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Abstract: The advantage of FPGAs lies in the ability to implement a fully hardware solution for
interfacing with various input/output (I/O) devices. Each block can work in parallel with all the
others, simplifying the satisfaction of timing constraints. However, this hardware utilization
consumes FPGA resources that could otherwise be allocated to the primary project. An alternative
involves employing a small "soft-core" processor implementing I/O in software. With the goal to
design and evaluate a new tiny soft-core processor optimized for FPGA resources in I/O , a novel
processor named Baby8 is developed. It is an 8-bit CISC soft-core processor optimized for reduced
FPGA resources including program size for 8-bit applications. The number of instructions is not
large but any instruction can access arbitrary memory locations. The performance and resource
utilization of the newly designed processor are evaluated and compared with a variety of other
soft-core processors. The results demonstrate its competitive performance, achieving an average
maximum clock frequency of approximately 57 MHz and a power consumption of around 2mW.
Furthermore, it conserves nearly half of the FPGA resources in implementation.
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1. Introduction
FPGAs offer the flexibility to implement a fully hardware solution for interfacing

with diverse I/O devices, allowing blocks to operate in parallel, simplifying timing
constraint fulfillment. However, the drawback is the consumption of FPGA resources
that could be directed towards the main project. A viable alternative is employing a
small "soft-core" processor for software-based I/O implementation. This approach saves
resources in two ways: block RAM bits are smaller compared to separate flip-flops in
configurable blocks, and a processor can time multiplex operations like adders, unlike
the hardware solution with multiple unused copies. The performance only needs to be
sufficient for protocol implementation, making the trade-off between fewer resources
and speed. To achieve this goal, a new processor called Baby8, designed for FPGA I/O, is
developed using Yosys Synthesis software [1][2].

Baby8 is a von Neumann 8-bit CISC soft-core processor (already available in
author’s GitHub repository in [3]) optimized for reduced FPGA resources, including
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program size for 8-bit applications. Although the instruction set is not extensive, each
instruction can access arbitrary memory locations. Features like post-increment
addressing, while not faster than RISC (instructions use simple register-level [4]),
enhance program compactness and may reduce the need for block RAMs. The paper
presents a comparison of Baby8 with almost a dozen other soft-core processors,
demonstrating competitive performance in terms of implementation results, and
comparisons with ASIC, NAND gates, and various FPGA models.

1.1. ASICs
Application Specific Integrated Circuits are those designed to be used in one

particular product, as opposed to standard integrated circuits that are sold to many
companies to be used in many products. While the cost of each ASIC is normally a
fraction of the cost of an FPGA capable of handling the same design, the production of
the ASIC has some high NRE (Non-Recurring Engineering) costs so a reasonably high
volume is needed for the ASIC to be more viable economically than a FPGA.
Additionally, ASICs may operate at higher frequencies and lower power than FPGAs,
impacting product considerations. Comparing processor cores involves assessing area,
operating frequency, and power usage for a given fabrication technology.

1.2. NAND gates
It is possible to build any digital circuits entirely with NAND logic gates or with just

NOR gates (the case for the AGC, the Apollo Guidance Computer which landed on the
Moon). Before the Field Programmable Gate Arrays (FPGAs) many projects used Gate
Arrays. These were chips which had a large number of NAND gates, the same for all
clients, and the metal layer was specific for each client. Translating designs to NAND
gates provides insights into design complexity using the OnlyNANDYosysSynth
complement script to Yosys Synthesis software.

1.3. FPGAs
Field Programmable Gate Arrays can implement any digital circuit up to a size that

depends on the particular FPGA device Using hardware description languages like
Verilog, VHDL, Chisel, SpinalHDL, and others, a high-level processor description can be
translated into a netlist of basic blocks. The placement tool assigns blocks to specific
locations, and routing utilizes the FPGA's configurable connection network. Routing uses
the configurable connection network in the FPGA (a little like early telephone exchange
systems) to actually connect the placed blocks. This is encoded into a "bit file" that is
loaded by the FPGA each time it is turned on to actually implement the circuit.

