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Abstract

Models describing long wave-short wave resonant interactions have many physical applications from fluid dy-
namics to plasma physics. We consider here the Yajima-Oikawa-Newell (YON) model, which has been recently
introduced combining the interaction terms of two long wave-short wave, integrable models, one proposed by
Yajima-Oikawa, and the other one by Newell.

The new YON model contains two arbitrary coupling constants and it is still integrable – in the sense of
possessing a Lax pair – for any values of these coupling constants. It reduces to the Yajima-Oikawa or the
Newell systems for special choices of these two parameters. We construct families of periodic and solitary wave
solutions, which display the generation of very long waves. We also compute the explicit expression of a number
of conservation laws.

1 Introduction

The study of wave propagation poses quite a number of challenging different mathematical and computational prob-
lems [1].

Wave motion of continuous media is generally represented by solutions of one or more partial differential equations
(PDEs). Typically, homogeneous wave propagation equations have a linear part which is characterised by a dispersion
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law, and a nonlinear one which is responsible for self and/or cross interaction. While the linear part can be treated
by decomposition into Fourier harmonics, the nonlinear part – even if its dependence on the fields is analytic – is
generically treatable only by numerical methods. These two parts, in terms of solvability, recombine in cooperation
with each other for a small set of very special wave equations, the so-called integrable ones, by allowing for a sort of
nonlinear Fourier-like analysis [2, 3].

We have in mind (and consider below) only waves propagating in a one-dimensional space, even if integrable wave
equations in higher dimension are known too. Since their first discovery more than half a century ago, the firmament
of integrable wave equations has been continuously growing. From the very beginning, water waves have played a
pivotal role in this research, with the discovery of the integrability of the Boussinesq equation, the Korteweg-de Vries
(KdV) equation and the nonlinear Schrödinger (NLS) equation, which may serve as approximate models of waves
travelling on a water free surface subject to various physical conditions.

The existence of solitons is the most celebrated and effective prediction from the study of water wave equations of
integrable type. Subsequent research has pointed out that discovering integrable wave equations is not only due to a
lucky strike in the process of approximating complicated PDEs of physical significance. In fact, integrable models can
be obtained by means of a perturbation approach, the so-called multiscale method (see [4, 5, 6]), when applied to a
given known nonlinear wave equation. Indeed, given a physically relevant PDE, by appropriately rescaling both wave
amplitudes and space-time coordinates via the introduction of a small parameter ǫ, and by expanding in powers of
ǫ, one ends up with a different PDE which models the amplitude modulation in the rescaled space-time coordinates.
The point is that this process preserves the integrability property of the original wave equation and thus it yields
a (possibly) new integrable wave equation. The rationale behind this method is based on physical arguments: one
considers the nonlinear terms as a perturbation of known Fourier-like solutions (harmonics) of the linear dispersive
part. Consequently, approximate solutions of the original PDE look like superpositions of exponentials as, for instance,
∑

j ψje
i j (kx−ωt), whose amplitudes ψj depend on rescaled coordinates only. The parameters k and ω are the wave

number and frequency on the dispersion curve ω = ω(k). If the superposition of harmonics contains more wave-
numbers, this multiscale method in general yields a system of coupled PDEs which models wave-wave interactions.

A necessary condition for this to happen is the (weak) resonance relation:

ω(k1 + k2 + · · ·+ kj) = ω(k1) + ω(k2) + · · ·+ ω(kj), j > 1 .

Several models of resonant interaction have been derived in this way (e.g., see [5, 9, 6]) to investigate their main
features by means of known integrability techniques, provided such models were selected as sufficiently “close” to a
wave equation of specific physical interest.

This perturbative approach is also appropriate to investigate the resonant coupling of two quasi-monochromatic
waves, one with very long wave-length, say with wave number kL ≈ 0, and the second one with a much shorter
wave-length, say with wave number kS ≫ kL. As originally pointed out in [7], this interaction can be understood as
a resonant triad k1, k2, k3, namely

k1 + k2 = k3 , ω(k1) + ω(k2) = ω(k3) ,

with
k1 = kL , k2 = kS − (1/2)kL , k3 = kS + (1/2)kL .

