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ABSTRACT. In this paper we derive a new equation unifying the Camassa-Holm and
Novikov equations invariant under the scaling transformation (z,t,u) — (z, A=, Au)
and admitting a certain multiplier.

1. Imtroduction. This work corresponds to a talk given by the first author in the session
SS 69: Lie Symmetries, Conservation laws and other approaches in solving nonlinear dif-
ferential equations, organized by Chaudry Masood Khalique, Maria Gandarias and Mufid
Abudiab, and also another talk, presented during the Student Paper Competition, in the
10th AIMS Conference on Dynamical Systems, Differential Equations and Applications,
which took place in Madrid, Spain, from July 07th until July 11th, 2014. We would like to
thank the organizers of the session SS 69 for their kind invitation and also the organizers
of the Student Paper Competition for the opportunity given to P. L. da Silva discuss our
results [12].

In this communication we give a new proof of the results obtained in [12, 13] and in
some parts the presentation closely follows those references. Actually, a considerable and
important part of this paper was influenced by the fruitful discussions that we had with
S. Anco during the event and then, we are pleased in reporting this new deduction in the
Proceedings of the conference.

Since the celebrated Korteweg and de Vries paper [28], in which a third order evolution
equation was derived and named after them, a huge number of papers in the literature has
been done for modeling, or related with, shallow water equations. During the last century,
a sequence of papers, starting with [30], showed and enlightened many properties of such
equation. Additionally, the KdV equation

proved to be a prototype equation for many phenomena, see, for instance, [1].

Although its good and versatile properties, the equation was not above criticisms. In the
seminal paper [5], the authors derived a new equation for moderately long waves of small
amplitudes whose formal justification is as that for the KdV and from that paper arose the
well know Benjamin-Bona-Mahoney (BBM) equation

Up = Upgq + Ully. (2)
However, the differences between both equations are greater than the fact that (1) is an

evolution equation whereas (2) is not. In [5] the authors found three conserved quantities
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on the solutions of (2). Later, in [33], those obtained conservation laws were proved to be
the only three admitted by (2). This fact shows a dramatic difference between the two
equations since (1) admits an infinite number of conserved quantities [31].

Camassa and Holm [10], using Hamiltonian methods, derived the famous Camassa-Holm
(CH) equation

Up — Utgg + ULy = 2Uglpy + Ullppy. (3)

This last equation possesses remarkable properties such as solutions with peaks in which have
discontinuous first order derivatives, called peakon solutions, and it has a bi-hamiltoninan
structure, see [10], which implies in the existence of an infinite number of conserved quan-
tities, like the KdV equation [19, 31, 29]. Moreover, it admits Lie symmetries generated by
the differential operators

0 0
X = 2’ T = pn (4)
and 5 5

Since Camassa and Holm’s work much interest have been paid to third order equations
having similar properties as those known for KdV and CH equations. For instance, in [15] it
was derived an integrable equation having peakon solutions with first order nonlinearities,
while in [16] another integrable one, combining linear effects in the dispersion, such as in
the KdV case, and nonlinear dispersion, like the CH equation, was reported. More recently,
Novikov [32] has discovered the equation

Ut — Utgy + 4’(1,21% = Uz Uge + u2uxacxa (6)
which not only admits peakon solutions and has cubic nonlinearities, but it is also integrable
[18].

In [23], Ibragimov, Khamitova and Valenti, using the techniques introduced in [22],

showed that (3) is strictly self-adjoint and, from the Lie point symmetry generator (5),
they established the following conserved vector for (3):

CO =u? +u2, C'=2(u* — uUps — Ullyy). (7)
One of us (I. L. Freire), jointly with Y. Bozhkov and N. Ibragimov, considered in [9]

the Novikov equation (6) from the point of view of Lie group analysis. It was shown that
equation (6) admits a five dimensional symmetry Lie algebra, spanned by the operators (4),

0 0 0 0
_ 2z 2x — —2x _ 2z
Xi=e 7 +e e X_=e 9. ¢ ums
and 5 5

In the same work, and using again the same techniques [22], it was obtained the following
conserved vector from the generator (8):

CO=w?+u2, C'=2u" — 2uPup, — 2uu,. (9)

We recall that the components C in (7) and (9) are the conserved quantities employed for
constructing a Hamiltonian for (3) and (6), see [10] and [18], respectively, for the Camassa-
Holm and Novikov equations.