This comparison considers the usage of basic blocks (LUT, Registers, DSP,
Distributed memory, Block memory) in soft-cores when translated with the open-source
tool Yosys002E. The basic blocks are:

● LUT: LookUp Tables implement all logic in FPGAs and can be categorized by the
number of address lines they require. A LUT4 has 16 words of a single bit each
and needs 4 bit addresses. A LUT6 has 64-bits and needs 6 address lines. A larger
LUT can always do the job of a smaller one by either tying unused address lines
to 0 or 1 or else duplicating the bits such that the output doesn’t depend on that
address line. Combining smaller LUTs into a larger one is facilitated by special
"mux" blocks in some FPGAs (XC4000), enhancing efficiency.

● Registers: the LUTs are purely combinational , and an optional flip-flop circuit at
the output enables the implementation of sequential circuits.. Normally one
register is associated with one LUT, but there tend to be some extra registers as
part of the I/O pads.

● DSP: Digital Signal Processing blocks are hardware implementations of
multiplication circuits. Otherwise a very large number of LUTs would be
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required to implement this operation (which has many more uses beyond digital
signal processing).

● Distributed memory: Distributed memory: each LUT is actually a very small
Random Access Memory (RAM), generally unaltered after the initial FPGA
configuration. An additional circuit allows the use of all LUTs or a fraction as
read/write memories).

● Block memory: the area needed to store a bit in a register or even in a LUT is very
large compared to a dedicated RAM circuit. Since the 1990s FPGAs have
included a number of memory blocks that can efficiently handle a medium to
large number of bits.

Other FPGA blocks include input and output buffers, clock buffers, and carry circuits
converting LUTs into adder circuits, along with multiplexers for combining small LUTs
and FPGA-specific circuits unique to each type.

1.3.1. FPGA Families
Xilinx 7: The 28nm generation of Xilinx FPGAs remains popular, even after AMD's

acquisition and the introduction of two subsequent generations. It is common for
soft-core processor implementation projects to make use of FPGAs manufactured by
Xilinx [5]. Cyclone V: The Cyclone family was the low end of Altera FPGAs, with the V
generation being the last before Intel's acquisition of Altera. ICE40: The startup Silicon
Blue took advantage of the expiration of key FPGA patents to introduce their own very
basic offering. Their focus was on smaller FPGAs with low cost and low energy
requirements. They were bought by Lattice Semiconductor and a second generation was
designed moving from the original 65nm process to a more modern 40nm further
reducing the energy use. GoWin: This Chinese company achieved success with various
FPGA variations globally, introducing unique features like using spare LUTs to aid
routing. How much this is used varies from one project to the next and this is why the
numbers are not always relatively the same compared to other types of FPGAs. ECP5: An
evolution of the earlier ECP, ECP2 and ECP3 FPGAs, the ECP5 family is a cost-effective
mid-range option with high-speed serial interfaces.

1.4. RISC-V Soft-cores
The rising popularity of RISC-V [6] in the industrial and academic space resulted in

a plethora of open-source RISC-V implementations [7][8]. Openness of the standard does
not guarantee openness of specific cores, but those considered in this paper are open In
addition, only cores implemented in Verilog or the subset of System Verilog handled by
Yosys were considered. RISC-V cores have a tremendous range in performance and
complexity [9], from tiny 32-bit microcontrollers to out-of-order 64-bit application cores
for datacenters. Only the low end was studied here. darkRISC-V: The original
darkRISC-V was created by Samsoniuk in a single night of development to evaluate the
advantages and disadvantages of the RISC-V instruction set compared to others. It can be
optionally made smaller by reducing the number of registers as per RV32E. vexRISC-V:
The vexRISC-V in SpinalHDL is meant to show off the advantages of using that
language, with many configuration options where it is even easy to change the number of
pipeline stages. Many projects use the translated Verilog version of the processor, like the
management system in the repository for GlobalFoundries 180nm version of the Caravel
"harness" for open-source ASIC design. Glacial: Glacial trades off performance for size by
being an 8-bit processor which emulates a 32-bit RISC-V. One inspiration was the low
end of the original IBM S/360 family which used microcode and an 8-bit datapath to
implement the architecture. PicoRV32: An early compact RISC-V core, the goal of the
PicoRV32 was to fit in the tiny ICE40 FPGAs first targeted by the ICE Storm open-source
FPGA tool, of which Yosys was a key component. SERV: SErial Risc V, also trades off
performance for size, in this case by having a completely serial implementation. This
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means that any operation requires 32 clock cycles as the operation handles only a single
bit in each cycle. Serial computers were a little more common in the days of vacuum
tubes when every single component had a significant cost and added to the construction
cost as well. They became far rarer in the integrated circuit days but are one way to save
FPGA resources best left for other parts of a project.

