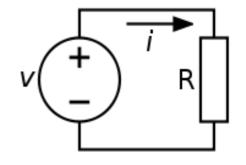


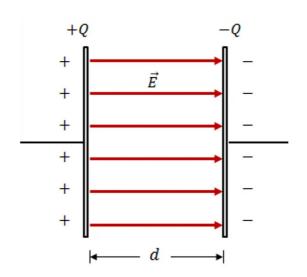
Fenômenos Eletromagnéticos

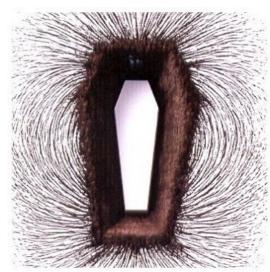
07. Capacitância, Combinações de capacitores

Prof. Pieter Westera pieter.westera@ufabc.edu.br



http://professor.ufabc.edu.br/~pieter.westera/EM.html





Capacitor

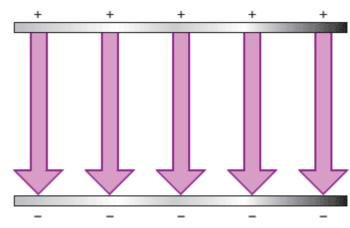
Já conhecemos o capacitor de placas paralelas como

arranjo para gerar um campo elétrico uniforme.

Mas capacitores têm outras funções também, como

- armazenar carga e energia
- elementos em circuitos elétricos

e não precisam ter o formato de placas paralelas.

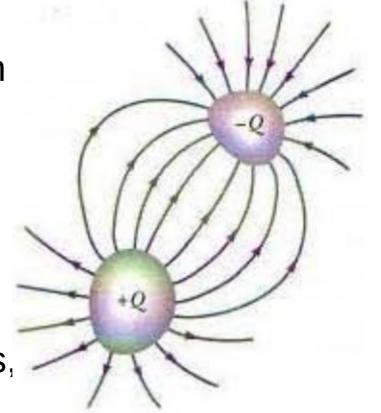


© 2007 Encyclopædia Britannica, Inc.

Capacitor

Em geral, um capacitor consiste em dois condutores.

Carregando eles com cargas de mesmo módulo mas sinais opostos (por exemplo por meio de uma bateria), Q e -Q, e mantendo eles isolados um do outro, a carga continua armanezada neles, e haverá uma diferença de potencial ΔV entre eles.



Já que ΔV é proporcional a Q, a grandeza $Q/\Delta V$ é constante, i.e. uma propriedade do capacitor.

Definimos

 $C \equiv Q/\Delta V$ [C] = C/V = C²/J = F (farad)

como capacitância do capacitor, Uma grandeza que quantifica a capacidade dele de armazenar carga elétrica.

Por definição, C é sempre positiva.

Um farad é uma unidade de capacitância muito grande. Tipicamente, capacitores têm capacitâncias da ordem de pF (picofarad).

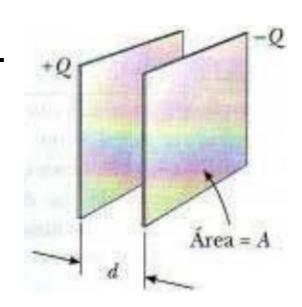
O Capacitor de Placas Paralelas

Duas placas com área A na distância d.

Se *d* é pequena comparada às dimensões das placas, o campo *E* entre elas é aproximadamente uniforme, segundo aula 4:

$$E = \sigma/\epsilon_0 = Q/\epsilon_0 A$$

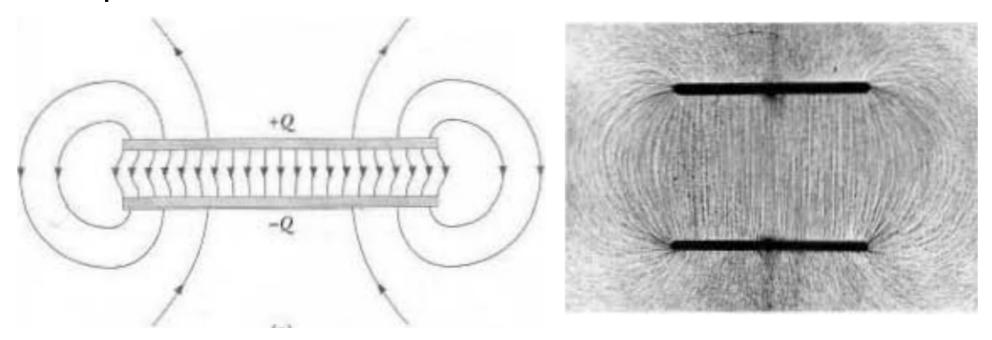
e a capacitância, $C = Q/\Delta V = Q\epsilon_0 A/Qd = \epsilon_0 A/d$, proporcional á área de suas placas e inversamente proporcional à separação delas.



