Crohn’s Disease

Crohn’s disease is an inflammatory disease of the GI tract and often spreads deep
into the layers of affected tissue. It can occur from the mouth to anus [68], although the
probability of its incidence in the small bowel ranges from 30% to 40% of cases [69,70].

Generally, in order to identify an occurrence of Crohn’s disease, the clinicians must
rely on a combination of clinical, endoscopic, and histological findings, because there is no
single test that can fully diagnose the disease. Imaging studies normally lack sensitivity to
be able to identify early lesions [29].

Schulmann et al. tested capsule endoscopy for the purpose of finding evidence of
Crohn’s disease, and at that time, they agreed that full visualization and imaging of
the entire length of the SB was unsatisfactory, and CE was considered a promising new
approach for the diagnosis of SB diseases [71].
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Figure 2. Spectrum of small bowel findings identified via capsule endoscopy (CE) in patients with
obscure gastrointestinal bleeding (OGIB). (A) Nonbleeding angioectasia, (B) active bleeding, (C) ulcer
with stenosis, (D) small bowel erosion, (E) submucosal mass, and (F) polyp [67].

Albert et al. compared CE with magnetic resonance imaging (MRI) and found that
CE can detect limited mucosal lesions that may be missed by MRI and was slightly more
sensitive than MRI: 12 versus 10 of 13 in suspected Crohn’s disease and 13 versus 11
of 14 in established Crohn’s disease [72]. Based on the stated facts, CE proved to be a
good complementary method for diagnosing SB Crohn’s disease. More recently, Sange
et al. state that CE innovation reduced reading time, improved diagnostic accuracy, and
enhanced image quality [73]. Figure 3 presents findings of active Chron’s disease detected
via intestinal CE.

4.4. Celiac Disease

The use of capsule endoscopy in patients with celiac disease consists of finding com-
plications such as unexplained diarrhea, abdominal pain, and small bowel tumors. Fry et al.
found a low yield for capsule endoscopy in patients with abdominal pain or diarrhea, and
they recommended this type of evaluation as a first-line test. Moreover, the results showed
a yield of 6% for abdominal pain, 14% for diarrhea, and 13% for both [75]. Based on the
experiments conducted by [76–79] and presented at the ICCE consensus, for the diagnosis
of Celiac disease with CE, Cellier et al. considered that there was enough evidence to



Bioengineering 2023, 10, 1347 7 of 27

support the use of CE in patients who have been treated and previously confirmed to have
celiac disease [80].
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4.5. Genetic Disorders

Soares et al. performed a study about Peutz-Jeghers syndrome (PJs)—an inherited
gastrointestinal polyposis disorder, most commonly found in the small intestine. They
found that CE offered excellent visualization of the small intestine and correctly identified
all the patients having large polyps, although it missed 20% of the total number of them [81].

5. Commercial Capsules

Since the early years of conventional endoscopic procedures, the small bowel has been
considered technically difficult to examine due to its length and location. The concept
of a capsule indicated for small bowel analysis was developed by two groups. In 1996,
a gastroenterologist named Dr. Paul Swain demonstrated the first live transmissions of
a capsule analysis using a pig’s stomach. In 1997, he decided to collaborate with Dr.
Gavriell Iddan, a mechanical engineer [14,82,83]. In 2000, they published successful animal
trials [82], and in 2001, they published human studies on the use of capsule endoscopy in
clinical trials [14,84]. At this time, the Food and Drug Administration (FDA) approved the
capsule endoscopy [62].

Previously, the small bowel was a difficult organ to explore with the available tech-
nologies, such as conventional endoscopy or radiological and nuclear techniques, due
to anatomical or physiological causes. In 2005, the role of the capsule endoscopy was
widely discussed at the International Conference on Capsule Endoscopy (ICCE) [81,85–90],
a symposium organized and sponsored by Given Imaging.

Nowadays, there are several brands of capsules which are approved by the FDA, like
PillCam by Given Imaging, OMOM by Jinshan Science & Technology, EndoCapsule by
Olympus, and MiroCam by Intromedic (Seoul, Republic of Korea). Next, we describe each
capsule, its advantages, drawbacks, and main components.

The approval from the FDA for the PillCam SB capsule was received in 2003, and
the market release was indicated for use in pediatric patients, aiming specifically at the
diagnosis of pathologies of the small bowel [65,91].

The PillCam capsules produced by Given Imaging Inc., Duluth, GA, USA, are divided
into three categories, small bowel (SB), esophagus (ESO), and colon (COLON), which have
video cameras designed for imaging the gastrointestinal tract. Each of them is equipped
with a battery, LEDs (light-emitting diodes), and a transmitter with an antenna. All these
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components are enwrapped in a biocompatible plastic casing, and the capsule size is about
26.4 mm length and 11.4 mm diameter [92].

