Mecânica Quântica

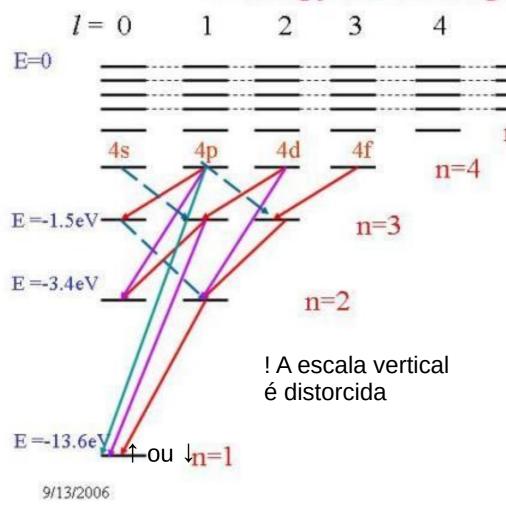
Aula 16 Extra: Átomos Multi-eletrônicos Sistema Periódico

Pieter Westera pieter.westera@ufabc.edu.br

http://professor.ufabc.edu.br/~pieter.westera/MQ.html

A meta desta aula é determinar a configuração eletrônica dos elementos no seu estado atômico "normal" em função do número atômico Z.

O número atômico é o número de prótons no núcleo. No caso do átomo néutro, Z também é o no. de elétrons na eletrosfera.


O estado "normal" procurado é o estado de menor energia, também chamado estado fundamental.

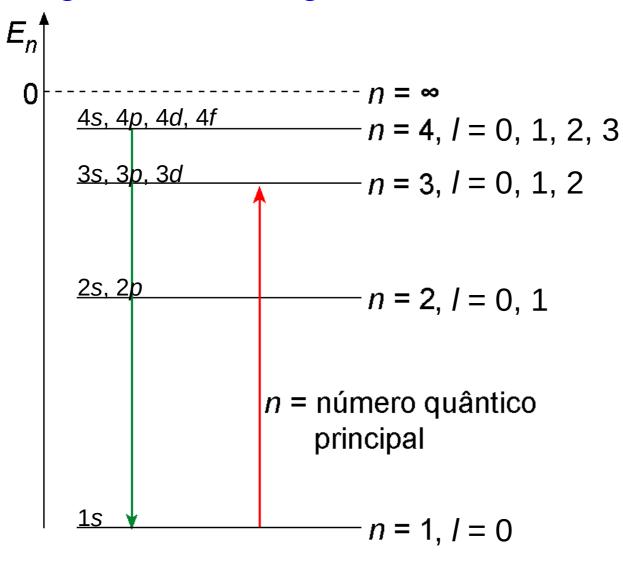
Temos que levar em conta o princípio de exclusão de Pauli:

- Nenhum par de elétrons pode estar no mesmo estado, ou
- Cada orbital comporta apenas 2 elétrons, um com spin pra cima e um com spin pra baixo

Z = 1: Hidrogênio

Energy level diagram

Este elemento conhecemos de sobra


n=∞ O estado fundamental tem o único elétron na camada 1s

=> configuração eletrônica: H 1s¹

A energia eletrônica é -13.6 eV

Hidrogenóides em geral

Diagrama de energias de um átomo com um elétron

Num átomo com um elétron, um hidrogenóide, todos os orbitais com o mesmo *n* têm a mesma energia. Os níveis de energia são degenerados.

Porém, quando há mais de um elétron, os elétrons se repelem entre si, o que altera as energias dos orbitais.

=> Desdobramento de níveis de energia.

Em átomos com mais de um elétron, temos interações entre os elétrons, o que modifica o potencial que cada elétron "sente".

Cada elétron está submetido ao potencial do núcleo, diminuído pelo potencial devido aos demais elétrons, efeito chamado blindagem.

Notícia ruim: Isto modifica os orbitais e as energias, e a equação de Schrödinger não tem soluções analíticas para sistemas maiores que 1 núcleo + 1 elétron.

Notícia boa: Mesmo assim, dá para identificar os orbitais com os orbitais do átomo de hidrogênio, e podemos manter a notação 1s, 2s, 2p, etc.

Como achar as funções de onda e energias de átomos multi-eletrônicos, já que a equação de Schrödinger não tem soluções analíticas?