O Capacitor de Placas Paralelas

Pra região entre as placas, o campo elétrico é bem aproximado por um campo uniforme.

Mas perto das bordas nem tanto.



Exemplo 20.7 Capacitor de Placas Paralelas

Um capacitor de placas paralelas tem uma área $A = 2.00 \cdot 10^{-4}$ m² e uma separação entre as placas d = 1.00 mm.

Encontre sua capacitância.

Exemplo 20.7 Capacitor de Placas Paralelas

Um capacitor de placas paralelas tem uma área $A = 2.00 \cdot 10^{-4} \text{ m}^2$ e uma separação entre as placas d = 1.00 mm.

Encontre sua capacitância.

$$C = \frac{\epsilon_0 A}{d} = (8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N \cdot m}^2) \left(\frac{2.00 \times 10^{-4} \,\mathrm{m}^2}{1.00 \times 10^{-3} \,\mathrm{m}} \right)$$
$$= 1.77 \times 10^{-12} \,\mathrm{F} = 1.77 \,\mathrm{pF}$$

Exercício

$$A = 2.00 \cdot 10^{-4} \text{ m}^2$$
, $d = 1.00 \text{ mm}$, $C = 1.77 \text{ pF}$

Se a separação entre as placas for aumentada para 3.00 mm, encontre a capacitância.

Exercício

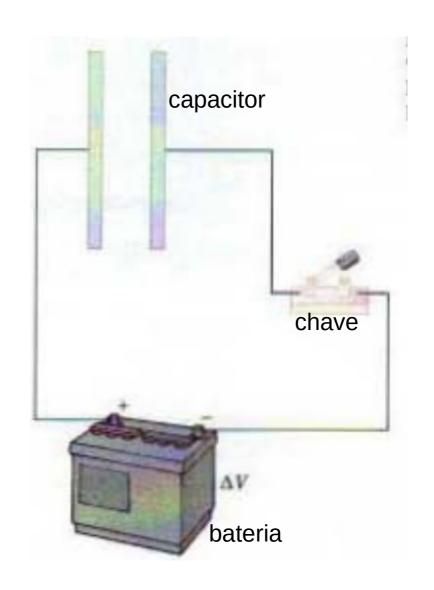
$$A = 2.00 \cdot 10^{-4} \text{ m}^2$$
, $d = 1.00 \text{ mm}$, $C = 1.77 \text{ pF}$

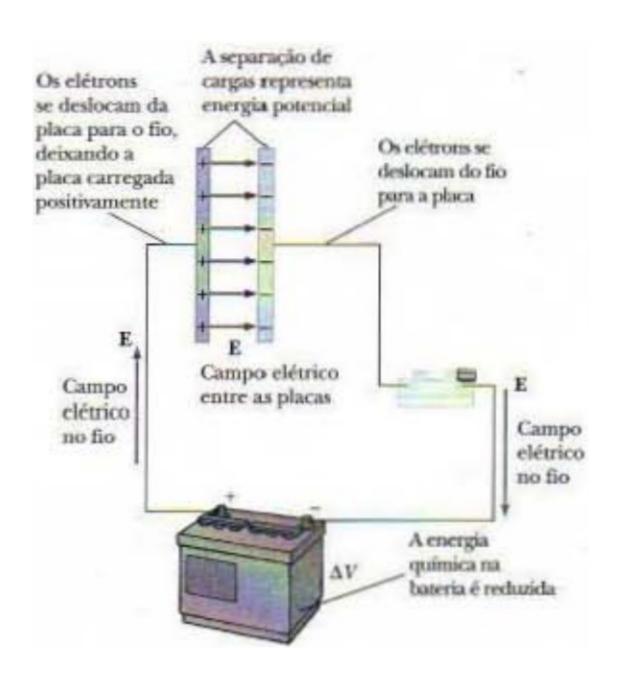
Se a separação entre as placas for aumentada para 3.00 mm, encontre a capacitância.