More recently, in [14] we considered the modified Novikov equation

Up — Utz + (b4 DUy — butiptyy — U Ugpe = 0, (10)

introduced in [27]. We showed that for any b # 3, the Lie point symmetries of (10) only
admits the generators (4) and (8). In the case b = 3, we recover the Novikov equation and,
for this case, in addition to (4) and (8), we have the additional generators X, and X_
mentioned above.
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Investigating the construction of conservation laws using Ibragimov’s ideas [22], we were
surprised in concluding that a local conservation law for (10), using the approach [22, 24, 25],
could only be obtained if and only if b = 3, that is, only when it is considered the Novikov
equation.

Therefore, motivated by these recent works, we investigated [12, 13] the following class
of third order equation

Ut + EUzr + f(W)uz + g(u)ugtipe + h(0)Ugee = 0. (11)

However, differently from [12], in this communication we consider (11) not from the point
of view of strict self-adjointness [22, 25], but we now move our eyes to the direct method
[2, 3, 4, 6].

The paper is organized as the follows. In the next section we present some basic facts
on Lie symmetries. Conservation laws are revisited in the next. The main idea of the
direct method is presented in section 4. Then, in the section 5, we present a new equation
connecting Camassa-Holm and Novikov equations.

2. Symmetries. Here we present a very short recall in Lie symmetries. For further details,
see [7, 8, 20, 21, 36].

Let # = (z',-- ,2") € X CR", u = u(z,t) € U C R and u(j) be, respectively, the set of
the independent and dependent variables; and the set of all j —th derivatives of u. Hereafter,
the summation over repeated indices is presupposed. All functions here are assumed to be
smooth. In particular, u;,...;; = D;, --- D;, (u), where

0 0

D; = —|—uza —i—u”a +-y, 1=0,---,n

a %
are the total derivative operators.

Let A be the set of all locally analytic functions of a finite number of the variables x, u
and uj). Let F' € A and consider an equation

F(x,u,u(l),-~- ,U(k)) =0. (12)
An operator
X =&z, u) 0 +n(x,u)— 0 (13)
TS W Wy T WG,
is called Lie point symmetry generator of the equation (12) if
XM E = \F, (14)
for a certain function A depending on @, u,u(y),--. In this case, the Lie point symmetry is
given by (z,u) — (Z,u), where z = (x!,---  2") and
=i i Xt E2XXi EnXXn—li i OOEij i
= z'+¢ x—l—a ( ac)+~-~+m ( )+ =x —&-Z—' (z
a = u+qu+iX(Xu)+ EnX(X” 1 —u+z XJ
B 2! n!

Equation (14) is called invariance condition and

0 g
+Cz +Czya +Czlz

ai + n(z,u)— g (15)

_9
Oz ou "oy
where Cl = D277 - D (5 )u]v"' 7<11 ik Di1 D1177 - D k(fj)ull Uk—1]) is the k — th
prolongation of the vector field X. In this case, we say that (z,u) — (Z,u) is a Lie point
symmetry of (12). Symmetries of some equations of the type (11) can be found in [11].

X® =gz, u)
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3. Conservation laws. Here we present some elements regarding conservation laws. How-
ever, the interested reader is refereed to [2, 22, 23, 25, 33, 34, 35, 40] for further details. We
also guide the curious reader to [21, 26, 36, 37, 38, 39] for additional readings.

Mathematically speaking, one can define a conservation law for (12) starting from the
expression

Div(C) := D;C° + D;C" = \F, (16)
for a certain vector field C' := (CY,C,), where C, := (C',---,C™), and functions \ =
A(t,x,u,---). Equation (16) is called characteristic form of the conservation law D;C° +
D;C* = 0, while ) is its characteristic. Then, on the solutions of F' = 0, we have Div(C) = 0.

A vector field C = (C° C,) provides a trivial conservation laws if Div(C) = 0. Such
a vector C' is, therefore, called trivial conserved vector. Otherwise C is called nontrivial
conserved vector. Two conserved vectors are said to be equivalent if they differ by a trivial
conserved vector. Clearly two equivalent conserved vectors possess the same characteristic
A. A conservation law of an equation can now be rigorously defined as follows.

By conservation law of (12) we mean the equivalence class of conserved vectors of (12).
Then, the set of all conservation laws is a vector space whose the identity is the equivalence
class of the trivial conserved quantities.