Método numérico: Aproximação de Hartree-Fock

Aproximação de Hartree-Fock (processo iterativo)

- 1. Chutar um jogo inicial de f.d.o. $\psi_i^{(0)}(\mathbf{r}_i)$ $(i = 1, ..., n; n = no. de e^-)$
- 2. Calcular, para cada elétron i, o potencial devido ao núcleo (na origem do sistema de coordenadas) e aos outros elétrons j, tratando estes como distribuições contínuas de carga, dadas pelas suas cargas totais, -e, e seus orbitais, $P_i(\mathbf{r})$: $-e \cdot P_i(\mathbf{r})$:

$$V_{\text{SCF},i}^{(n)}(\mathbf{r}_i) = -Ze^2/4\pi\varepsilon_0 r_i + \sum_{j\neq i} \int e^2/4\pi\varepsilon_0 r_{ij} \cdot |\psi_j(n)(\mathbf{r}_j)|^2 d\mathbf{r}_j$$

$$= e^2/4\pi\varepsilon_0 \left[-Z/r_i + \sum_{j\neq i} \int |\psi_j(n)(\mathbf{r}_j)|^2/r_{ij} \cdot d\mathbf{r}_j \right], \quad \text{onde } r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$$

O índice SCF vem de self-consistent field, campo auto-consistente.

3. Resolver, para cada e-, a Equação de Schrödinger usando este campo auto-consistente numericamente, com computadores:

$$-\hbar^{2}/2m_{e} \cdot \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) \cdot \psi_{i}(\mathbf{r}_{i}) = E_{i} \cdot \psi_{i}(\mathbf{r}_{i}) = \nabla^{2}\psi_{i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i}) + V_{SCF,i}(\mathbf{r}_{i$$

- 4. Avaliar, se a diferença entre $\psi_i^{(n+1)}(\mathbf{r}_i)$ e $\psi_i^{(n)}(\mathbf{r}_i)$ é pequena o suficiente:
- senão, volte para o passo 2
- caso sim, o jogo $\psi_i^{(n+1)}(\mathbf{r}_i)$ é a solução, e $|E_i^{(n+1)}|$ é a energia de ionização do i-ésimo e $(E \in \mathbb{R})$ ($E \in \mathbb{R})$ e negativo para e^- ligados ao átomo)

Aproximação de Hartree-Fock (processo iterativo)

O método descrito no slide anterior é a aproximação de Hartree

Adicional de Fock:

Levar em conta o princípio de exclusão de Pauli (2 e⁻ não podem se encontrar no mesmo estado) incluindo no campo auto-consistente um termo repulsivo para o caso $\psi_i^{(n)}(\mathbf{r}_i) = \psi_i^{(n)}(\mathbf{r}_i)$, o potencial de troca K_{ij} :

$$V_{SCF,i}^{(n)}(\mathbf{r}_i) = e^2/4\pi\varepsilon_0 \left[-Z/r_i + \sum_{j\neq i} \int |\psi_j^{(n)}(\mathbf{r}_j)| 2/r_{ij} \cdot d\mathbf{r}_j \right] + \sum_{j\neq i} K_{ij}$$

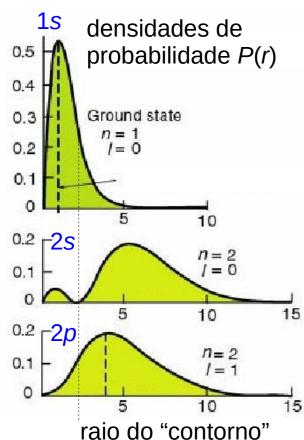
=> Método de Hartree-Fock

Energias em átomos multieletrônicos

Exemplo: 2 elétrons

Num átomo com 2 elétrons (i.e. Hélio néutro), os dois ficam no orbital 1s, já que este é o orbital de menor energia.

Sem interação entre os elétrons, e energia seria $2(-Z^2/1^2)E_0 = -2Z^2E_0$. No caso de hélio (Z = 2), isto dá $-8E_0 = -108.8$ eV Tirar uma delas custaria uma energia de 54.4 eV


Porém, os elétrons se repelem => Aumento de energia

O primeiro elétron é mais fácil de tirar, a energia de primeira ionização é 24.6 eV, menor que 54.4 eV.

Após tirado o primeiro elétron, o átomo é um hidrogenóide, e a energia necessário para tirar o segundo elétron é mesmo 54.4 eV.

=> A energia eletrônica total do átomo de Hélio, isto é, a energia em relação ao estado "núcleo e todos os elétrons separados" é -24.6 eV + -54.4 eV = -79 eV

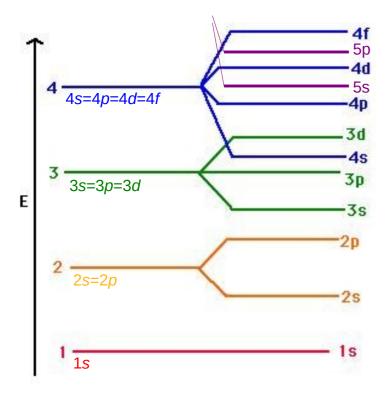
Energias em átomos multieletrônicos

raio do "contorno" do orbital 1s, i. e., da região de alta probabilidade de estadia dos e⁻ 1s Exemplo (qualitativo): 3 elétrons

Num átomo com 3 elétrons (i.e. Lítio néutro), 2 deles no orbital 1s, onde se encontrará o terceiro, no orbital 2s ou no 2p?