C = 0.590 pF(um terço do valor para 1.00 mm)

Enquanto armazena carga, um capacitor também armezena energia.

(Vide mais pra frente nesta disciplina)





Enigma Rápido 20.7

Por que é perigoso tocar nos terminais de um capacitor de alta-tensão, mesmo depois de ser desconectada a fonte de tensão que o carregou?

O que pode ser feito para tornar o capacitor seguro de ser tocado depois que a fonte de tensão for removida?

Enigma Rápido 20.7

Por que é perigoso tocar nos terminais de um capacitor de alta-tensão, mesmo depois de ser desconectada a fonte de tensão que o carregou?

O que pode ser feito para tornar o capacitor seguro de ser tocado depois que a fonte de tensão for removida?

A carga possivelmente permanece nos terminais, e com esta, a (alta) diferença de potencial também. Pode "desarmá"-lo descarregando ele, por exemplo conectando os terminais por um fio condutor (sem encostar neste).

O Capacitor Esférico

Consiste de uma esfera interna e uma casca oca esferica com raios R_1 e R_2 .

Carregados com Q e -Q:

Potencial na esfera interna:

$$V_1 = k_e Q/R_1$$

Na externa (pela lei de Gauss, a carga nesta casca não influencia): $V_2 = k_{\rm p}Q/R_2$ $=> \Delta V = k_0 Q(1/R_1 - 1/R_2) = k_0 Q(R_2 - R_1)/R_1 R_2$

Carregados com
$$Q$$
 e - Q :

Potencial na esfera interna:
 $V_1 = k_e Q/R_1$

Na externa (pela lei de Gauss, a carga nesta casca não influencia): $V_2 = k_e Q/R_2$
=> $\Delta V = k_e Q(1/R_1 - 1/R_2) = k_e Q(R_2 - R_1)/R_1 R_2$
=> $C = Q/\Delta V = 1/k_e \cdot R_1 R_2/(R_2 - R_1) = 4\pi\epsilon_0 \cdot R_1 R_2/(R_2 - R_1)$

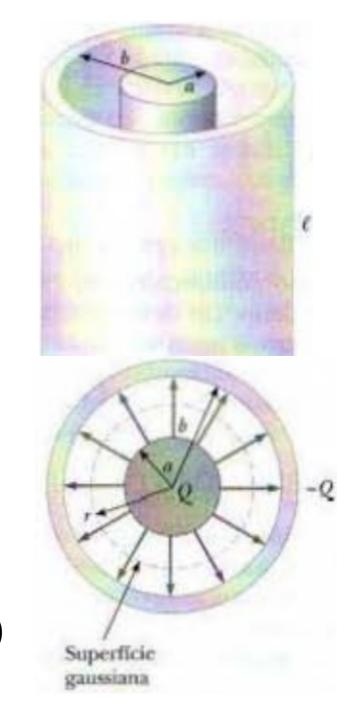
O Capacitor Cilíndrico

Dois cilindros concêntricos com raios a e b e comprimento(s) l, como num cabo coaxial. Carregando eles por Q e -Q => carga por unidade de comprimento do cilindro interior: $\lambda = Q/l$

$$\Delta V = V_b - V_a = -\int_a^b \mathbf{E} \cdot d\mathbf{s} = -\int_a^b E \, dr$$

$$E = 2k_e \lambda / r = -2k_e \lambda \int_a^b dr / r = -2k_e \lambda \ln(b/a)$$
(aula 4)

$$=> C = Q/|\Delta V| = \lambda I/|\Delta V| = I/(2k_e \ln(b/a))$$
$$= 2\pi\epsilon_0 I / \ln(b/a)$$