On (12), the relation (16) becomes D;C° + D;C* = 0. From the physical point of view,
the vector field C' = (C9, C*,--- ,C™) is usually a density and it is called conserved vector or
conserved current of the phenomena modeled by (12). The component C? is the conserved
density while the remaining components are the conserved flux. Being a density, restricting
x to a fixed domain Q2 C R"™, with a smooth, constant, boundary 052, and defining

QQ :Z/Codﬂf,
Q

application of the divergence theorem gives

%@:/m&m:—/m@m:— C, - dS.

dt Q Q 99

Therefore, restricted to €2, the quantity QQq depends only on the behavior of the solutions
on the boundary 02 and it is equal to the total flux over it. For non-dissipative physical
models, this fact provides the general form of a conservation law.

4. Direct method. Usually, once the invariance group of an Euler-Lagrange equation is
known, the celebrated Noether theorem can be invoked for establishing conservation laws
for the equation under consideration. However, in our case, equations of the type (11) are
not Euler-Lagrange equations and a direct application of Noether’s approach is impossible.

In [22, 25] Ibragimov introduced new techniques for overcoming this problem and in [12]
we applied those ideas for establishing conservation laws for equations of the type (11).
However, as we pointed out in the Introduction, in this communication we shall use the
direct method [2, 3, 4, 6] for obtaining the conserved currents.

The main idea is to use the identity

)
7D1£ )
ou 0
where 5 5 5 5
—=——-Di—+ -+ (-1)*D;, - D;, ——— +---
du  Ou Ou; e (CDTD; *Ougy iy +

is the Euler-Lagrange operator.
Then, given a differential equation (12), our purpose is to find a function p = p(x, u, u(y),
-++), called multiplier, such that

%(MF) =0. (17)
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This last result implies, once p is found, that uF = D;C? and then, on the solutions of
F = 0 the vector field C = (C',--- ,C™) provides a conservation law for (12). For further
details, see [2, 3, 4, 6].

5. A new equation unifying Camassa-Holm and Novikov equations. Let us now
obtain a one-parameter equation unifying both Camassa-Holm (3) and Novikov (6) equa-
tions. In what follows, we present a different deduction from the original one obtained in
[12].

We firstly impose that the operator

0 0
Xy =u— —bt— 18
b= ot (18)
is a Lie point symmetry of (11). The corresponding transformation is given by
(z,t,u) — (z,\7, \u), (19)

where A > 0. Then, substituting (19) into (11), one obtains
Uy + EUtgr + N[ (M) ty + Mg Up gy + h(MU)Uges] = 0,

which should hold for any A > 0. Then, differentiating the last equation with respect to A,
we obtain
b () + M f ()t + [~bAg(Aw) + X2ug! )tz
(20)
+[=bh(Au) + Auh/ (Au)|utigy,e = 0.
Equation (20) is an identity for any A > 0. From it, we have the following system of
ordinary differential equations

Lt =0 L) =0 Letne)=o

under the change z = A\u.

The solution of the last system is given by f(u) = yub, g(u) = cu’~' and h(u) = éub,
where 7, o and § are arbitrary constants. Substituting these functions into (11), we prove
the following result.

Theorem 5.1. Equation (11) admits the symmetry (19) iff it takes the form
Up 4 Etige + YUy + oub M ugugy + Sulugee = 0, (21)
where v, 0 and § are arbitrary constants.
Our next result is:

Theorem 5.2. Equation (21) admits a conserved quantity

H= /(u2 —eu?)dx (22)
R
if and only if 0 = (b+ 1)J.
Remark 1. We observe that to prove Theorem 5.2 it is enough to find a vector field
C = (C°,C") such that
D,C° +D,C*' =0 (23)
on the solutions of (20) and C° = u? — cu?.
Proof. Substituting F' = uy + ctygs + Yty + ot gty + dubty,e into (17) and taking
1 = u, the left side gives
)

(uF) = (o= (b+1a)(b—bu"2ul +3bo — b+ Dilu' Muguge.  (24)
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Then, we conclude that

5a [u(us + etter + yulug + oub Y ugug, + §ubuzm)] =0
u
if and only if o = (b4 1)d or b= 0.

Substituting o = (b+ 1)¢ into (21), after reckoning one obtains

Up + EUspr + yulug + (b + 1)6ub gty + SuPUpey

2
=D, (u2 — Eui) + D, [ ——ub? — 26ubT g, + 2euny, ),
2+0
if b # —2. This means that the vector field
2
C'=u?—ceu?, C!'= ubt? — 2600wy, + 2euuy, (25)
2+
is a conserved vector of equation
Uy + Elggr + yuluy + o(b+ l)ub_lugcugmc + ulugyy = 0, (26)
when b # —2. Then, for this case, the theorem follows from Remark 1.
Whenever b = —2, a straightforward calculation shows that the components (25) become
CO=u? —cu?, C! zwlnu—%uﬂ—i—%uum (27)
U
and this proves the theorem. O

Equation (26) includes some important equations. In the next table we present some
members of it as well as its corresponding components of the conserved vector (25).