Um e^-2p "enxergaria" maior parte do tempo o núcleo blindado pelos elétrons 1s, isto é, se "sentiria" atraído por um núcleo com carga Z - 2.

Um e⁻ 2s penetra com mais frequência na região dos 1s, e "veria" o núcleo menos blindado, se "sentiria" atraído por um núcleo com carga um pouco maior que Z - 2 (mais forte que um e⁻ 2p).


=> No orbital 2s, o 3° e⁻ tem energia menor que no 2p.

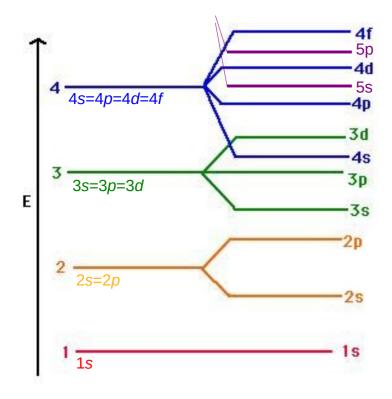
Ou simplesmente:

O orbital 2s tem menor energia que o 2p.

Diagrama de energias em átomos multieletrônicos

Átomos com 1 e⁻ Átomos multi-e⁻

Resultados


Para átomos multi-eletrônicos, ocorre desdobramento de níveis de energia com o mesmo n e l diferentes, mas para a mesma combinação de n e l, ainda ocorre degenerescência em m_l .

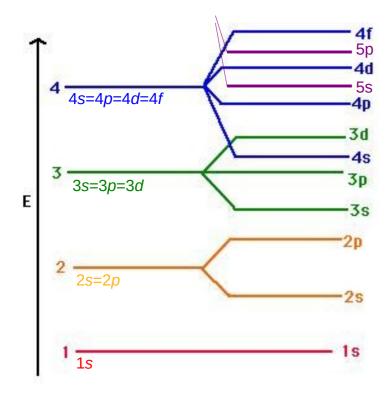
Para um dado *n*, as energias das subcamadas (dos orbitais com diferentes valores de *l*) aumentam quando *l* aumenta:

$$s .$$

Diagrama de energias em átomos multieletrônicos

Átomos com 1 e⁻ Átomos multi-e⁻

Resultados

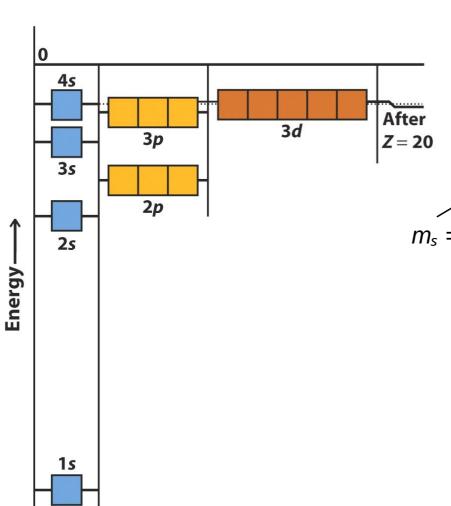

Este desdobramento em / leva à Regra de Madelung:

- 1. Os orbitais são ordenados por n + l crescente.
- 2. Para orbitais com o mesmo valor de n + l, a ordem é por n crescente.

Exemplo: 2*p* vem antes de 3*s*.

Diagrama de energias em átomos multieletrônicos

Átomos com 1 e⁻ Átomos multi-e⁻

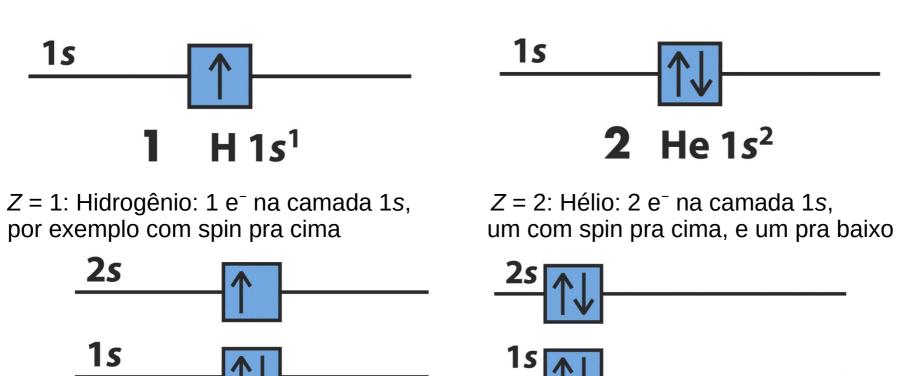


Resultados

Tabela que facilita memorizar a ordem das subcamadas.