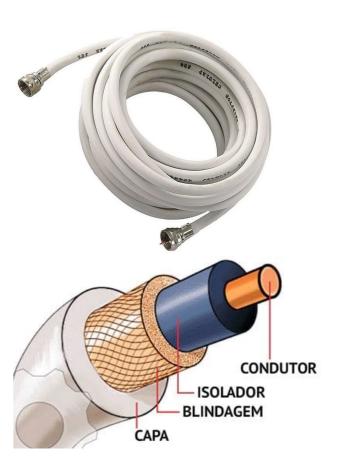


O Capacitor Cilíndrico

$$C = I/(2k_e \ln(b/a))$$
$$= 2\pi\epsilon_0 I / \ln(b/a)$$

Capacitância por unidade de comprimento de um cabo coaxial (usado para transmitir sinais elétricos sem interferência de campos externos, o condutor externo serve como "caixa de Faraday" pro interno):

$$C/I = 1/(2k_e \ln(b/a))$$
$$= 2\pi\epsilon_o / \ln(b/a)$$



Capacitores

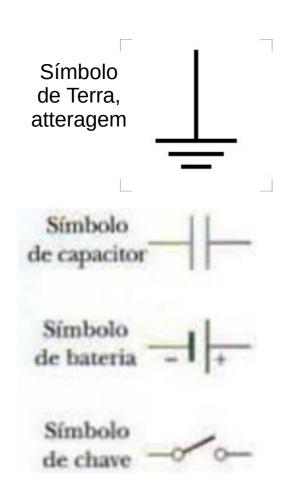
Alguns capacitores comerciais.

Diagramas de Circuito

Diagrama esquemático de um arranjo de elementos eletrônicos.

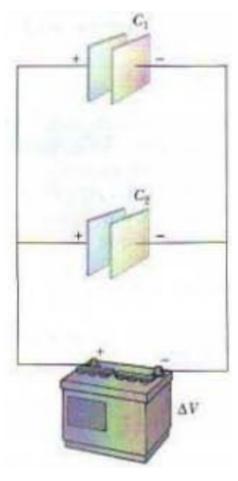
Os elementos são simbolizados por símbolos como os ao lado, e as conexões entre eles por fios condutores, por linhas sólidas.

Em seguida, determinamos a capacitância de combinações de capacitores, a capacitância equivalente.

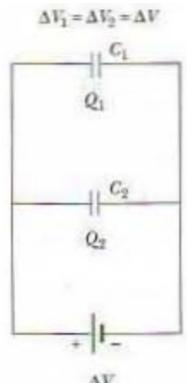


Combinação em Paralelo

Circuito



Diagrama



Os terminais dos capacitores

C₁ e C₂ estão conectados

=> no mesmo potencial

$$\Rightarrow \Delta V_1 = \Delta V_2 = \Delta V$$

Carga nos capacitores C_1 e C_2 :

$$Q_1 = C_1 \Delta V$$
, $Q_2 = C_2 \Delta V$

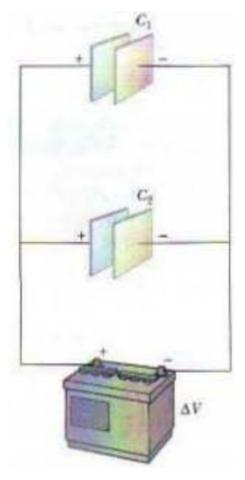
=> Capacitância equivalente

$$C_{\text{eq}} = (Q_1 + Q_2)/\Delta V$$

= $(C_1 \Delta V + C_2 \Delta V)/\Delta V = C_1 + C_2$

Combinação em Paralelo

Circuito



Diagrama

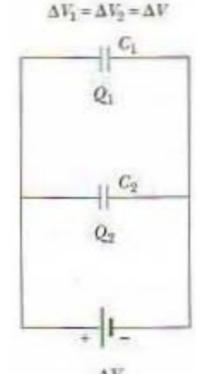
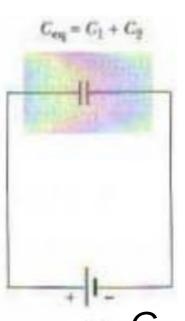


Diagrama Simplificado



A capacitância equivalente de capacitores ligados em paralelo é a soma das capacitâncias individuais.

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots$$

Assim, C_{eq} é maior que qualquer das capacitâncias individuais.