Indeed, if the long wave is sufficiently long, say kL → 0, and the dispersion function ω(k) is analytic at k = 0, this
condition is equivalent to the stronger condition that the long wave and the short wave have the same group velocity,
vL = vS .

The search for integrable PDEs which reasonably model phenomena due to long wave-short wave (L-S) interaction
started in the early years of the soliton era in fluid dynamics, plasma physics and optics. The Yajima-Oikawa (YO)
system [8]

iSt + Sxx − LS = 0 , Lt = 2(|S|2)x (1)

was first derived in the one-way wave approximation in plasma. Here and in the following S and L are the complex,
and, respectively, real amplitudes of the short and long waves. This system shows up also via multiscale technique
[9] in multiple ways. In fact, it proves to be a multiscale reduction of an integrable equation of interest in water
waves, namely the Boussinesq equation [5]. A second and alternative integrable L-S wave system has been proposed
by Newell [10]. This one reads

iSt + Sxx + (iLx + L2 − 2σ|S|2)S = 0 , Lt = 2σ(|S|2)x , σ2 = 1 , (2)
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where, in addition to a long wave-short wave coupling, the short wave has the same self-interaction as the NLS
equation, which may be both defocusing (σ = 1) or focusing (σ = −1) according to the sign σ. We will refer to the
system (2) as to the N equation. However, the way to obtain this system as a multiscale reduction of an integrable
equation does not seem to be known.

In [11], it has been shown that the YO and N equations, (1) and (2), need not to be separately treated to
investigate the short wave-long wave interaction. Indeed, these two different model equations, remarkably enough,
can be combined in just one system, which we refer to as YON model, that is itself integrable for any real value of
the two arbitrary parameters α and β, namely

iSt + Sxx +
(

iαLx + α2L2 − βL− 2α|S|2
)

S = 0 , Lt = 2(|S|2)x . (3)

This system coincides with the YO equation (1) for α = 0, β = 1, while it reads as the N equation (2) by setting
α = σ, β = 0 and by substituting the field L with σ L. This unifying result provides a greater flexibility in modelling
the resonant interaction of long and short waves, and allows to construct and analyse in one go special solutions of
the two models, (1) and (2). On the mathematical side, we note that the YON model (3) turns out to be a reduction
of a larger system of four coupled PDEs [12].

The preliminary step to inquire on the application of the YON system to specific physical wave phenomena is the
compatibility of the L-S resonance condition (see the triad resonance above) with the dispersion law (for an instance
of such analysis in optics, see [15]). Having in mind a fluid dynamical context, we recall a few elementary facts to show
that water waves on the free surface of a two-dimensional rectangular container require that gravity be contrasted by
surface tension [16]. Indeed, this effect allows the resonance, which, however – at least in geophysical applications –
is far from being of experimental relevance, see [17]. As it happens, if the surface tension is neglected, the dispersion
law

ω2 = g k tanh(h k) ,

where g is the gravity acceleration and h is the depth of the flat bottom, does not allow for the L-S resonance since
the group velocity dω(k)/dk is monotonically decreasing in the entire range 0 < k < +∞. Surface tension, if the
wave length is sufficiently short, may contrast gravity and change the dispersion law into

ω2 = g k tanh(h k)

[

1 +
n k2

g ρ

]

,

where n = 0.074N/m is the surface tension constant and ρ is the water density. Although this change of the
frequency dispersion formally allows for the S-L resonance, the value of kS which satisfies the strong resonance
condition vL = vS strongly depends on the depth h. For instance, a short wave of about 1 cm length requires a flat
bottom of approximately 1 cm depth. For stratified fluids, see for instance [18, 19].

