Some results on Lie symmetry analysis of a fourth-order Emden-Fowler equation

Igor L. Freire, Priscila L. da Silva
Centro de Matemática, Computação e Cognição, CMCC-UFABC, 09.210-170, Santo André, SP
E-mail: igor.freire@ufabc.edu.br, priscila.silva@ufabc.edu.br,
Mariano Torrisi
Dipartimento di Matematica e Informatica - Università Degli Studi di Catania
95125 Catania, Italia,
E-mail: torrisi@dmi.unict.it

Key-words: Emden-Fowler equation, Lie symmetries, exact solutions

Abstract

Some recent results on Lie group analysis of a class of fourth-order ordinary differential equations are revisited. A complete group classification is carried out. Then some group invariant solutions of the equation under consideration are investigated. Next it is shown how to construct exact solutions to a class of Lane-Emden systems from the group-invariant solutions of the fourth-order Emden-Fowler equations considered.

1 Introduction

The purpose of this paper is to revisit some recent results on Lie symmetry analysis [2] obtained by the authors with respect to the class of equations

$$
\begin{equation*}
y^{\prime \prime \prime \prime}+a x^{\gamma} y^{p}=0 . \tag{1}
\end{equation*}
$$

In (1) $x \in(-\infty,+\infty)$ and $y=y(x)$ denote, respectively, the independent and dependent variables while a, γ and p are real constitutive parameters.

These equations fall in the wider class of the so-called fourth-order Emden-Fowler equation and they appear in several problems in Mathematics, Physics and Engineering.

For instance the relationship between the applied load and the deflection in a non-homogeneous beam is described by an equation of the type (1).

On the other hand, equations of the type (1) arise, as solving equations, from stationary weakly coupled reaction-diffusion systems. These equations have also been studied by several authors which have focused their attention in properties of its solutions. For further details, see [2] and references therein.

2 Group classification

Let I be an interval on the line R and $y: I \rightarrow R$ be a smooth function. A Lie point symmetry of a given ordinary differential equation

$$
\begin{equation*}
F\left(x, y, \cdots, y^{(n)}\right)=0 \tag{2}
\end{equation*}
$$

with

$$
y^{(k)}:=\frac{d^{k} y(x)}{d x^{k}}, \quad 1 \leq k \leq n, \quad y^{(0)}:=y
$$

is a local group of diffeomorfisms on $I \times R$ which preservs the equation. The set of all Lie point symmetries of (2) generates the Lie point symmetry group G of equation (2).

For any Lie point symmetry g_{X} of equation (2) there exists a corresponding Lie point symmetry generator

$$
\begin{equation*}
X=\xi(x, y) \frac{\partial}{\partial x}+\eta(x, y) \frac{\partial}{\partial y} \tag{3}
\end{equation*}
$$

If X is a Lie point symmetry generator of (2), it is said that X is admitted by (2). A necessary and sufficient condition for (3) to be admitted by (2) is

$$
\begin{equation*}
X^{(n)} F=\lambda F \tag{4}
\end{equation*}
$$

for a certain function $\lambda=\lambda\left(x, y, y^{\prime}, \cdots\right)$, where

$$
\begin{gather*}
X^{(n)}:=X+\sum_{j=1}^{n} \eta^{(j)} \frac{\partial}{\partial y^{(j)}}, \tag{5}\\
\eta^{(j)}:=D \eta^{(j-1)}-y^{(j)} D \xi, \quad j \geq 1 \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
D:=\frac{\partial}{\partial x}+\sum_{j=1}^{\infty} y^{(j)} \frac{\partial}{\partial y^{(j-1)}} \tag{7}
\end{equation*}
$$

The operator D is called total derivative operator and equation (4) is the invariance condition.
The main result obtained in [2] can be summarized by the following table.

