Exercício 1. Mostre que se $T: X \to X$ é uma contração em X, então T^n é uma contração para todo $n \in \mathbb{N}$. A recíproca é válida?

Exercício 2. (Método de Newton) Sejam f uma função real de classe C^2 em um intervalo [a,b] e \hat{x} um zero simples de f em (a,b). Mostre que

$$x_{n+1} = g(x_n), \quad g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$$

é uma contração em algum intervalo de \hat{x} (de forma que a iteração seja convergente a \hat{x} para qualquer x_0 suficientemente próximo de \hat{x}).

Exercício 3. Seja $T:X\to X$ uma aplicação definida num espaço métrico completo X e suponha que T^m seja uma contração em X para algum inteiro positivo m. Mostre que T tem único ponto fixo.

Exercício 4. No Teorema de Picard, suponha que a função $f:[t_0-\epsilon,t_0+\epsilon]\times\mathbb{R}^m\to\mathbb{R}^m$ seja contínua e Lipschitz na segunda variável, para algum $\epsilon>0$. Mostre que o problema de valor inicial possui uma única solução $x:[t_0-\epsilon,t_0+\epsilon]\to\mathbb{R}^m$. Qual a diferença deste para o Teorema de Picard provado em aula?

Conclua que se $f:[t_0-\epsilon,t_0+\epsilon]\times\mathbb{R}^m\to\mathbb{R}^m$ é contínua e Lipschitz na segunda variável para todo $\epsilon>0$, então a única solução é global.