€ b v |4 Equation Conserved density Conserved flux

-1 1 —-11]0 BBM u? + ui %ug — 22Uy

-1 1 3 | 1 | Camassa-Holm u? + ui 2u3 — 20Uy, — 2uiiy,

-1 2 4 |1 Novikov u? + ui 2ut — 2ulu,, — 2uug,

0 |[#-2| V |0 Riemman u? Z%Fbvub*z
TABLE 1. In this table it is presented some equations of the type (26) as well as

some conserved currents.
Choosing € = —1, v = B(b+ 2) and t — B¢, equation (26) can be rewritten as
Uy — Upgr + (b4 2)uluy = (b4 D)’ ugtiey + uPUzgs. (28)

Equation (28) is a one-parameter family of equations connecting Camassa-Holm (3) and
Novikov (6) equations, which correspond, respectively, to the cases b= 1 and b = 2.

6. Conclusions. In this paper we deduced the equation (28), which provides a one-parame-
ter family of equations unifying both Camassa-Holm and Novikov equations. It is known
that such equations are completely integrable [18], which means that both admit a bi-
hamiltonian structure.

Although the family (28) is, probably, the first one-parameter equation connecting CH
and Novikov equations, it is not the first one-parameter family of equations connecting
two integrable equations, since there is the well known b—equation. Here we would like to
compare (28) and the B—equation® (see [15, 17])

Ut — Upge + (B + Duty = Bugtyy + Ui, (29)

Clearly (29) admits the scale invariance (z,t,y) — (z, \™'t, Au), since it can be obtained

from the family (21) choosing b=1,v= B+ 1, 0 = —B and § = 1. However, comparing

1In fact, in the references the equation is denoted by us — utzz + (b+ 1) ute = buguze + utgas. However,
here, in order to avoid confusion, we use the form (29).
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(29) with (28), we conclude that b = 1 and B = 2, which means that (29), with these values,
is the Camassa-Holm equation.

In [15] it was shown that (29) is also integrable if B = 3. However, such equation is not
a member of our family (28). In fact, comparing (29) with (11) it is easy to conclude that
flw) = (B+ 1Du, g(u) = —B and h(u) = —u, but it can only be written in a conservation
law after multiplied by v when B = 2, which is the CH equation.

Although (29) possesses among its members, CH and Degasperis-Procesi equations (case
B = 3), which are both integrable, it only admits the multiplier « in the condition (17) for
a specific B, actually, the corresponding one to the CH equation. Moreover, these are the
only integrable equations of the type (29), see [15]. On the other hand, our new equation
(28) also connects at least two integrable equations, namely, Camassa-Holm and Novikov.
But, differently from (29), every member of (28) admits the multiplier u = w.
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financial support (grant n. 2014/05024-8 and scholarship n. 2012/22725-4). 1. L. Freire is
also grateful to CNPq for financial support (grant n. 308941/2013-6). We are grateful to
the referees for their useful comments, which inspired us to rewrite the demonstration of
Theorem 5.1.

REFERENCES

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering,
Cambridge University Press, (1991).

[2] S. C. Anco and G. Bluman, Direct construction of conservation laws from field equations, Phys. Rev.
Lett., 78, (1987), 2869-2873.

[3] S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential
equations. I. Examples of conservation law classifications, Furopean J. Appl. Math., 13, (2002), 545—
566.

[4] S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential
equations. I. Examples of conservation law classifications, Furopean J. Appl. Math., 13, (2002), 566—
585.

[5] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive
systems, Philos. Trans. Roy. Soc. London, 272, (1972), 47-78.

[6] G. Bluman, A. Cheviakov and S. Anco, Applications of symmetry methods to partial differential equa-
tions, Springer, New York, (2010).

[7] G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer,
New York, (2002).

[8] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences,
/textbf81, Springer, New York, (1989).

[9] Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis of the Novikov equation, Comp. Appl.
Math., 33, (2014), 193-202.

[10] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev.
Lett., 71, (1993),1661-1664.

[11] P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order
partial differential equations, Math. Comput. Modelling., 25, (1997), 195-212.