Despite such resonant conditions lead to small effects in capillarity-gravity wave propagation, we deem it of interest
to investigate the YON model because of its potential applicability while being integrable. Indeed it has been shown
[11] that there exists a Lax pair of equations for an auxiliary function Ψ(x, t, λ) (where λ is a complex number called
spectral parameter or spectral variable)

Ψx = X Ψ , Ψt = T Ψ , (4)

whose compatibility condition
Xt − Tx + [X , T ] = 0 (5)

is equivalent to the YON system (3). Here X(x, t, λ) and T (x, t, λ) are complex matrix-valued functions depending
on the field variables S and L, and also polynomially on the spectral variable λ,

X = iλX1 +X0 , T = (iλ)2T2 + iλ T1 + T0 , (6)

where X1 and T2 denote constant, traceless, diagonal matrices

X1 =





1 0 0
0 0 0
0 0 −1



 , T2 =
i

3





1 0 0
0 −2 0
0 0 1



 , (7a)

and the matrices X0, T1 and T0 have the form

X0 =





0 S iL
αS∗ 0 S∗

iα2L− iβ αS 0



 , T1 =





0 iS 0
iαS∗ 0 −iS∗

0 −iαS 0



 , (7b)
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T0 =





−iα|S|2 −αLS + iSx i|S|2
−α2LS∗ + βS∗ − iαS∗

x 2iα|S|2 −αLS∗ − iS∗

x

iα2|S|2 −α2LS + βS + iαSx −iα|S|2



 . (7c)

However, in the following, we will not make use of the Lax pair (4), and we refer the interested reader to [11],
where further details on the integrable character of the system can be found.

In the next section we discuss several families of periodic and traveling wave solutions of the YON system (3),
including dark and bright solitons, as well as rational solitons. Finally, in Section 3, using a set of multipliers,
we construct and exhibit a family of conservation laws. To this purpose, it is instrumental the use of symmetry
transformations of our system (3). Thus we end this section by observing that the YON system (3) is trivially
invariant with respect to translations in space and time, as well as to rotations around the origin in the S-plane.
Moreover, the YON system is invariant under the general transformation

(x, t, S, L) →
(

ε−1x, ε−2t, ε exp
[

i
(ε2 − 1)β2t

4α2

]

S, εL− (ε− 1)β

2α2

)

where ε 6= 0 is an arbitrary parameter. Note that the limit α → 0 of the above transformation can be obtained
by mapping ε → exp (−2α2ε) first. If α = 0, we have that (3), namely the YO system (1), is invariant under the
additional scaling:

(x, t, S, L) →
(

ε2 x, ε4 t, ε−3 S, ε−4L
)

,

while, if β = 0, say if (3) is the N system (2), the invariant scaling transformation is

(x, t, S, L) →
(

ε x, ε2 t, ε−1 S, ε−1 L
)

,

where ε 6= 0 is an arbitrary parameter.

2 Solutions of the YON model

Although system (3) is integrable and hence it allows for solutions to be found by a variety of elegant and powerful
solution techniques rooted into integrability theory, for the purpose of this paper we use instead an Ansatz to derive
periodic and travelling wave solutions, without resorting to heavier mathematical machineries. Our Ansatz naturally
follows the form of the periodic and travelling wave solutions of the nonlinear Schrödinger equation and it reads:

S(t, x) = s(z)ei(φ(z)−ωt), L(t, x) = ℓ(z), (8)

where z = x − V t for V ∈ R, V 6= 0, ω ∈ R and s, φ, ℓ are real valued functions. After substitution of the Ansatz
into the second equation of (3), the resulting equation can be integrated in order to obtain ℓ in terms of s:

ℓ(z) = − 2

V
s(z)2 + c1, (9)

where c1 is an arbitrary integration constant. We now make use of this new expression for L, substitute in the first
equation of (3) and separate it into real and imaginary parts in order to obtain the system

s(z)φ′′(z) + 2s′(z)φ′(z)−
[

V +
4α

V
s(z)2

]

s′(z) = 0, (10a)

s′′(z)− s(z)φ′(z)2 + V s(z)φ′(z) + (α2c21 − βc1 + ω) s(z) +

(

2β

V
− 4α2c1

V
− 2α

)

s(z)3 +
4α2

V 2
s(z)5 = 0. (10b)

for the functions s and φ. Equation (10a) can be integrated with respect to z after multiplication by s, yielding
an expression for the first derivative of φ in terms of s:

