

1-

2-

BCJ0204 - Fenômenos Mecânicos

Experimento 1 – Relatório

Movimento Retilíneo Uniforme (MRU)

Professor(a):	Turma:	Data:	JJ
Nome:		_ RA:	
O relatório deverá ser feito à mão, salvo instru			
Demonstre abaixo o cálculo da incerteza da dis	stância e do tempo para um	a das colunas c	la tabela 1.
Coluna escolhida:			
Demonstre como calcular a incerteza da vel resolução das derivadas. Resolva para uma das		gação de erro	s, apresentando a
Coluna escolhida:			

Tabela 1: Dados das medições de intervalos de espaço e tempo do experimento MRU relativos aos quatro trechos do trilho de ar.

				1			
Intervalo	I		I	l			
Medida	L _i (cm)	Δt _ι (s)	L _{II} (cm)	Δt _{II} (s)			
1							
2							
3							
Média							
Incerteza							
\overline{v} (cm/s)							
σ_v (cm/s)							
	III		IV				
Medida	L _{III} (cm)	Δt _{III} (s)	L _{VI} (cm)	Δt _{IV} (s)			
1							
2							
3							
Média							
Incerteza							
\overline{v} (cm/s)							
σ_v (cm/s)							

³⁻ Se o carrinho realmente realizou um MRU sua velocidade deve ser constante. Faça a média das velocidades médias e sua incerteza (considere aqui apenas a incerteza estatística dos valores de \overline{v}).

Tabela 2: Posição do carrinho ao passar por um sensor em função do tempo.

sensor	\overline{X} (cm)	σ_x (cm)	<u></u> t(s)	$\sigma_t(s)$
1	0	0	0	0
2				
3				
4				
5				

4- Demonstre como foi calculado a incerteza da posição (σ_x) do tempo (σ_t) na linha do sensor 5 da tabela 2. Coloque a fórmula e o cálculo.

5- A equação de movimento do MRU é a equação de uma reta, usando o método de mínimos quadrados para obter a melhor reta que presenta os dados obtidos: $x(t) = x_o + vt$. Use o método de mínimos quadrados (MMQ) para obter x_0 e v, bem como suas incertezas (para esse cálculo você deve desconsiderar as incertezas no tempo). A demonstração do cálculo do MMQ pode ser feita em uma folha à parte e anexada ao relatório.

6- No papel milimetrado, construa um gráfico de posição X (eixo vertical) versus tempo t (eixo horizontal), utilizando todos os dados experimentais que você obteve na tabela 2. Utilize escalas otimizadas em ambos os eixos, não esquecendo o rótulo/nome de cada eixo e a respectiva unidade de medida.

Escreva num canto do gráfico, ou numa folha anexa, os valores de v e x_0 obtidos pelo MMQ. Use esses valores para desenhar uma reta com equação $x(t)=x_0+vt$. Se tudo deu certo, essa reta deve se aproximar bem dos dados experimentais. É exatamente isso que o método de mínimos quadrados faz: encontra os parâmetros da reta que melhor se aproxima dos pontos experimentais.

A velocidade média encontrada pelo MMQ está de acordo com a velocidade média encontrada no item 3? Não se esqueça de analisar as incertezas.