The PillCam SB category is subdivided into SB, SB2, and SB3. PillCam SB capsules
incorporate one video camera. PillCam SB2 consists of a fixed-frame-rate second-generation
capsule, and the PillCam SB3 has enhanced imaging capabilities with an adaptive frame
rate (AFR) [92]. These capsules are indicated for the monitoring of lesions that may show
Crohn’s disease that is not detected through upper and lower endoscopy. They are not
indicated for patients with GI obstruction, strictures, or fistulas, patients with cardiac
pacemakers or any implanted electro-medical devices, and for patients with dysphagia or
other swallowing disorders.

The PillCam ESO category has two variants—PillCam ESO 2 with a fixed high-frame
rate and PillCam ESO 3 with a fixed high-frame rate and enhanced imaging capabilities [92].
The PillCam ESO capsules are composed of two video cameras, and they can be used for
the investigation of esophageal disorders, such as esophageal varices, esophagitis, and
Barret’s esophagus [93], and in patients complaining about heartburn [94,95].

The PillCam COLON capsules also contain two video cameras, and this category is
divided into two variants—COLON 1 has a fixed-frame-rate capsule, while COLON 2 has
an enhanced imaging capability, AFR- [92]. Both PillCam ESO and PillCam COLON are
contraindicated for patients with the profile already described in the PillCam SB section.
This capsule is indicated to investigate intestinal disorders and tumors.

After various studies showing the risks of capsule retention, Given Imaging Inc.
created the Patency Capsule (PC) System, an ingestible, dissolvable, and disposable capsule,
composed of biocompatible materials. The patency capsule is given before a video capsule
endoscopy in order to prevent or minimize the risk of capsule retention [96]. The body of
the capsule is composed of compressed lactose that dissolves in GI liquids and 5% barium
sulfate, which makes the capsule radiopaque. The system is composed of a nonvideo
disintegrating capsule, radiofrequency identification (RFID) tag, and an RFID scanner [97].
The PC is supposed to remain intact in the GI tract for about 80 h according to its design,
and after that, if not excreted yet, it disintegrates spontaenously [98].

In 2005 Jinshan Science and Technology Company (Chongqing, China) released to
the market the OMOM CE. This CE is indicated for investigating obscure gastrointestinal
bleeding (OGIB), abdominal pain or diarrhea, partial intestinal obstruction, suspected
inflammatory bowel disease, and tumors [99]. A study showed that the visualization of
the entire small bowel was achieved in 75% of patients who had undergone the procedure
with the OMOM. In the patients with suspected small bowel (SB) disease, the detection of
abnormalities was 70.5%. The diagnostic yield for patients with OGIB was 85.7%, while the
detection in cases of abdominal pain or diarrhea was around 53.3% [99].

Olympus Medical Systems (Olympus, Tokyo, Japan) received marketing clearance
from the FDA in 2007 for their EndoCapsule endoscope system [100]. This capsule was
compared with the PillCam SB and classified with the same quality level by Pennazio [28]
et al. The EndoCapsule capsule contains a camera, a transmitter, batteries, and a light
source. It differs from the PillCam capsule in that it has a high-resolution image chip and
an external real-time viewer [101,102].

A prospective randomized comparison between both capsules—Given PillCam SB and
Olympus EndoCapsule—was carried out by Hartmann et al. In this study, it was shown that
the Olympus EndoCapsule could detect more GI bleeding sources than the Given PillCam
SB, although the difference was only numerical and statistically nonsignificant [103].

The Korean MiroCam (Intromedic) is another capsule with similar components to the
capsules from Given Imaging and Olympus. The first clinical trial using MiroCam was in
2009, involving 45 patients. The quality of the image was rated as good in 91.1% of the
cases, and the transmission rates of the captured image in the stomach, small bowel, and
colon were 99.5%, 99.6%, and 97.2%, respectively. The authors disclosed that MiRo was safe
and effective for investigating the entire SB, offering a good image quality and real-time
feasibility [101].
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Moreover, a study carried out in 2012 showed that the evaluation of the entire SB
using MiRoCam was achieved in 96% cases, and relevant lesion findings occurred in 58%
of patients. They also considered MiRoCam a safe and effective tool for exploring SB with
a high completion rate [104]. Table 1 summarizes the commercial capsules available, as
well as the indications, imaging system, size, and respective references with studies about
each type of capsule.

Table 1. Commercial capsules.