Camada	Subcamadas					
1 2 3 4 5 6 7	s p d f s p d f s p d f s p d f					

Diagrama de energias em átomos multieletrônicos

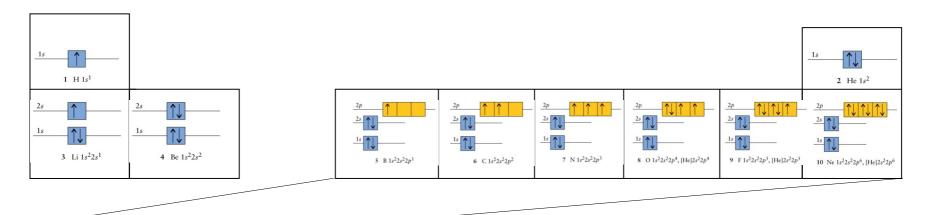


Pelo princípio de exclusão, cada orbital n, l, m_l pode ser ocupado por apenas 2 elétrons, um com spin pra cima e um com spin pra baixo, ou cada subcamada n, l pode conter $2 \cdot (2l + 1)$ elétrons

 $m_s = \pm 1$ $m_l = -l$, ..., l (camadas s: 2 e⁻, p: 6 e⁻, d: 10 e⁻, etc.)

Agora podemos "encher o sistema periódico", ou seja, encher as camadas e subcamadas de elétrons de baixo pra cima (princípio de construção), simbolizando os elétrons por flechas, ↑ ou ↓, de acordo com o spin.

Princípio da Construção (aumentando Z)

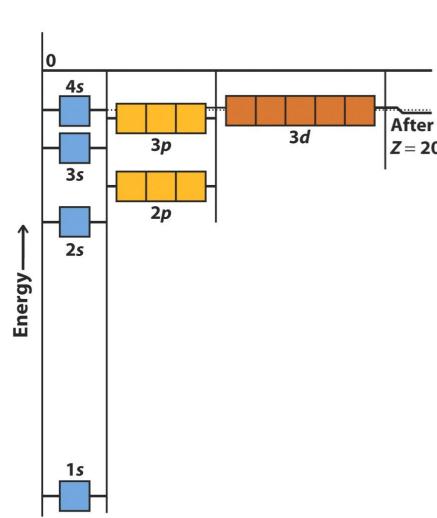

Li $1s^22s^1$, [He] $2s^1$ 4 Be $1s^22s^2$, [He] $2s^2$

Z = 3: Lítio: 2 e⁻ na camada 1s, 1 na 2s

Z = 4: Berílio: 2 e⁻ na camada 1s, 2 na 2s

Princípio da Construção (aumentando Z)

Podemos prencher os $2 \cdot (2l + 1)$ vagas em uma dada subcamada em qualquer ordem?



Regra de Hund (1927):

"A configuaração do estado fundamental é aquela com máximo número de spins desemparelhados."

Ou seja, durante o preenchimento das orbitais de um mesmo nível energético, deve-se colocar em primeiro lugar em todas elas um só elétron, todos com o mesmo spin, antes de se proceder à lotação completa dessas orbitais. Os próximos elétrons a serem colocados deverão apresentar spins antiparalelos em relação aos já presentes.

Configuração dos primeiros 11 elementos

H: 1s¹

A energia do átomo de H (a energia comparado ao estado "núcleo e elétron separado") é

z=20 $E(H) = -Z^2/n^2 \cdot E_0 = -1^2/1^2 \cdot E_0 = -E_0 = -13.6$ eV e a energia de ionização, a energia necessária para tirar o e⁻:

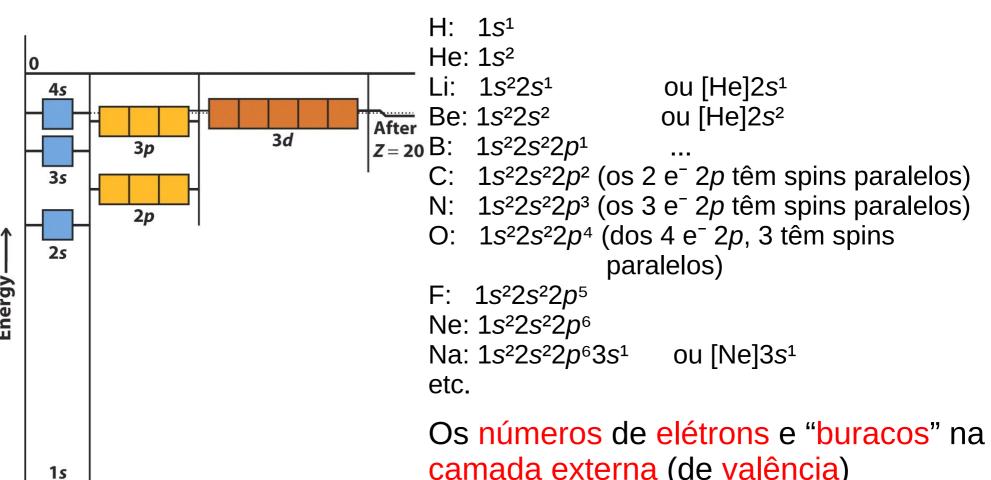
$$Ei(H) = E(H^{+}) - E(H) = 0 - (-E_{0}) = 13.6 \text{ eV}$$