φ′(z) =
α

V
s(z)2 +

V

2
+ c2 s(z)

−2, (11)

where c2 is an integration constant. We now plug this expression for φ′ into equation (10b), obtaining
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s′′(z) +
1

4V

[

V 3 + 4V
(

α2c21 − βc1 + ω
)

− 8αc2
]

s(z) +
2

V
(β − αV − 2α2c1) s(z)

3 +
3α2

V 2
s(z)5 − c22 s(z)

−3 = 0 . (12)

Equation (12) can be integrated with respect to z after multiplication by s′, resulting in a differential equation for
s′(z)2:

s′(z)2 = − 1

4V

[

V 3 + 4V
(

α2c21 − βc1 + ω
)

− 8αc2
]

s(z)2 +
1

V
(−β + αV + 2α2c1)s(z)

4 − α2

V 2
s(z)6 + 2c3 − c22 s(z)

−2,

(13)

where c3 is an integration constant. Observe that for α = 0 the coefficient of s(z)6 becomes zero and the equation
simplifies leading to the Weierstraß elliptic function. The case α = 0 corresponds to the YO model, well studied in
the literature, e.g. see [14, 13] for some recent results about periodic and rational solutions, and literature therein.
Here and thereafter we will assume α 6= 0. Introducing the following change of variable

V

2α
u(z) = s(z)2 − u0 , u0 =

V (αV + 2K1α
2 − β)

4α2
, α 6= 0 (14)

equation (13) becomes, without any loss of generality,

u′(z)2 = −u(z)4 + µ2u(z)
2 + µ1u(z) + µ0 (15)

where

µ0 = − V

2α3
c3 +

4α2ω − 8α2 V 2 − β2

4α4
c2 +

α2µ1 + 2αV 2(µ2 + 6ω)− α2 V 3 − 3β2 V

2α3
c+

+
1

4

{

2µ1 V + V 2

(

4ω − β2

α2

)

−
[

β2 − α2(µ2 + 4ω)
]2

α4

} (16)

whereas c, µ1, µ2 are arbitrary constants. Note that the number of arbitrary constants is preserved. The integration
constants c1, c2 and c3 can be rewritten in terms of c, µ1 and µ2 as follows

c1 =
c+ β

2α2
, (17a)

c2 = −V
{

c2 + 6cαV + 2β2 + α2
[

V 2 − 2(µ2 + 4ω)
]}

16α3
. (17b)

c3 =
V 3
[

−2α3µ1 + 2α2µ2(c+ αV )− (c+ αV )3
]

32α4
. (17c)

As for φ(z), from (11) we obtain the quadrature

φ′(z) =
α
[

αV 2 − c V + α(µ2 + 4ω)
]

− β2 + 2αu(z)[c+ 2αV + αu(z)]

2α[c+ αV + 2αu(z)]
(18)

For µ1 = 0 equation (15) admits periodic solutions in terms of Jacobi elliptic functions, which we are going to discuss
below.

2.1 Jacobi elliptic sine solution

Let us assume that u(z) has the form

u(z) = γ0 + γ1 sn
(

a(z − z0),m
)

, (19)
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where sn(z) denotes the Jacobi elliptic sine of z, where γ0, γ1, a, z0 and m are real parameters, and 0 ≤ m ≤ 1.
Inserting (19) into (15) with µ1 = 0 and playing with the properties of the Jacobi elliptic functions, one obtains a
polynomial of degree four in sn(a(z − z0),m) equated to zero. Setting the coefficients of each power of sn(z) to zero,
one obtains a set of algebraic equations for the parameters ω, m, a, γ0, γ1, µ2 and c. In particular, a relation for ω
in terms of the other parameters can be found by setting the constant term of the polynomial to zero. This latter
relation returns a non-real ω for any choice of the other parameters, and therefore this excludes the existence of a
sn-solution of the form (19) starting from Ansatz (8).

