Exercício 1. Mostre que para todo espaço normado de dimensão infinita U e todo espaço normado $V \neq \{0\}$, existe um operador linear descontínuo $T: U \to V$.

Exercício 2. Seja U um espaço normado sobre \mathbb{C} . Se φ é um funcional linear descontínuo em U, mostre que $\{\varphi(x); x \in U \text{ e } ||x|| \leq 1\} = \mathbb{C}$.

Exercício 3. (a) Prove que se um espaço normado U é isomorfo a um espaço de Banach, então E é espaço de Banach.

- (b) Mostre que existem espaços métricos homeomorfos M e N, com M completo e N não-completo.
- (b) Como você explica a discrepância entre os itens (a) e (b)?

Exercício 4. Seja $\varphi: c_0 \to \mathbb{C}$ definido por

$$\varphi((a_j)) = \sum_{j=1}^{\infty} \frac{a_j}{2^j},$$

com $c_0 = \{(a_k); a_k \in \mathbb{C} e \, a_k \to 0\} \subset \ell^{\infty}$. Prove que:

- (a) O funcional φ está bem definido.
- (b) $\varphi \in (c_0)^*$.
- (c) $\|\varphi\| = 1$.
- (d) Não existe $x \in c_0$ tal que $||x|| \le 1$ e $||\varphi|| = |\varphi(x)|$.

Exercício 5. Sejam U e V espaços normados e $T:U\to V$ um operador linear contínuo.

- (a) Prove que o núcleo de T é um subespaço fechado de U.
- (b) Prove que a imagem de T é um subespaço de V. A imagem de T é fechada em V?

Exercício 6. (a) Sejam U e V espaços normados e $T:U\to V$ linear e contínuo. Mostre que

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} = \sup_{||x|| = 1} ||T(x)|| = \sup_{||x|| < 1} ||T(x)|| = \inf\{C; ||T(x)|| \le C||x||, \forall x \in U\}.$$

(b) Prove que $T\mapsto \|T\|$ é uma norma em $\mathcal{L}(U,V).$