He: 1s²

A energia do átomo de He não é

$$-2 \cdot Z^2/n^2 \cdot E_0 = -2 \cdot 2^2/1^2 \cdot E_0 = -8E_0 = -108.8 \text{ eV}$$

Ela é maior por causa da repulsão entre os e⁻:

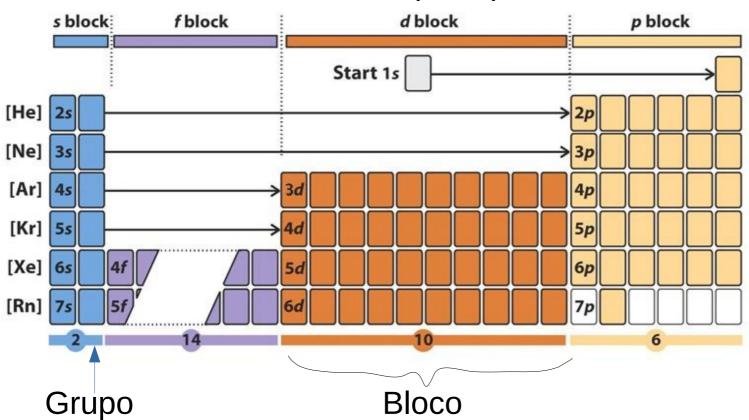

$$E(He) = -79 \text{ eV}$$

e a energia de (primeira) ionização, a energia necessária para tirar o (primeiro) e⁻:

$$Ei(He)=E(He^+)-E(He)=-4E_0-(-79 \text{ eV})=24.6 \text{ eV}$$

\Este \(\) tal que vale $E = -Z^2/n^2 \cdot E_0$

Configuração dos primeiros 11 elementos


Os números de elétrons e "buracos" na camada externa (de valência) determina as propriedades químicas do elemento.

Princípio da Construção (aumentando Z)

Continuando até o fim

=> A tabela periódica de

Dimitri Ivanovich Mendeleev (1869)

Дми́трий Ива́нович Менделе́ев, 1834-1907

-Período

Z aumenta:

O formato da tabela periódica

A forma moderna da tabela periódica reflete a estrutura eletrônica fundamental dos elementos.

Os blocos da tabela periódica refletem a identidade dos últimos orbitais que são ocupados no processo de preenchimento. O número do período (da linha horizontal) é o número quântico principal da camada de valência. O número do grupo (coluna) está relacionado ao número dos elétrons de valência.

Elementos no mesmo período têm números atômicos e massas atômicas da mesma ordem.

Elementos no mesmo grupo têm propriedades químicas similares, por terem o mesmo número de elétrons de valência ou de buracos na camada de valência (a última camada que contém elétrons).

Exceções

!!! A configuração eletrônica de um elemento (no estado fundamental) nem sempre é aquela prevista pelo princípio de construção usando a regra de Madelung. Às vezes é energeticamente mais favorável um elétron (ou mais) estar em uma outra subcamada que previsto, por exemplo um e⁻ que seria ns pela teoria apresentada é na verdade (n-1)d.

```
Exemplos (3º e 4º períodos):
```

```
Crômio: seria [Ar]3d^44s^2, mas é [Ar]3d^54s^1
Cobre: " [Ar]3d^94s^2 " [Ar]3d^{10}4s^1
Nióbio: " [Kr]4d^35s^2 " [Kr]4d^45s^1
Molibdénio: " [Kr]4d^45s^2 " [Kr]4d^55s^1
Ruténio: " [Kr]4d^65s^2 " [Kr]4d^75s^1
Ródio: " [Kr]4d^75s^2 " [Kr]4d^85s^1
Paládio: " [Kr]4d^85s^2 " [Kr]4d^{10}
Prata: " [Kr]4d^95s^2 " [Kr]4d^{10}5s^1
```