1.5. Other Soft-cores
Even with all variation possible with the RISC-V instruction set, there are

applications where other designs are a better option. That is particularly true when
executing programs. Baby8: Designed to help interface to adapt FPGA projects to specific
boards, the goal of Baby8 is to use as few FPGA resources as possible to leave more for
the user's actual project (available in author’s GitHub repository in [3]). An 8-bit
architecture is a good match for the applications of interfacing to PS/2 or USB keyboards,
mice and game controllers as well as providing an abstract interface to files on a FAT32
formatted SD memory card. In an FPGA, distributed memory built from LUTs is denser
than individual flip-flops. Baby8 capitalizes on this density, albeit at the cost of reduced
performance, by incorporating the program counter into the register bank.. In an ASIC,
there is no advantage in doing this, as the flip-flops would be the same either way. The
nomenclature of the processor was chosen in honor of the Manchester Baby, an 32-bit
Small-Scale Experimental Machine, the first electronic stored-program computer in 1948
[10]. A complete description of the features and particularities of the Baby8 processor
will be presented in the methodologies section of this paper. 6502 and UKP: A NES
(Famicom) emulator for the Sipeed Tang Nano 20K FPGA board includes two processors.
The 6502 is needed to run the actual games while the limited UKP handles USB mice,
keyboards or game controllers. Femto16: In the 8-Bit Workshop online video game
development system there is an option to design games at the hardware level using
Verilog. The examples grow in complexity, introducing two simple processors, the 8-bit
Femto8 and the 16-bit Femto16. Games are then converted from pure hardware to
assembly programs for these processors. J0: Describing the J1 soft core optimized for
small programs in the Forth language was the inspiration for projects like SwapForth by
the same author and the Forth CPU computer system. The Gameduino project adds
FPGA-based video output for Arduino boards, incorporating the J0 processor as a slight
modification of the J1. MCPU: With only 4 instructions and addressing only 64 bytes of
memory (similar to Xilinx PicoBlaze), the MCPU is remarkably small yet Turing complete
. ZPU: The 'ZPU Avalanche' was designed to use the least FPGA possible while being
fully compatible with all the GNU programming tools, including GCC. The concept
revolves around treating C as more of a scripting language on an FPGA, with heavy
processing handled by hardware blocks. The Avalanche project translated the original
VHDL implementation to System Verilog. The System Verilog files were copied from the
original repository in the top directory.

2. Objectives
The main goal is to design and evaluate a brand new soft-core processor optimized

for reduced FPGA resources, including program size for 8-bit applications.

3. Materials and Methods
3.1. Processor Specifications
3.1.1. State Registers

The processor features 16 internal 8-bit state registers, as shown in Figure 1. While
not accessible to programmers, exceptions include the registers W, X, Y and the external
memory, which can be directly read and written by the user program. Flags Z (ZERO), N
(NEGATIVE), C (CARRY) and V (OVERFLOW) do not persist between instructions but
can be saved with TEST instructions.
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The complete list of 8-bit state registers is provided in the following, where H
denotes high-byte and L denotes low-byte in case of 16-bit addressing:

● PH/PL: 16-bit (8H/8L) program counter in normal execution mode;
● MH/ML: 16-bit (8H/8L) pointer for indirect “zero page” operands;
● IH/IL: 16-bit (8H/8L) program counter in interrupt mode;
● LH/LL: 16-bit (8H/8L) address saved in last call instruction;
● ZH/ZL: 16-bit (8H/8L) address of the “zero page” operand;
● TH/TL: 16-bit (8H/8L) timer to define the number of cycles to pause before next

instruction;
● K: 8-bit single register for ’cascades’ - values between pairs of instructions;
● W, X, Y: 8-bit single registers accessible to the programmers for reading and

writing.
3.1.2. Basic Syntax

The processor is designed with a two-address architecture, where one address
indicates both the destination and one operand, and the second address specifies the
other operand. The assembly language syntax is C-like, with an addition represented as:

rD += rS
3.1.3. K-Cascade

The "cascade" feature changes the destination to be the first operand of the
following instruction. A sequence that is incremented by 'the value pointed to by location
20' looks like:

X += *20
W &= X

It can be implemented with cascade as:
K = X + *20
Y = W & K

Unlike the original code fragment, these two instructions do not erase the value in
X. While the architecture is generally two-address, it can function as three addresses
(actually four) when needed. The use of “K” in the instruction distinguishes it from a
move with some complicated expression to be calculated at assembly time.