[12] P. L. da Silva and I. L. Freire, Strict self-adjointness and shallow water models, (2013) arXiv:1312.3992.

(13] P. L. da Silva and I. L. Freire, On certain shallow water models, scaling invariance and strict self-
adjointness, (work presented in the CNMAC-Brazil), Proceeding Series of the Brazilian Society of
Computational and Applied Mathematics, (2015), DOI: 10.5540/03.2015.003.01.0022.

[14] P. L. da Silva and I. L. Freire, On the group analysis of a modified Novikov equation, in Interdisci-
plinary Topics in Applied Mathematics, Modelling and Computational Science. Springer Proceedings
in Mathematics and Statistics, 117 (2015), 161-166, DOI: 10.1007/978 — 3 — 319 — 12307 — 3_23.

[15] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,
Theor. Math. Phys., 133, (2002), 1463-1474.

[16] R. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and
nonlinear dispersion, Phys. Rev. Lett., 87, (2001), 194501, 4pp.

[17] H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymp-
totically equivalent equations for shallow water waves, Fluid Dynamics Research, 333 (2003), 73-95.


http://arxiv.org/pdf/1312.3992

(18]
19]
[20]
21]

[22]
23]

24]
[25]
[26]
27]
(28]

29]

30]

AN EQUATION UNIFYING BOTH CAMASSA-HOLM AND NOVIKOV EQUATIONS 311

A. N. W. Hone and J. P, Wang, Integrable peak on equations with cubic nonlinearities, J. Phys. A:
Math. Theor., 41, (2008), 372002, 10 pp.

C. S. Gardner, Kortewerg-de Vries equation and generalizations IV. The Korteweg-de Vries equation
as a Hamiltonian system, J. Math. Phys., 12, (1971), 1548-1551.

N. H. Ibragimov, Transformation groups applied to mathematical physics, Translated from the Russian
Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, (1985).

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley
and Sons, Chirchester (1999).

N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333, (2007), 311-328.

N. H. Ibragimov, R.S. Khamitova, A. Valenti, Self-adjointness of a generalized Camassa-Holm equation,
Appl. Math. Comp., 218, (2011), 2579-2583.

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A: Math. Theor., 44, (2011)
432002, 8 pp.

N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, Archives of ALGA, 7/8,
(2011), 1-90.

N. M. Ivanova and R. O. Popovych, Equivalence of conservation laws and equivalence of potential
systems, Int. J. Theor. Phys., 46, (2007), 2658-2668.

Y. Mi, C. Mu, On the Cauchy problem for the modified Novikov equation with peakon solutions, J.
Diff. Equ., 254, (2013), 961-982.

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal,
and on a new type of long stationary waves, Phil. Mag., 39, (1895), 422-443.

M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and
generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 11,
(1970),952-960.

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear trans-
formation, J. Math. Phys., 9, (1968), 1202-1204.

[31] R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equation and generalizations. II.

Existence of conservation laws and constants of motion, J. Math. Phys., 9, (1968) 1204-1209.

[32] V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, (2009)

342002, 14pp.

[33] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Phils.

Soc., 85, (1979), 143-160.

[34] P. J. Olver, Conservation laws and null divergences, Math. Proc. Camb. Phil. Soc., 94, (1983), 529-540.
[35] P. J. Olver, Conservation laws of free boundary problems and the classification of conservation laws for

water waves, Trans. Amer. Math. Soc., 277, (1983), 353-380.

[36] P. J. Olver, Applications of Lie groups to differential equations, Springer, New York, (1986).
[37] R. O. Popovych and N. Ivanova, Hierarchy of conservation laws of diffusion-convection equations, J.

Math. Phys., 46, (2005), 43502.

[38] R. O. Popovych and A. M. Samoilenko,Local conservation laws of second-order evolution equations, J.

Phys. A, 41, (2008), 362002.

[39] R. O. Popovych and A. Sergyeyev, Conservation laws and normal forms of evolution equations, Phys.

Lett. A, 374, (2010), 2210-2217.

[40] A. M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math., 2, (1984), 21-78.

Received September 2014; revised January 2015.

E-mail address: priscila.silva@ufabc.edu.br and pri.leal.silva@gmail.com
E-mail address: igor.freire@ufabc.edu.br and igor.leite.freire@gmail.com



	1. Introduction
	2. Symmetries
	3. Conservation laws
	4. Direct method
	5. A new equation unifying Camassa-Holm and Novikov equations
	6. Conclusions
	Acknowledgments
	REFERENCES