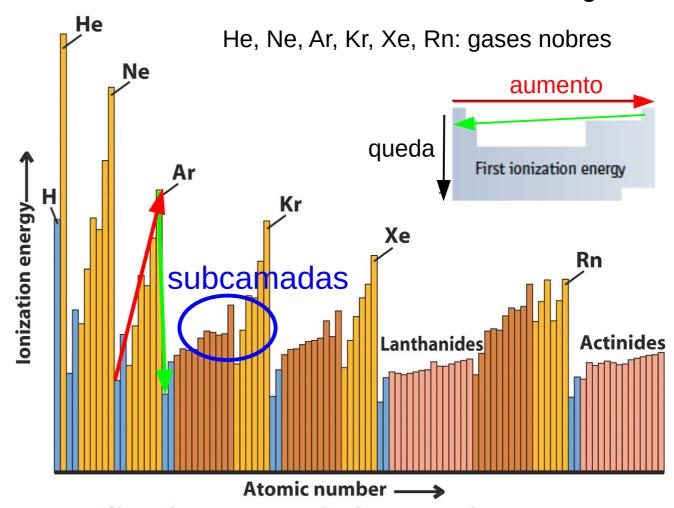
A partir do quinto período, este fenômeno é cada vez mais frequente, e outras substituições também ocorrem ((n-1)p) em lugar de ns ou (n+1)d em lugar de nf, ...)