Capsule Company Indication Imaging System Size (Diam. ×
Length) References

PillCam SB Given Imaging Inc.
For pediatric patients;

diagnosis of small
bowel pathologies

1 video camera;
2 fps 11.4 mm × 26.4 mm [65,91]

PillCam SB2 Given Imaging Inc. For diagnosis of small
bowel pathologies

1 video camera
with fixed high
frame rate; 2 or

4 fps

11.4 mm × 26.3 mm [92]

PillCam SB3 Given Imaging Inc. For diagnosis of small
bowel pathologies

1 video camera;
enhanced imaging

capabilities and
AFR; 2 fps or

2–6 fps

11.4 mm × 26.2 mm [92]

PillCam ESO 2 Given Imaging Inc. For investigation of
esophageal disorders

2 video cameras;
19 fps 11.4 mm × 26.4 mm [92–95]

PillCam ESO 3 Given Imaging Inc. For investigation of
esophageal disorders

2 video cameras;
35 fps 11.6 mm × 31.5 mm [92–95]

PillCam COLON Given Imaging Inc. For investigation of
intestinal disorders

2 video cameras
and AFR; 4 fps 11.4 mm × 31 mm [92]

PillCam COLON 2 Given Imaging Inc. For investigation of
intestinal disorders

2 video cameras
and AFR; 4–35 fps 11.6 mm × 31.5 mm [92]

Patency System Given Imaging Inc.

For detecting
obstructions or

strictures in the GI
tract

None
(radiofrequency

identification
(RFID) detected by
an RFID scanner)

11.4 mm × 26.4 mm [97]

OMOM
Jinshan Science
and Technology

Company

For investigation of
OGIB, abdominal pain

or diarrhea,
inflammatory bowel
disease, and tumors

1 video camera;
2 fps 13 mm × 27.9 mm [99]

EndoCapsule Olympus Medical
Systems

Detection of GI
bleeding

1 video camera
and

high-resolution
image chip

11 mm × 26 mm [28,100–102]

MiRoCam Intromedic
For investigation of

stomach, small bowel,
and colon

1 video camera;
2 fps 10.8 mm × 24 mm [102,104]

6. New Functionalities for Capsule Endoscopy

Although numerous results from clinical studies and experiments of endoscopic
capsules are being presented, the unfeasibility of motion control of the capsule makes the
diagnostic of the gastrointestinal tract insufficiently accurate. Since the impossibility of
any motion control of the capsule has arisen, studies about possible solutions for motion
control have been described in some patents [105–108].

The basic concept behind these patents were capsules being intrinsically controllable
by including induction coils or magnetic parts inside an invented capsule structure in the
interest of making it responsive to an external magnetic field. However, as this kind of
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solution required a characteristic design, like the structure of capsule, geometrical shape,
and magnetic properties, the costs of these would be raised.

Moreover, a different solution by Carpi et al. [109] was disclosed in 2006, which on the
contrary allowed for the control of a traditional and commercially available endoscopic
capsule without any structural modification. Their solution proposes a technique that
exploits magnetic shells to be applied on traditional capsules prior to their use [109].

Figure 4 illustrates the personal vision of the President of Olympus, Mr. Shimoyana,
during his talk at the MicroMachine Summit 2005 [110]. From his view, the capsule
endoscopy would have a rapid growth compared with the conventional endoscopy. The
reason for this increase might be because of all the functionalities that can be integrated
into the endoscopic capsule. The growth rate is directly related to the number of possible
functions that can be incorporated in the endoscopic capsule.
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Figure 4. Roadmap for capsule endoscopy presented by Mr. Shimoyana, the President of Olympus,
during the MicroMachine Summit 2005 (1–4 May 2005, Richardson, TX, USA) [110]. The red dotted
mark the separation of diagnostic functions from therapy functions and simple visualization.

In this context, it is important to discuss the new technologies that can be integrated
into the capsule endoscopy in order to increase the performance in screening, diagnosis,
and therapy. In the following sections, we present the concept of confocal laser endomi-
croscopy, photodynamic therapy, narrow-band imaging, and how those technologies can
be integrated into the endoscopic capsules.

7. Photodynamic Therapy

It is well known that light has been used as a therapy since the ancient civilizations, but
until the last century, photodynamic therapy (PDT) was not yet developed. Since then, the
applications of PDT have been tested by clinicians for use in oncology, such as in treatment
of cancers of the neck, brain, breast, head, lung, pancreas, prostate, skin, intraperitoneal
cavity, and gastrointestinal tract [111–114]. In this context, PDT represents an encouraging
method for the treatment of cancer and even nonmalignant conditions [112].

The technique of PDT combines an administration of some photo-sensitizing therapies
and an exposure of the tissue to visible light in the range of 400–760 nm. When light with
an appropriate wavelength encounters the photosensitizer, the molecule is excited. This
interaction generates a liberation of singlet oxygen, promoted by the series of molecular
energy transfers. The singlet oxygen is a highly reactive and cytotoxic species and results
in cell death [115].
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The activation wavelength of light differs according to the site where we attempt to
perform the therapy; usually wavelengths between 630 and 700 nm have been shown to
lead to better results. As our focus in this review is the GI tract, the activation wavelengths
for esophageal and gastric cancers are 630 nm and 635 nm [113,114].