3.1.4. Source and Destination
Table 1 shows the source and destination directives in the processor architecture. In

theory, the zero page allows access to bytes 0 to 127 of the 256-byte page selected by
register ZH. In practice, addresses 12 to 15 access the four input and four output ports.
More I/O ports can be memory-mapped to other addresses if needed.

Zero page addresses 0 to 11 access the internal registers W to IH, allowing LL and
LH to be saved and restored if more than one level of subroutines are needed. Since ZH
can also be changed, the “zero page” can be relocated to any memory location, similar to
the 6809 and 65816 processors. When TL is changed the timer is started if TL and TH are
not both zero and it is stopped if they are zero.

Table 1. Source and destination directives in Baby8 architecture.
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The two-bit ss and dd fields (see Table 2) in the instruction use values 0, 1 and 2 to
encode the registers W, X and Y respectively. A value of 3 indicates that a byte follows,
encoding the actual address.

When both ss and dd are 3, the first extra byte is for the source, and the second is for
the other source/destination. In the case of immediate instructions, the immediate value is
the first extra byte, followed by the destination..

Next, Tables 2, 3, 4, and 5 will be presented, describing respectively:
● The basic operations opcodes;
● The immediate instructions opcodes;
● The control flow instructions opcodes;
● And the conditional tests.

Figure 1. Baby8 processor 8-bit state registers. High and Low forming 16-bit addresses.
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Table 2. Regular and K-cascade basic instructions in Baby8.

Table 3. Immediate instructions in Baby8.

Table 4. Control flow instructions in Baby8.

Table 5. Conditional Tests in Baby8.

* alternative syntax
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3.1.5. Shifts and Rotations
The missing multiplication and division instructions are to be expected for a very

small processor (though they can be added as an I/O device if needed), but the lack of
shift and rotate instructions might seem limiting. Adding a value to itself is equivalent to
a one-bit shift to the left, with the carry indicating the removed bit. Shifting to the right
(logical or arithmetic) an 8-bit value by N bits can be achieved by extending (zero or sign)
to 16-bits, shifting that to the left by 8-N bits and using the top byte as the result (Listing
1). Sending a byte with the least significant bit first might seem to need 7 such steps per
bit, but the same result can be achieved by shifting a one-bit mask to the left once per
step to check each bit from least to most significant (Listing 2).

Listing 1. Shifts and rotations syntax example in Baby8.

Listing 2. Shifts and rotations syntax example in Baby8.

3.1.6. Interrupt
The interrupt mode uses IH,IL for instruction fetches instead of PH,PL (bit 2 of the

register addresses is 1), and zero page addresses go from 144 to 255 instead of from 16 to
127 (bit 7 of addresses is set). The interrupt mode is entered on the next instruction fetch
after the interrupt line goes high unless the previous instruction was a cascade or the
current instruction is supposed to be skipped. The interrupt mode ends on the next
instruction fetch after the interrupt line goes low with the same restrictions as described
before.

Most processors have interrupt handlers start at fixed addresses or, more often,
indicated in some table. In Baby8, the address in IH,IL is simply the instruction following
the one that caused the interrupt line to go low at the end of the previous interrupt. This
is more like a coroutine scheme where an explicit “yield” instruction is executed. With
careful programming it is possible to speed up response time by having the processor
ready to execute in different places for different situations. Any registers used by the
interrupt handler should be saved and then restored right before the yield. Having use of
the second half of the zero page makes this easier. Note that the first half can still be
accessed with indirect addressing.
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3.1.7. Timer
Every instruction is executed in a known number of clock cycles, but to make

precise delays even easier TH,TL implements a 16-bit timer. The timer mode is entered
on the next instruction fetch after a write to TL which results in TH or TL having a
non-zero value. The restrictions are the same as entering or leaving the interrupt mode.