	p	γ	a	Generators
N1	\forall	$\neq 0,-(5+3 p)$	$\neq 0$	$(1-p) x \partial_{x}+(4+\gamma) y \partial_{y}$
N2	$p \neq-5 / 3$	$-(5+3 p)$	$\neq 0$	$(p-1) x \partial_{x}+(3 p+1) y \partial_{y}, x^{2} \partial_{x}+3 x y \partial_{y}$
N3	\forall	0	$\neq 0$	$\partial_{x},(1-p) x \partial_{x}+4 y \partial_{y}$
N4	$-5 / 3$	$\neq 0$	$\neq 0$	$x \partial_{x}+\frac{12+3 \gamma}{8} y \partial_{y}$
$N 5$	$-5 / 3$	0	$\neq 0$	$\partial_{x}, x \partial_{x}+\frac{3}{2} y \partial_{y}, x^{2} \partial_{x}+3 x y \partial_{y}$
L1	-	-	0	$\partial_{x}, \partial_{y}, x \partial_{x}, y \partial_{y}, x \partial_{y}, x^{2} \partial_{x}, x^{3} \partial_{y}, x^{2} \partial_{x}+3 x y \partial_{y}$
L2	0	\forall	$\neq 0$	this case is equivalent to the case $a=0$ under the change $y \mapsto y-\frac{a x^{\gamma+4}}{(\gamma+1)(\gamma+2)(\gamma+3)(\gamma+4)}$
L3	1	0	1	$\begin{aligned} & \partial_{x}, y \partial_{y}, e^{x} \partial_{y} \\ & e^{-x} \partial_{y}, \sin x \partial_{y}, \cos x \partial_{y} \end{aligned}$
L4	1	0	-1	$\begin{aligned} & \partial_{x}, y \partial_{y}, e^{\frac{x}{\sqrt{2}}} \sin \frac{x}{\sqrt{2}} \partial_{y}, \\ & e^{\frac{x}{\sqrt{x}}} \cos \frac{x}{\sqrt{2}} \partial_{y}, e^{-\frac{x}{\sqrt{x}}} \cos \frac{x}{\sqrt{2}} \partial_{y}, e^{\frac{-x}{\sqrt{2}}} \sin \frac{x}{\sqrt{2}} \partial_{y} \end{aligned}$
L5	1	$\neq-4,-8$	a	$\beta(x) \partial_{y}$
L6	1	-4	a	$x \partial_{x}+\frac{3}{2} y \partial_{y}, \beta(x) \partial_{y}$
L7	1	-8	a	$x^{2} \partial_{x}+3 x y \partial_{y}, \beta(x) \partial_{y}$

Tabela 1: Group classification of equation (1).
Remark: In the cases $L 5, L 6$ and $L 7$, the function $\beta(x)$ satisfies the equation

$$
\beta^{\prime \prime \prime \prime}+a x^{\gamma} \beta=0
$$

whose solutions can be found in terms of the Mittag-Leffler functions under an appropriate transformation.

3 Invariant solutions of equations of the class (1)

In this section we show some nontrivial invariant solutions of equation (1), with $p \neq 0,1$, obtained from the results of the previous sections.

First consider the case $\gamma=0$ and $a \neq 0$. Then (1) becomes

$$
y^{\prime \prime \prime \prime}+a y^{p}=0 .
$$

The Lie point symmetry generator

$$
X=(1-p) x \frac{\partial}{\partial x}+4 y \frac{\partial}{\partial y}
$$

allows us to get the following solution:

$$
y(x)=\left[-\frac{8}{a} \frac{(p+3)(p+1)(3 p+1)}{(1-p)^{4}}\right]^{\frac{1}{p-1}} x^{\frac{4}{1-p}}
$$

Now consider the equation

$$
y^{\prime \prime \prime \prime}+a x^{-(5+3 p)} y^{p}=0 .
$$

From the Lie point symmetry generator

$$
X=(p-1) x \frac{\partial}{\partial x}+(3 p+1) y \frac{\partial}{\partial y}
$$

we obtain the invariant solution

$$
y(x)=\left[-\frac{8}{a} \frac{(p+3)(p+1)(3 p+1)}{(p-1)^{4}}\right]^{\frac{1}{p-1}} x^{\frac{3 p+1}{p-1}}
$$