PDT can be coupled to conventional endoscopes or even to the endoscopic capsules.
Following the same logic of capsule endoscopy with NBI technology, we can also fabricate
optical filters with a different wavelength, which can be used for PDT, and then integrate
both technologies in the capsule. The problem of coupling PDT to the endoscopic capsules
is that they must have integrated motion control in order to guarantee that the therapy is
being delivered at the exact sites of interest.

Before we discuss the clinical application of using PDT as a therapy for diverse cancer
types, we may first consider the treatment specificities and indications. Primarily, PDT
is a local treatment, rather than systemic, and therefore, it is only suitable for localized
disease. Secondly, when compared with other types of treatment, such as radiotherapy and
chemotherapy, PDT represents a much faster and cost-effective treatment. Lastly, a huge
advantage of PDT is that the limited light penetration protects healthy tissue beneath the
tumor (or region of interest) from phototoxicity. Moreover, the treatment can be repeated in
case of recurrence of the disease in the previously treated area [116].

Studies on PDT in the treatment of esophageal cancer were firstly carried out as a
palliative for obstructive tumors; McCaughan et al. stated that the operative risk was
minimal, and PDT had the ability to destroy the tumor as well as to increase the size of
the esophageal lumen [117]. Schweitzer’s, Qumseya’s, and Moghissi’s studies confirmed
the efficacy of PDT as a palliative therapy of dysphagia, evidencing the need for the
development of more tumor-specific photosensitizers [118–120]. Nonetheless, side effects
of PDT for esophageal cancer were listed in other studies, such as skin photosensitivity,
stenosis, fistulas, and perforations (reported in up to 50% of the patients) [118,121,122].

PDT is also suitable for treatment of Barret’s esophagus. There is an estimate that
shows that 50% of esophageal cancers develop from Barret’s esophagus. Therefore, effective
treatment of Barret’s esophagus is very important [123]. PDT combined with long-term acid
inhibition provided effective endoscopic therapy for elimination of Barrett’s mucosal dys-
plasia, superficial esophageal cancer, and also reduced/eliminated Barrett’s mucosa [124].
Later, the same group reported a conversion of approximately 80% of treated Barrett’s
mucosa to normal squamous epithelium in all 100 patients who had participated in the
study [125].

As shown in Figure 1, conventional endoscopy has the particularity and drawback
of not being able to observe the entire small intestine, only a small portion of it. This is
mainly due to the possibility of an increased risk of perforation of the intestine, taking into
account its reduced thickness and sinuous structure [12]. On the basis of the above reasons,
the endoscopic capsule (EC) becomes an excellent means of to implementing a form of
photodynamic therapy (PDT) using light-emitting diodes (LEDs) with a wavelength in the
region of red (e.g., from 620 nm to 750 nm) that can be incorporated into EC, as shown in
Figure 5a [126], which allows this equipment the ability to perform treatment in the GI
system. Naturally, it is necessary to carry out preliminary tests on biopsies of the patient’s
own cells in order to define the doses of both the photosensitizers and light, as well as
the exposure time in the endoscopic capsule to be applied during the treatment itself. The
work developed by Gounella et al. [127] presents a platform for PDT, which validates such
a procedure with the 5-aminolevulinic acid (ALA) photosensitizer on in vitro assays of
human gastric adenocarcinoma cells. This work also presents other photosensitizers that
are available commercially or in clinical tests and their main characteristics [127]. Figure 5b
shows a functional prototype of an evaluation system side-by-side and connected with the
smartphone running a host application.
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Figure 5. (a) An illustration of the concept of a compact PDT system to mount at the tip of an
endoscopic capsule. (b) A photograph of a functional prototype of an evaluation system side-by-side
and connected with a smartphone running a host application.

8. Laser Endomicroscopy

Confocal laser endomicroscopy (CLE) is an imaging technique that uses a low-power
laser to focus on a single point in a microscopic field of interest. The term confocal comes
from the fact that the lens used in this technology allows for the illumination and detection
systems to be aligned in the same focal plane [128,129].