Tabela periódica atual www.iupac.org/reports/periodic_table/

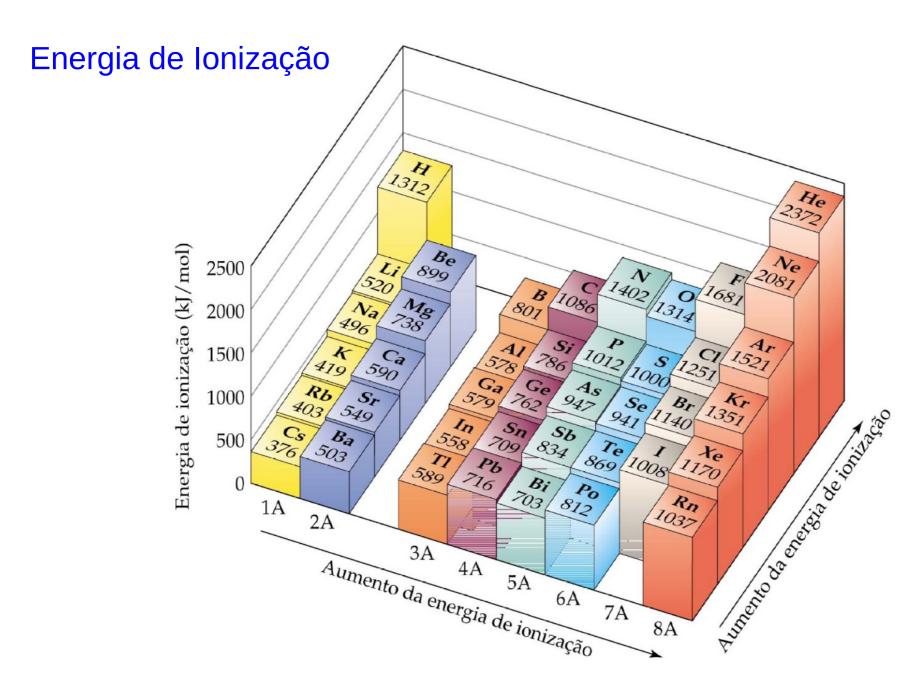
IUPAC Periodic Table of the Elements

1																	18
1 H hydrogen 1.007 94(7)	2		Key.									13	14	15	16	17	2 He helium 4.002 602(2
3	4		atomic no									5	6	7	8	9	10
Li	Be		Sym	bol								В	C	N	0	F	Ne
lithium	beryllium	1	name									boron	carbon	nitrogen	oxygen	fluorine	neon
5.941(2)	9.012 182(3)	1	standard atom	nic weight								10.811(7)	12.0107(8)	14.0067(2)	15.9994(3)	18.998 4032(5)	20,1797(6)
11	12											13	14	15	16	17	18
Na	Mg	1										Al	Si	P	S	CI	Ar
sodium 22.989 770(2)	magnesium 24.3050(6)	3	4	5	6	7	8	9	10	11	12	aluminium 26.981 538(2)	silicon 28.0855(3)	phosphorus 30.973 761(2)	sulfur 32.065(5)	chlorine 35.453(2)	argon 39.948(1)
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.0983(1)	40.078(4)	44.955 910(8)	47.867(1)	50.9415(1) 41	51,9961(6) 42	54.938 049(9)	55.845(2) 44	58,933 200(9) 45	58.6934(2)	63.546(3)	65,409(4) 48	69.723(1)	72.64(1)	74.921 60(2)	78,96(3)	79.904(1)	83.798(2)
		1							46			49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
rubidium 85.4878(3)	strontium 87.62(1)	yttrium 88.905 85(2)	2irconium 91.224(2)	niobium 92.906 38(2)	molybdenum 95,94(2)	technetium [98]	ruthenium 101.07(2)	rhodium 102.905 50(2)	palladium 106.42(1)	silver 107.8682(2)	cadmium 112.411(8)	indium 114.818(3)	tin 118.710(7)	antimony 121,760(1)	tellurium 127,60(3)	iodine 126.904 47(3)	xenon 131.293(6)
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	barium		hafnlum	tantalum	tungsten	rhenium	osmium	Iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.905 45(2)	137.327(7)	00.400	178.49(2)	180.9479(1)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2)	196.966 55(2)	200.59(2)	204.3833(2)	207.2(1)	208.980 38(2)	[209]	[210]	[222]
87	88	89-103	104	105	106	107	108	109	110	111							
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
francium [223]	radium [226]		rutherfordium [261]	dubnium [262]	seaborgium [266]	bohnum (264)	hassium (277)	meitnerium (268)	darmstadtium [271]	roentgenium							
[223]	[220]		[201]	[202]	[soal	[204]	[277]	[208]	[2/1]	[272]	ı						
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
-	-	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
A		lanthanum	cerium	praseodymium	neodymium	promethium	semerium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
((()))		138.9055(2)	140.116(1)	140.907 65(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.925 34(2)	162.500(1)	164.930 32(2)	187.259(3)	168.934 21(2)	173.04(3)	174.967(1)	
A	AL	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
1	7(2)	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	

Notes

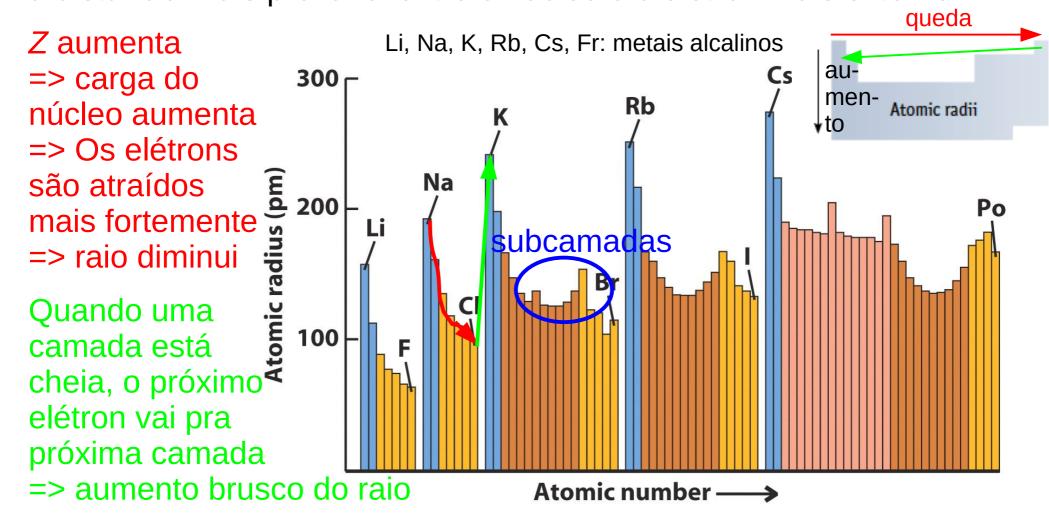

- "Aluminum" and "cesium" are commonly used alternative spellings for "aluminium" and "caesium."
- IUPAC 2001 standard atomic weights (mean relative atomic masses) are listed with uncertainties in the last figure in parentheses [R. D. Loss, Pure Appl. Chem. 75, 1107-1122 (2003)].
 These values correspond to current best knowledge of the elements in natural terrestrial sources. For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets.
- Elements with atomic numbers 112, 113, 114, 115, and 116 have been reported but not fully authenticated.

Copyright © 2005 IUPAC, the International Union of Pure and Applied Chemistry. For updates to this table, see http://www.iupac.org/reports/periodic_table/. This version is dated 4 February 2005.