Instead of fetching instructions the processor simply decrements TL by one on
every clock cycle. When TH,TL reaches zero, instruction fetch resumes. If TH is not 0 but
TL is, then TL is decremented by two (going to 254), and on the next cycle, TH is
decremented. If an interrupt arrives while in the timer mode, the interrupt is handled,
and execution is normal until the interrupt ends. The interrupt handler may reset TH,TL
or decrease their values if encountering a longer delay than expected in the user code is
an issue.
3.2. Custom Processor Design

An advanced digital design and simulation tool named DIGITAL, developed by
Neemann, is employed for the design process. The Baby8 processor and its peripherals
(RAM block and terminal) are shown in Figure 2, while its internal blocks are given in
Figure 3.

Figure 2. Baby8 CPU and its peripherals RAM block and terminal.

Figure 3. The combination of the DATAPATH and the CONTROL UNIT forms the CPU.

3.2.1 DATAPATH
The heart of the DATAPATH is the ALU (arithmetic logic unit). It can perform a

logical operation (AND, OR, XOR or NOT) between 8-bit inputs A and B, or modifying
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input A. Figure 4 provides an in-depth view of the DATAPATH architecture and its
internal components, including ALU, register bank, multiplexers, address modifier
(Address Modification), and data output register.

Figure 4. The DATAPATH defines the logic to execute the instructions.

During the native data flow, operand B of the ALU typically originates from the
output Db of the register bank. However, it may eventually come from memory, or from
one of the processor's two input ports. In turn, the Da and Db outputs of the register
bank together form a 16-bit address. Within the region of combinational logic circuits
called Address Modification, the binary values ​​of the addresses are processed. Bit 7
indicates whether the address is direct or indirect, while bit 0 signifies whether it should
be used or not incremented.

The address from memory is not always desired, and it can be created from internal
operands and/or ALU operations. Logical address modification circuits also serve this
purpose. The first 127 memory addresses are allocated for normal programs, and the
range between 128 and 255 is utilized by routines called by interrupts. Additionally, a
data output register is necessary to write to external memory, requiring 24 bits for this
operation – 16 address bits and another 8 data bits, concatenated at the clock edge, using
2 clock cycles for this operation. Although this operation slightly reduces performance, it
enables the utilization of fewer FPGA hardware resources, aligning with the primary
objective.

3.2.2 CONTROL UNIT
The core of the Baby8 processor control unit is the state machine defined by the

ROMfsm block in Figure 5. Internally, it implements the internal ROM generating control
signals for decoding (microcode), as specified in Figure 6 and Table 6. This connected
finite state machine generates signals needed to use the data path to execute instructions.
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Figure 5. Decodification combinatorial circuit inside CONTROL unit.

Figure 6. Internal details of the ROMfsm block, containing the uPC microprogram
counter register and the microcode ROM whose contents are described in Table 6.

Table 6. Internal ROM generating control signals by decoding OPCODES.

Address
(8-bits)

Control
(32-bits)

Address
(8-bits)

Control
(32-bits)

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09

0xE3308801
0xF3308801
0x43308801
0x53308800
0x0
0x0
0x0
0x0
0x44311800
0x55311801

0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49

0x30380803
#N/DISP
0x303A6812
0xFF30180A
0xFF30180A
0x303A6811
#N/DISP
0x3CD00200
0x3300800
0x3300000
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0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F

0x44310800
0x0
0xEEF01C05
0xFF30190F
0x3330010F
0x0
0xEEF01C05
0xFF30180E
0x3330000E
0xEE301805
0xFF301801
0xEE301800
0xFF301800
0x0
0x3330B800
0x0
0x21026810
0x0
0x8E300801
0x9F300801
0xEEF01C05
0xC3340802
0xC3340802
0xFF301801
0x3EF00401
0xF3340801
0xEC300800
0x0
0xE8300801
0xF9300800
0x0
0xEEF01C05
0x13166812
0x13166810
0xFF301800
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
#N/DISP
#N/DISP

0x4A
0x4B
0x4C
0x4D
0x4E
0x4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
0x6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7A
0x7B
0x7C
0x7D
0x7E
0x7F

0
0x8E300801
0x9F300809
0xEC300801
0xFD300800
0x0
0xC0880805
0xD9301802
0xD9300801
0xCCD01C05
0xE3340802
0xE3340802
0x3CD00402
0xDD301802
0xF3340800
0x3CD00401
0xF3340800
0x0
0x201A6810
0x0
#N/DISP
0x3CD00200
0x3300800
0x3300000
#N/DISP
0x0
0x30380809
#N/DISP
0x3CD00200
0x3300800
0x3300000
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0xEEF01C05
0x63340802
#N/DISP
#N/DISP
0x36700408
0x367004C1
0xC3340801
0x367004E1
#N/DISP
0x3C301005
0x367002C2
0x367002C3
0x3D301001
0x367002E1
0x3CD00408
0x0

3.2.3 ALU
In the design of the ALU, several factors were meticulously considered to achieve a

balance between performance and resource efficiency. The initial step involved defining
the logical and arithmetic operations necessary for the application. Another critical aspect
focused on the format of the operands to be manipulated.