Costa et al. proposed an integration of an imaging magnification optical microsystem
(IMON), including a PDMS lens, which was able to perform in vivo and real-time tissue
microscopy (Figure 6). With a total length of 12.164 mm and a lateral lens assembly of
3.894 mm, a paraxial magnification of 4–14 times was achieved with great performance [126].
In this sequence of ideas, another similar IMON for ECs can be found in the work developed
by Ribeiro et al. [130]. Such an IMON has a diameter of only 11.2 mm and a length of
18.6 mm and comprises an imaging system with a dedicated IMOM and light-emitting
diodes (LEDs). Moreover, they fabricated and integrated microlenses that have been
fabricated using the “hanging droplet” approach in the IMOM subsystem to provide an
image magnification of 4×, with an improvement of 30% in the optical irradiance from the
LED illumination [130].
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Tabatabaei et al. reported on the development of a confocal microscopy capsule for
diagnosis and monitoring of an esophageal disease called eosinophilic esophagitis (EoE).
The EoE is an allergic condition characterized by eosinophils infiltration of the esophageal
wall. Previously, the treatment offered for EoE required multiple follow-up sedated en-
doscopies and even biopsies to confirm the complete elimination of eosinophils. They
developed a swallowable capsule which implements a high-speed fiber-based reflectance
confocal microscopy, named spectrally encoded confocal microscopy (SECM). They pre-
sented imaging of esophageal biopsies from EoE patients ex vivo, demonstrating the ability
of SECM to visualize individual eosinophils [131]. Figure 7 shows the schematic of the
SECM clinical system.
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As we can see from the presented studies, CLE integration in the CE is still a new field
of study and is underdeveloped. Nevertheless, there are sufficient indications that this is
a promising technology, and it can be expanded to the analysis of various diseases of the
GI tract.

An optical coherence tomography (OCT, also known as volumetric laser endomi-
croscopy) is a noninvasive optical diagnostic tool that enables in vivo cross-sectional to-
mographic 3D visualization of internal microstructures and functional information in
biological systems. OCT is based on the measurement of reflected light from the tissue opti-
cal interfaces and uses the principles of optical interferometry, which is capable of imaging
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tissue at a micron-level resolution [132]. Another great advantage of OCT (see Figure 8) is a
good compromise between the spatial resolution and penetration depth [133]. Typically,
image resolutions of 1 µm to 15 µm can be achieved with OCT measurement, corresponding
to one or two orders of magnitude higher than the ones with conventional ultrasonic scan.
Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of-focus
light in specimens to achieve a resolution of submicrometers [134]. However, the image
penetration of confocal microscopy is limited to a few hundred micrometers in general
scattering media, which is much lower than those penetrations achieved with OCT, which
can penetrate 2–3 mm. OCT presents additional merits such as contactless measurement,
relatively simple setup and computation, fast scan, and display.
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More recently, in 2018, the research group of G. J. Tearney [135] proposed a swal-
lowed tethered capsule endomicroscopy (TCE) for microscopic imaging of the esophagus,
stomach, and duodenum without sedation in humans by using a balloon catheter and
OCT technology. The tethered capsule has a diameter ranging from 11 to 12.8 mm and a
length of 24 to 24.8 mm. A 2 m long tether that connects it to an OCT imaging console
allowed for the real-time acquisition of images at a frame rate of 20 fps, with an axial
resolution (penetration depth) of 10 µm, and resolution of 35 µm along the lateral axis in
two-dimensional cross-sections (Figure 9).

The capsule is reused by withdrawing it through the mouth and followed by a disin-
fection. In this work, the images acquired via OCT were compared with histopathology
findings (when available), and the safety of the TCE was proven, making it feasible as a
procedure for obtaining microscopic images of the upper gastrointestinal tract at a high
resolution without endoscopic assistance and/or the need for sedation, as presented in
Figure 10.

The ultimate aim of one day having ECs for OCT on the market is expected to be a
reality; when analyzing recent works, a panoply of optical devices can be integrated at the
wafer level in silicon in order to implement the required Michelson’s interferometer [136].
Other materials, which can include glass, are feasible candidates for heterogeneous integra-
tion using multichip module (MCM) techniques with CMOS imagers [137]. These kinds of
microsystems are able to pave the way for having OCT in ECs in the near future.
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Figure 10. (A) Endoscopic photograph and corresponding TCE image of an 84-year-old man with a
treated Barrett’s esophagus and intramucosal carcinoma; the lesion is shown at 28 cm by green arrow-
head. (B) Endoscope and TCE images at 30 cm with 2 lesions (yellow arrowheads). (C) Photograph
and TCE image at the gastroesophageal junction with significant architectural atypia, suggestive of
cancer (blue arrowhead). (D) Three-dimensional rendering of the TCE dataset. SQ means Squamous
epithelium, and HH means Hiatal hernia [135]. Dashed lines show zooms on selected regions of
TCE images.
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9. Spectroscopy