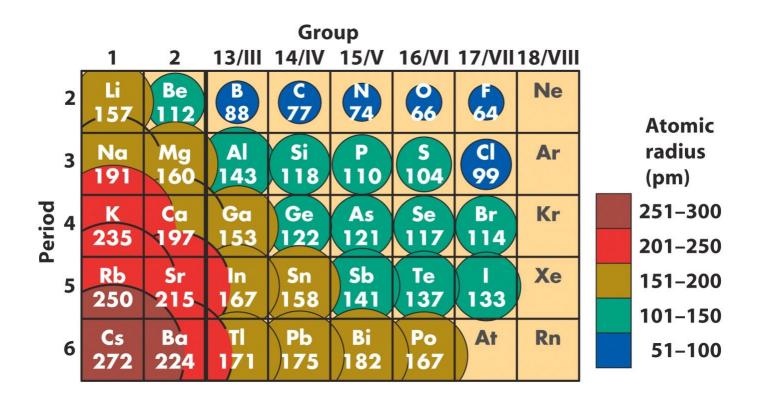

Primeira Energia de Ionização em função do Número Atômico Z energia requerida para remover um eletrón de um átomo em sua fase gasosa

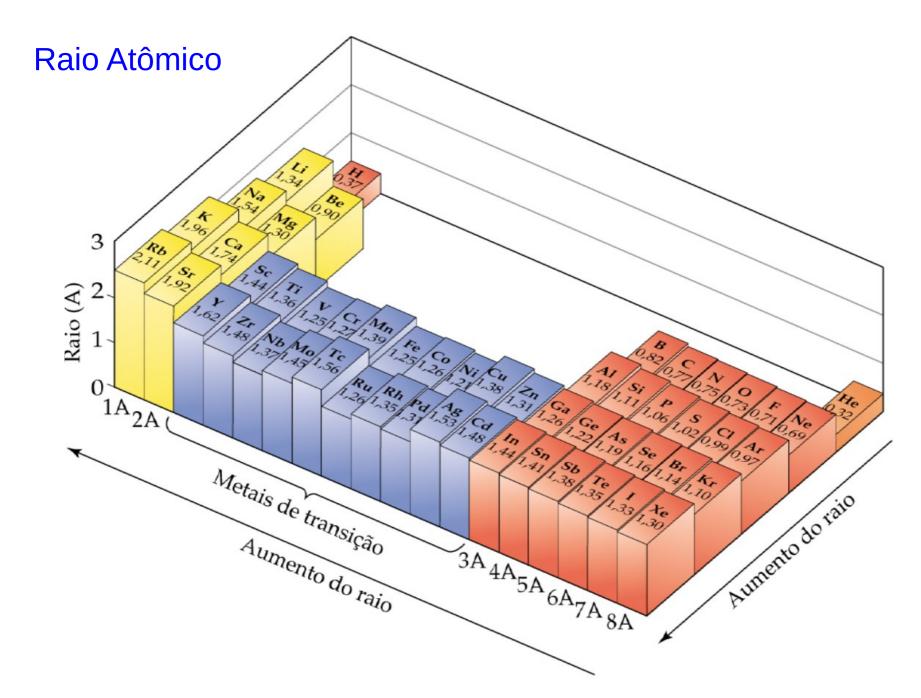
Z aumenta => carga do núcleo aumenta => Os elétrons são atraídos mais fortemente => E_i aumenta

Quando uma camada está cheia, o próximo elétron vai pra próxima camada


=> muito menos fortemente ligado => Queda brusca de E_i As subestruturas surgem devido às subcamadas.

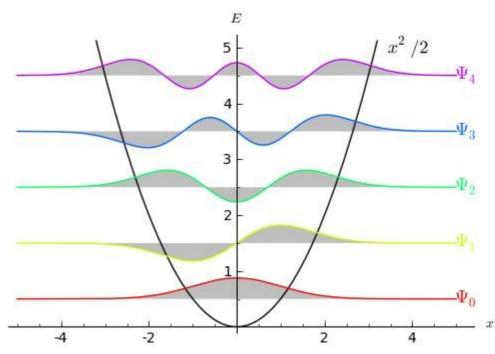
Energia de Ionização


TABELA 7.2 Valores das energias de ionização sucessivas, I, para os elementos do sódio até o argônio (kJ/mol)											
Elemento	I_1	I_2	I_3	I_4	I_5	I_{6}	I_7				
Na	496	4.560			elétrons dos n	íveis mais inter	nos				
Mg	738	1.450	7.730								
Al	578	1.820	2.750	11.600							
Si	786	1.580	3.230	4.360	16.100						
P	1.012	1.900	2.910	4.960	6.270	22.200					
S	1.000	2.250	3.360	4.560	7.010	8.500	27.100				
Cl	1.251	2.300	3.820	5.160	6.540	9.460	11.000				
Ar	1.521	2.670	3.930	5.770	7.240	8.780	12.000				


Raio Atômico em função do Número Atômico Z a distância mais provável entre o núcleo e o elétron mais externo

=> Anti-correlação entre energia de ionização e raio atômico.

Raio Atômico



Física Quântica

FIM PARA HOJE

http://professor.ufabc.edu.br/~pieter.westera/MQ.html