Exercício

Dois capacitores, com capacitâncias $C_1 = 5.0 \, \mu\text{F}$ e $C_2 = 12 \, \mu\text{F}$, estão conectados em paralelo e a combinação resultando está conectada a uma bateria de 9.0 V.

Qual é

- (a) o valor da capacitância equivalente da combinação?
- (b) a diferença de potencial em cada capacitor e
- (c) a carga armazenada em cada capacitor?

Exercício

Dois capacitores, com capacitâncias $C_1 = 5.0 \mu F$ e $C_2 = 12 \mu F$, estão conectados em paralelo e a combinação resultando está conectada a uma bateria de 9.0 V.

Qual é

- (a) o valor da capacitância equivalente da combinação?
- (b) a diferença de potencial em cada capacitor e
- (c) a carga armazenada em cada capacitor?

solução

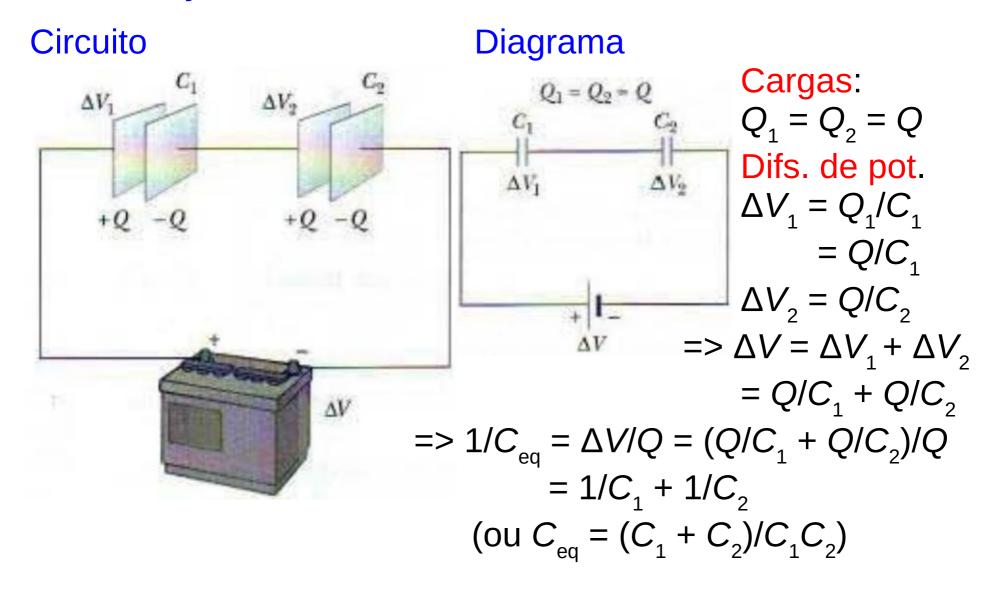
(a)
$$C_{eq} = C_1 + C_2 = (5.0 + 12) \mu F = 17 \mu F$$

(b)
$$\Delta V_1 = \Delta V_2 = \Delta V = 9.0 \text{ V}$$

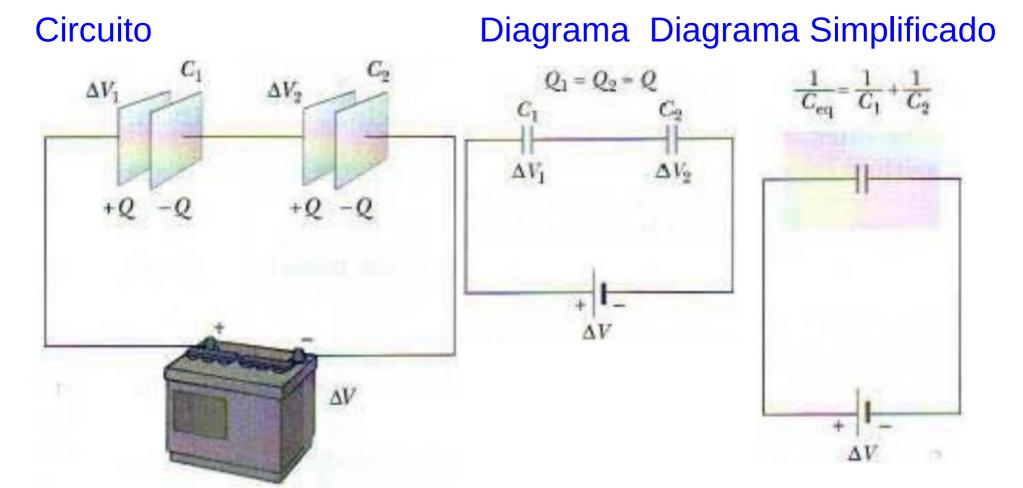
(c)
$$Q_1 = C_1 \Delta V = 5.0.9.0 \,\mu\text{FV} = 45 \,\mu\text{C},$$