It is of major importance that the detection of cancer at the dysplasia stage, e.g.,
before the occurrence of visible changes at a macroscopic level on the tissues. A dysplasia
is not more than a precancerous change in the gastrointestinal tissue [138]. The early
detection of dysplasia can increase the chance of successful treatment and full survival of
the patient [138,139]. These kinds of changes are very difficult to identify and detect with
conventional illumination and visual inspection, because a large area of changes in the
tissue is required for it to become easily observable [139,140]. Spectroscopic techniques are
based on the interactions between the light and the tissue. These techniques can be based
on diffuse reflectance or based on fluorescence. Nonetheless, both have the potential to
allow for the detection of small changes in the tissue, e.g., macroscopically invisible lesions
on the tissue surface [140,141]. Moreover, some morphological and biochemical changes in
the tissues (related to early cancer progression) can modify the shape and intensity of the
signals that are involved in the diffuse reflected and fluorescence signals. The extraction
of the diffuse reflectance signal of a tissue can be used to detect small changes related to
cancer progression, since its intensity and shape are affected by absorption and scattering
effects [142]. As a result, an increase in hemoglobin results in a reduction in the diffuse
reflectance signal, because this optical effect is associated with angiogenesis during cancer
progression. Moreover, as the dysplasia is progressing towards a cancer, the thickness of
the epithelial tissue increases, thus reducing the quantity of light that reaches the deeper
tissues. Therefore, a smaller quantity of light reaches the collagen fibers (the main tissue
scatterer) in the connective tissue, decreasing scattering and, consequently, decreasing the
diffuse reflectance signal intensity [140,141].

Several developments and research on systems for spectroscopy signals extraction and
detection of gastrointestinal dysplasia can be found in the literature [143–146]. However,
most of the proposed solutions require complex and bulky spectroscopy systems, including
xenon lamps, ultraviolet (UV) LASERs, monochromators, optical fibers, and high-quantum
efficiency (QE) detectors. The consequence of using such components is the impossibility of
their integration with the endoscopic equipment. Additionally, the literature refers to a few
attempts [147,148] to potentiate the miniaturization by replacing a few of the components
with photodiodes and/or light-emitting diodes (LEDs). However, this still requires a few
pieces of macroscopic equipment.

One of the successful attempts to integrate spectroscopic techniques into endoscopic
capsules can be tracked to the year of 2005 and credited to the research group of R. R.
Alfano, which presents a fully working and tested prototype of a compact endoscopic
capsule [149]. This medical device, named the Compact Photonics Explorer (CPE), is a
further development of their work that was patented on 2001 [150] and is a complete
endoscopic capsule solution composed of five light sources to cover the ultraviolet (UV),
near-infra-red (NIR), and the entire visible spectrums (using three RGB LEDs). Figure 11
shows a photograph and block diagram of the current CPE and also the block diagram
of the receiving station module. The spanning of these colors across these three bands
increases the chance of early detection of lesions in the tissue, improving the chances of
cancer treatment. Moreover, this endoscopic capsule is also composed of a CMOS image
sensor, a PIN diode with an optical filter on top, a system to manage the energy supplied to
the capsule, a radio-frequency transmission module, a microcontroller to perform core and
control operations, and a small-sized battery. The effectiveness of the device was proven in
reference [149] and further consolidated in 2011 through a US patent [151].
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10. Narrow-Band Imaging

The idea of the NBI was conceived in 1999 by the Japanese National Cancer Center
Hospital and Olympus Medical Systems (Tokyo, Japan) [132,152]. To confirm this idea, a
study was conducted using a multispectral camera with a source of high-power light. In
this study, Kazuhiro Gono volunteered himself to perform the first tests, and they revealed
that the use of a narrow band at a wavelength of 415 nm could increase the contrast of the
images of blood capillaries [153].

The NBI technology emerged from the need for detecting lesions that were not able
to be observed in white light. Therefore, the technique is used to increase the endoscopic
image contrast by capturing real-time images and using a system composed of cameras
and optical filters.

The optical filters are positioned under the endoscope light to create a narrow-band
wavelength in the blue (in the range of 400–430 nm, centered at 415 nm) and green (in the
range of 530–550 nm, centered at 540 nm) [154].

In 2004, Machida et al. [155] described the first clinical utility of NBI for gastrointesti-
nal endoscopy. The first release of the technique was in 2005 with a system developed by
Olympus Medical Systems [153,156,157]. Since then, most of the countries that have en-
doscopy procedures have started applying NBI combined with the conventional techniques
of endoscopy in clinical studies.

In 2003, Gono et al. conducted an experiment observing endoscopic images of the back
mucosa of a human tongue and investigated the effect of NBI through preliminary clinical
tests in upper and lower endoscopy [158]. The study showed that NBI could enhance the
capillary and the crypt pattern on the mucosa, which are useful features for diagnosing
early cancer [153,157,159].