Concerning the equation

$$
y^{\prime \prime \prime \prime}+a y^{-\frac{5}{3}}=0
$$

and the Lie point symmetry generator

$$
X=x \frac{\partial}{\partial x}+\frac{3}{2} y \frac{\partial}{\partial y}
$$

we find the solution

$$
y(x)=\left(-\frac{16 a}{9}\right)^{3 / 8} x^{\frac{3}{2}}
$$

For $\gamma \neq 0$ and $p=-5 / 3$ the equation (1) becomes

$$
\begin{equation*}
y^{\prime \prime \prime \prime}+a x^{\gamma} y^{-\frac{5}{3}}=0 \tag{8}
\end{equation*}
$$

and the generator

$$
X=x \frac{\partial}{\partial x}+\frac{12+3 \gamma}{8} y \frac{\partial}{\partial y}
$$

gives the solution

$$
y(x)=\left[-\frac{4096 a}{(3 \gamma+12)(3 \gamma+4)(3 \gamma-4)(3 \gamma-12)}\right]^{3 / 8} x^{\frac{3 \gamma+12}{8}}
$$

provided that $(3 \gamma+12)(3 \gamma+4)(3 \gamma-4)(3 \gamma-12) \neq 0$.
Finally we consider the equation

$$
y^{\prime \prime \prime \prime}+a x^{\gamma} y^{p}=0
$$

with p arbitrary and $\gamma \neq 0,-(5+3 p)$. From the generator

$$
X=(1-p) x \frac{\partial}{\partial x}+(4+\gamma) y \frac{\partial}{\partial y}
$$

we obtain the solution

$$
y(x)=\left[-\frac{(4+\gamma)(3+\gamma+p)(2+\gamma+2 p)(1+\gamma+3 p)}{a(1-p)^{4}}\right]^{\frac{1}{p-1}} x^{\frac{4+\gamma}{1-p}}
$$

4 Exact solutions to a class of Lane-Emden systems

It is a straightforward calculation to see that the class of Lane-Emden systems

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+v(x)=0 \tag{9}\\
v^{\prime \prime}(x)+x^{\gamma} u(x)^{p}=0
\end{array}\right.
$$

is equivalent to equation (1) with $a=-1$. For furhter details on Lane-Emden systems, see [1] and references therein.

Here we use the group invariant solutions of the equation (1) to construct exact solutions to the Lane-Emden system

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+v(x)=0 \tag{10}\\
v^{\prime \prime}(x)+x^{\gamma} u(x)^{p}=0
\end{array}\right.
$$

From the first equation of (10) easily follows

$$
\begin{equation*}
v=-u^{\prime \prime} \tag{11}
\end{equation*}
$$

so from second equation of (10) we get

$$
\begin{equation*}
u^{\prime \prime \prime}-x^{\gamma} u^{p}=0 \tag{12}
\end{equation*}
$$

If we take $p=-5 / 3$ in (12) we obtain a particular case of the equation (8), whose invariant solution is

$$
\begin{equation*}
u_{\gamma}(x)=\left[\frac{4096}{(3 \gamma+12)(3 \gamma+4)(3 \gamma-4)(3 \gamma-12)}\right]^{3 / 8} x^{\frac{3 \gamma+12}{8}} \tag{13}
\end{equation*}
$$

From (11) and (13) we obtain

$$
\begin{equation*}
v_{\gamma}=-\frac{[(3 \gamma+12)(3 \gamma+4)]^{5 / 8}}{[(3 \gamma-12)(3 \gamma-4)]^{3 / 8}} x^{\frac{3 \gamma-4}{8}} \tag{14}
\end{equation*}
$$

Thus (13) and (14) provide a family of solutions to the systems (10).
In particular

$$
u(x)=\left(\frac{4}{3}\right)^{3 / 4} x^{3 / 2}, \quad v(x)=\left(\frac{3}{4}\right)^{1 / 4} \frac{1}{\sqrt{x}}
$$

are solutions of the system

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+v(x)=0 \tag{15}\\
v^{\prime \prime}(x)+u(x)^{-\frac{5}{3}}=0
\end{array}\right.
$$

Acknowledgements

The authors would like to thank FAPESP for financial support (grants 2010/10259-3, 2011/200720 and 2011/19089-6). Mariano Torrisi would also like to thank CMCC-UFABC for its warm hospitality and GNFM (Gruppo Nazionale per Fisica-Matematica) for its support.

Referências

[1] Y. Bozhkov and I. L. Freire, On the Lane-Emden system in dimension one, Appl. Math. Comp., 218, (2012), 10762-10766, DOI: 10.1016/j.amc.2012.04.033.
[2] I. L. Freire, P. L. Silva and M. Torrisi, Lie and Noether symmetries for a class of fourth-order Emden-Fowler equations, (2012), submitted.