Ultimately, priority was given to minimizing the area, optimizing the layout, with
the reduction of the FPGA circuit area established as a primary project objective. This
approach, tailored for FPGA implementation rather than TTL, led to specific decisions
contributing to circuit reduction in this particular context. Choosing multiplexers at the
input of the adders, instead of at the output, was one such decision. Motivated by the
presence of a 6-input lookup table on the FPGA, this choice makes the circuit more
compact for this specific case.
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The ALU, showcased in Figure 7, was designed around an 8-bit adder, receiving
two 8-bit data and a Cin (carry in) bit. This setup results in a 9-bit output, where 8 bits
represent the operation result, and 1 bit is the C (carry out).

Figure 7. The ALU combines two operands in different ways by the instructions.

The operations performed by the adder are determined by two multiplexers. The
first multiplexer, in short, defines the arithmetic operations. Using the aSel selector, it is
possible to choose the operand A, the inverse of A, 0 or -2.

The second multiplexer is mainly responsible for logical operations. Using the
logSel selector, it is possible to choose between A and B, A or B, A or B, or just B.

In this way, with this simple circuit, we can perform all the necessary operations in
our ALU. To perform a logical operation, we insert bit 0 into the first multiplexer, which
will be added to the logic defined by the second multiplexer: AND, OR, XOR. In this
way, it is as if the adder were removed and the result of the logical operation was passed
directly to the output.

Now, to perform arithmetic operations, we set the second multiplexer to send the
operand B directly to the adder, while the first multiplexer can determine the operation.
When we pass A directly, we perform an addition; when passing the inverse of A, we
perform a subtraction, but to do so we send 1 in Cin so that we have the two's
complement.

4. Results
All the results presented in the Tables 7 and 8 were evaluated using both scripts and

data available by the authors in their Github repository. The results are divided into two
tables divided into RISC-V™ and Non-RISC-V™ compatibility.

We show the main results classified as ASIC, NAND gates and FPGA. For ASIC we
inform the maximum clock frequency, the power consumption, the efficiency and the
effective area of the CORE and DIE (DIE is a small block of semiconducting material on
which a given functional circuit is fabricated).

For NAND gates we inform the plain number of gates used. And for FPGAs we
inform the number of LUTs, registers, distributed memories, block memories and DSP
units used for each family of FPGA (Xilinx 7, Cyclone V, ICE 40, Gowin and ECP 5).
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Table 7. ASIC and FPGA resources used by RISC-V processors related to Baby8.



Electronics 2024, 13, x FOR PEER REVIEW 15 of 21

Table 8. ASIC and FPGA resources used by non-RISC-V processors related to Baby8.

The Figures 8 and 9 show the total utilization of the DIE area and the number of
NAND gates used by each processor.

As one can see in Figure 10, the number of LUTs can vary greatly depending on the
chosen FPGA family for the same processor. The best use of resources is often linked to
the improvement of development tools and the integration of the synthesis results
generated to their own internal hardware. So a project decision can't be based only on
lower prices of the FPGA chips but also on their efficiency in the synthesis due to a
greater use of resources based on its company technology.
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Figure 8. Utilization of the total DIE area by processor CORES..

Figure 9. Soft-core processor resources utilization for ASIC / FPGA based on the number
of NAND gates.

Figure 11 shows an extremely low use of FPGA resources for the I/O generic
purpose processor Baby8 (that was exactly our initial goal in this project) in comparison
with Figures 12 (darkRISCV) and 13 (J0). Only the FPGA family ICE40 synthesized the
Baby8 soft-core processor with a high use of resources.

One can notice that the same processor darkRiscV (Figure 10) could be synthesized
using more registers or more LUTs, depending on the FPGA family chosen.