These structures, such as blood vessels, have a high hemoglobin content, that is,
hemoglobin index, which can be assessed by adjusting the color of the reflected light that
penetrates the mucosa [160–162]. In this way, they appear darker, creating a higher contrast
between the surrounding mucosa, which appears brighter when it reflects the light.

The blue light, at the wavelength of 415 nm, allows for the obtainment of a superficial
mucosa image, in which it can be observed that the superficial capillaries network, while
the green light, at the wavelength of 540 nm, allows for a deeper penetration in the mucosa,
thus enabling the observation of subepithelial vessels. The photons, at a wavelength of
600 nm, that means, red light, are less scattered and penetrate more deeply. Although
their longer wavelength is outside of the hemoglobin absorption band, the red photons
reproduce a morphological image of the large vessels [157].

Moreover, the inclusion of a lens with a high magnification factor will further improve
the image quality and detail, the global impact, and the importance of NBI [130].

In the context of NBI technology, there are two options for the implementation: it can
use commercial LEDs and then adapt them with optical filters, or the LEDs can be fabricated
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with transmittance peaks at the wanted wavelength. The fabrication of optical filters offers
a much cheaper alternative to the idea of fabricating LEDs with exact transmittance peaks.

Considering the scenario described before, it was decided to go for the option of
fabricating the optical filters for adaptation into the commercial endoscopic capsules. To
achieve this, different methods and processes have been tried until the final functional
version of the filter was reached. The optical filters were first calculated, simulated and
adjusted, and then fabricated.

10.1. Design and Fabrication of Optical Filters

As a first step, the materials from which the filters will be made should be chosen
and specified. In this case, dielectric materials following the physical principle of Fabry–
Perot were chosen, although there was also the possibility of working with metals. The
filters consist of a double stack of layers, with a high-refractive-index material (H) and a
low-refractive-index (L) material, alternately. The stacks of layers are called mirrors, and
between both mirrors, there is a resonance cavity. This type of filter consists of a structure
in which light is captured at certain wavelengths, and it operates as an optical transmission
incorporating feedback: the light is repeatedly reflected between the two mirrors, without
escaping. The transmitted light in the resonance cavity is the sum of all beams that are
transmitted through the stack of layers due to a constructive interference, which depends
on the wavelength of the incident light and the thickness of the resonance cavity.

The project of a Fabry–Perot filter requires selectivity and low absorption in the mirrors
and in the resonance cavity. A slight change in the mirrors’ spacing can cause a significant
change in the resulting wavelength. The optical filter is considered ideal if we assume that
there is no loss on both mirrors and that they are perfectly parallel to each other [163,164].
Once the materials are chosen, the width of each layer of the mirror and of the resonance
cavity should be calculated, based on the wavelength and refractive index we want for
the filter. For the computational simulation, we used the software TFcalcTM (3.5, Software
Spectra, Inc., Vermillion, SD, USA). TFcalcTM consists of a thin-film-design software, which
enables the analysis and design of multilayer thin-film coatings, such as the calculation of
transmittance, absorption, optical density, loss, color, and other features. These simulations
took into account the spectrum of the optical sources. The optical filters were designed
following a stack of seven layers, whose succession of refractive indexes follows the HLH-L-
HLH structure. Therefore, the materials must be selected in order to provide high (H) and
low (L) indexes of refraction in the visible range. The silicon dioxide (SiO2) and titanium
dioxide (TiO2) were selected as H and L materials, because both can be obtained using
physical processes, i.e., both can be deposited through sputtering, both are compatible in
the sense that their mutual adhesion is high, and the silicon dioxide presents an index of
refraction that is practically constant in the visible range [148]. The TiO2 and SiO2 present
typical indexes of refraction of 1.45 and 2.65, respectively. In these filters, the three top
layers correspond to the first mirror, and the three bottom layers correspond to the second
mirror. Between the mirrors, there is a resonance cavity.

The optical filters were fabricated using a glass substrate B270 from Schott Advanced
Optics, measuring 20 × 20 mm and with a thickness of 1 mm. The thin films of SiO2
and TiO2 were deposited by DC-magnetron sputtering and were previously characterized
by ellipsometry in order to measure the refractive index and thin film thickness of both
materials. The full fabrication details can be found in the work by Gounella et al. [165].

10.2. Optical Filter Characterization and Results

The optical filters were characterized via spectrometry, which allows for the evaluation
of their optical performance. The characterization of transmittance was performed to know
the optical response of the NBI filters to the fringes at 415 nm (blue region) and at 540 nm
(green region).

As a first element of the setup, the illuminants (in this case, the blue and green LEDs)
were placed before a collimator. The collimator played the role of narrowing the scattered
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beams from the LED and aligning them with the spectrometer. This step was necessary,
since the aperture from the spectrometer was very narrow, which made the alignment
difficult. For this experiment, a CCD compact spectrometer CCS200 from Thorlabs was
used, with a wavelength range from 200 to 1000 nm.