 $Q_2 = C_2 \Delta V = 12.9.0 \,\mu\text{FV} = 108 \,\mu\text{C}$

Combinação em Série



Combinação em Série



Combinação em Série

Diagrama Simplificado

O inverso da capacitância equivalente de capacitores ligados em série é a soma dos inversos das capacitâncias individuais.

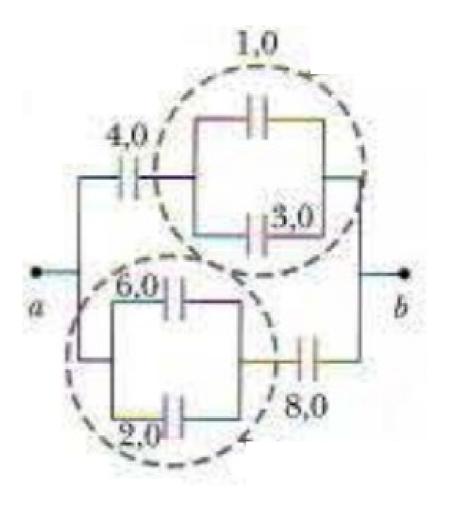
$$1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3 + \dots$$

Assim, C_{eq} é menor que qualquer das capacitâncias individuais.

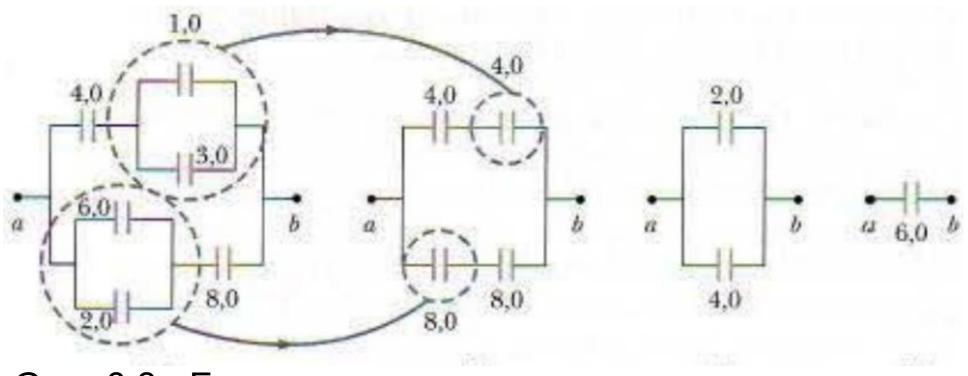
Exemplo 20.8 Capacitância Equivalente

Encontre a capacitância equivalente entre a e b para a combinação mostrada nesta figura.

Todas as capacitâncias estão em microfarads.



Exemplo 20.8 Capacitância Equivalente Solução



$$C_{\rm eq} = 6.0 \ \mu F$$

Exercício

Considere três capacitores com capacitâncias de 3.0 μ F, 6.0 μ F e 12 μ F. Encontre sua capacitância equivalente se eles forem conectados

- (a) em paralelo e
- (b) em série.

Exercício

Considere três capacitores com capacitâncias de 3.0 μ F, 6.0 μ F e 12 μ F.

Encontre sua capacitância equivalente se eles forem conectados

- (a) em paralelo e
- (b) em série.

solução

(a)
$$C_{eq} = C_1 + C_2 + C_3 = 21 \mu F$$

(b)
$$C_{eq} = (1/C_1 + 1/C_2 + 1/C_3)^{-1} = 12/7 \mu F = 1.7 \mu F$$

Fenômenos Eletromagnéticos

FIM PRA HOJE