The J0 is the only processor in this study that used FPGA DSP units and for the
FPGAs Xilinx 7, Cyclone V and ECP 5 only. This is the reason why FPGA ICE40 and
GoWin are consuming much more LUTs and registers than other ones in J0 on the radar
plot of Figure 9. And despite the fact that J0 processor consumes almost the same number
of NAND gates of darkRISCV processor (Figure 8), it consumes much less FPGA's LUTs
and registers due to use of these FPGA's DSP units.
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Figure 10. Proportion of LUTs allocated per soft-core processor and per FPGA model.

Figure 11. Proportion of LUTs, Registers, Distributed Memory, Block Memory and DSP
allocated for the Baby8 processor per FPGA model.

Figure 12. Proportion of LUTs, Registers, Distributed Memory, Block Memory and DSP
allocated for darkRISC-V processor per FPGA model.



Electronics 2024, 13, x FOR PEER REVIEW 18 of 21

Figure 13. Proportion of LUTs, Registers, Distributed Memory, Block Memory and DSP
allocated for J0 processor per FPGA model.

.
4.1. Performance

Although performance is not a measure of resource utilization per se, resource
contention certainly impacts directly on the final performance of a processor design.

As much as the objective of this paper is to develop a processor with low resource
usage (in terms of internal components for FPGAs or even area for ASICs), we must
show in this section a comparative analysis of the final performance of the developed
processor compared to the others analyzed.

By Figure 14 we can see that our processor Baby8 successfully achieves an average
performance both in maximum clock frequency as efficiency in power consumption
among all other processors.

The frequency measurements were performed with OpenLane2 [11][12]. For each
project, the OpenLane2 was configured to synthesize using the Sky130A PDK from
Skywater and to use a 100ns clock period (10MHz) for the timing analysis.

This analysis is done several times during the chip generation process including
after placement and routing. The timing analysis is done for the best case (low
temperature and high supply voltage), the typical case and the worst case (high
temperature and low supply voltage). In addition, the analysis is done for the minimum,
nominal and maximum delays for the components.

The limiting factor of how high the clock for the device can be is indicated by the
worst case setup time slack for the maximum delay with high temperature and low
supply voltage. Subtracting this value from the clock period gives us a higher clock than
the original 10MHz.

Synthesis is run again and the same circuit should result, but the timing analysis
will give a different setup slack for the worst case. It might seem that the new number
would be zero, but there are several complicating factors and the actual result will be
smaller than the first time but still a positive value. The new number is subtracted from
the new clock period and the process is repeated. This allows a successive approximation
to the actual maximum clock possible of each processor.
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Figure 14. Maximum clock frequency (MHz) vs Efficiency (MHz/mW) in an ASIC
simulation with 130nm process and using worst case scenario: 1.6 volts at temperature of

100ºC.

4.2. Layouts
The chip layouts were also produced by the Open Lane 2 tool [26] and the layouts

of the smallest area (MCPU) and largest area (vexRISC-V) processors implemented are
shown in Figure 15.

(a) MCPU (b) vexRISC-V
Figure 15. The smallest area (MCPU) and the largest area (vexRISC-V) chip layouts.
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5. Discussion
Although our developed Baby8 soft-core processor achieves very good results in

performance (~57 MHz) and energy consumption (~2mW), we need to make sure it can
meet the initially proposed requirements of using few FPGA internal resources.

In order to do this analysis Baby8 results were compared with 6502 results, both
implemented in the ICE40 FPGA family.

Baby8 uses practically half of LUTs (285) than 6502 (544) in the same FPGA. It still
uses a bit more registers - 136 - against 96 of 6502, but doesn't use any additional
memory block, despite the fact that 6502 uses 7 blocks or memory RAM.

Since both processors are very similar in all other aspects (both are CISC 8-bits, with
same power consumption and same maximum achieved frequency clock), we can
consider that Baby8 architecture could save up to half of FPGA resources compared
with 6502 for the same features in the project.

6. Conclusions
Our developed soft-core processor architecture successfully achieves the goals of

stay tiny small and saves nearly half of the resources in FPGA implementation, keeping
the same performance and power consumption from similar processors
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The following abbreviations are used in this manuscript:

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
CISC Complex Instruction Set Computer
CPU Central Processing Unit
FPGA Field Programmable Gate Array
I/O Input / Output
RAM Random Access Memory
RISC Reduced Instruction Set Computer
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