Figure 12a shows the transmittance spectrum from the green optical filter, along with
a picture of the physical filter fabricated. The green filter presented a maximum relative
transmittance of 62% at 542 nm and a full width at half maximum (FWHM) of 29 nm.
Figure 12b shows the experimental result of the blue filter with the blue LED as illuminant,
along with a picture of the fabricated physical filter. The result showed a maximum relative
transmittance of 33% at 414 nm and an FWHM of 17 nm. The peaks of transmittance were
satisfactory once the goal was a blue filter centered at 415 nm and a green filter centered at
540 nm. The blue filter presented only 1 nm of deviation from the objective, despite the
fact that the experimental transmittance was half of the simulated one. The green filter
deviated 2 nm to the left from the objective, although also with higher transmittance at
540 nm (~60%).
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10.3. Narrow-Band Imaging vs. CLE

The advantage of CLE lies in its ability to be used with any endoscopy system and
visualize at a cellular level, thus lending itself to molecular imaging. On the other hand, it is
also a limitation, since it cannot be used widely in community settings outside of academic
centers [166].

10.4. Narrow-Band Imaging vs. FICE

Flexible spectral imaging color enhancement (FICE) and narrow-band imaging are
forms of digital chromoendoscopy and enhance the endoscopic images without the need
for a dye. Alis et al. found no statistically significant difference between them for in vivo
histologic diagnosis of polyps in a study with 134 patients (72 male/62 female) [167].

10.5. Narrow-Band Imaging vs. BLI

Recently, a new optical imaging technology known as blue-light imaging (BLI; Fujifilm)
was developed. The system uses either a laser or four LEDs with multilight technology
to produce brighter images. It is the first nonfilter technology producing blue light in a
narrow spectrum that is bright enough to identify subtle changes in surface and vessel
patterns, which is of relevance in early Barrett’s neoplasia [168]. BLI magnification images
with early gastric cancer are compared with those of NBI magnification images in deeply
depressed areas, supported by a post-ESD (scopic submucosal dissection) specimen. NBI
magnification cannot focus on the shallow area in a cancerous lesion very sharply when the
deeply depressed area is observed in good focus. By contrast, BLI magnification can focus
on both shallow and deeply depressed areas on the same image because of a great depth of
field. This case shows a typically fine network pattern of early gastric cancer in the gastric
body. BLI bright images show a fine network pattern in depressed cancer by exhibiting
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clearly irregular microvessels surrounding various sizes of white spots corresponding to
histologically marginal crypt epithelium [169].

10.6. Narrow-Band Imaging, FICE, and BLI Images Enhanced by i-SCAN

Developed by Pentax, i-SCAN is a dynamic, software-based image enhancement
technology that provides the user an enhanced view of the texture of the mucosal surface
and blood vessels. A study by Lee et al. presented results on i-SCAN vs. the more widely
studied NBI for the prediction of diminutive colonic polyp pathology and found that
both technologies had a statistically significant higher sensitivity and accuracy compared
with BLI. In addition, no significant differences were evident between NBI and i-SCAN
(sensitivity, 88.8% vs. 94.6%; specificity, 86.8% vs. 86.4%; accuracy, 87.8% vs. 90.7%,
respectively; p < 0.05) [170]. Another study investigated i-SCAN’s role in evaluating
duodenal villous patterns [171]. Figure 13 compares the quality of an image enhanced by
the i-SCAN technology (on right) with a raw image (on left).
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11. Conclusions

The aim of this research paper is to present a detailed review of the current status of
endoscopic techniques and the recent technological advancements that can be employed in
conjunction with these techniques in order to improve a timely diagnosis of gastrointestinal
disorders. Furthermore, this study highlights the design and fabrication of two optical
filters, which have been created with the specific purpose of enhancing the detection of
hemoglobin in the gastrointestinal tract. These filters have been centered at wavelengths of
414 nm and 542 nm, which coincide with the absorption peaks of hemoglobin. In order
to create these optical filters, narrow-band imaging (NBI) technology has been utilized.
The ultimate objective of this effort is to integrate these filters into the endoscopic capsules
for practical applications. Despite the challenges associated with the fabrication of these
optical filters, the results of the experimental studies have been satisfactory when compared
with the simulations. The complexity and difficulty of the manufacturing process have
been taken into account while evaluating the outcomes of the study. The future advances
in diagnostic endoscopy now lie in combinations of these new optical techniques along
with improvements from the field of artificial intelligence to minimize human error and
maximize its efficiency, finally enabling the automatic screening diagnosis predicted by the
companies in the past.
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