2.2 Jacobi elliptic cosine solution

Proceeding as above but with the Jacobi elliptic cosine cn(z) replacing sn(z) in (19), we obtain the following solution
to (15) in:

u(z) = ma cn
(

a(z − z0),m
)

, (20)

with
µ2 = (2m2 − 1)a2 , c = b− αV , (21a)

and

ω =
2β2 + 2α2

[

a2(1− 2m2)− 2V 2
]

+ 4αV b+ b2 ±
√

(b− 2amα) (b + 2amα) [b2 + 4a2(1 −m2)α2]

8α2
, (21b)

where m, z0, a 6= 0 and b are real parameters, with 0 ≤ m ≤ 1. Replacing the expression of u(z) into the original
Ansatz (8), we obtain the following solution of the YON system:

S(x, t) =
1

2
ei(φ(z−ωt)

√

√

√

√

V
[

b+ 2mαa cn
(

a(z − z0),m
)]

α2
, (22a)

L(x, t) =
β − αV − 2mαa cn

(

a(z − z0),m
)

2α2
, z = x− V t , (22b)

where φ(z) satisfies the quadrature

φ′(z) =
1

4α







b+ 2α
[

V +ma cn
(

a(z − z0),m
)]

±
√

(b − 2amα) (b+ 2amα) [b2 + 4a2(1−m2)α2]

2mαa cn
(

a(z − z0),m
)

+ b







, (22c)

where the sign in front of the square root is the same sign chosen for ω. Observe that, in addition to the coupling
parameters α and β in the YON model (3), the solutions (22) features five real parameters, namely a, b, m, V and
z0, with a sixth real, arbitrary parameter coming from the integration of (22c).

For this to work, we need that all s, φ, ω be real. In order to assure that, we need to check the sign inside all the
square roots involved, which gives us constraints on the parameters, namely

∣

∣

∣

∣

b

αa

∣

∣

∣

∣

≥ 2m, V b ≥ 0 . (23)

Furthermore, in the special case m = 1, the value b = 0 is allowed as long as αV a > 0, see Section 2.4.
The short wave |S| oscillates between the values

1

2

√

V (b+ 2mαa)

α2
and

1

2

√

V (b − 2mαa)

α2
,

that is to say, |S|2 oscillates with amplitude |V ma/α|, while the long wave L oscillates between the values

β − αV − 2mαa

2α2
and

β − αV + 2mαa

2α2
,
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that is, with amplitude 2 |ma/α|. The cn-solution is periodic in x with period |4K(m)/a| and in t with period
|4K(m)/(aV )|, where K(m) is the complete elliptic integral of the first kind of m,

K(m) =

∫ π

2

0

dθ
√

1−m sin2 θ
=

∫ 1

0

dt
√

(1− t2)(1−mt2)
. (24)

Moreover, we observe that there are two special solutions corresponding to the particular choices m = 0 and m = 1.
If m = 0, the elliptic cosine reduces to the trigonometric cosine and the solution becomes a plane wave. If m = 1 the
elliptic cosine reduces to the hyperbolic secant, leading to a localised solution, treated in Section 2.4.

(a) Short wave |S|. (b) Long wave L.

Figure 1: Elliptic cosine solution with α = 1, β = 2, V = 1.2, b = 5, a = 1.3, z0 = 0, m = 0.5.

2.3 Jacobi delta amplitude solution

Proceeding as above with the Jacobi delta amplitude dn(z) replacing sn(z) in (19), we obtain the following solution
to (15)

u(z) =
a

m
dn
(

a(z − z0),m
)

, (25)

with

µ2 =

(

2

m2
− 1

)

a2 , c = b− αV , (26a)

and

ω =
1

8m2α2

{

2α2
[

−2V 2m2+(m2−2)a2
]

+4Vm2αb+m2(2β2+b2)±
√

(mb− 2aα) (mb+ 2aα) [m2b2 − 4a2(1 −m2)α2]

}

,

(26b)
where m, z0, a 6= 0 and b, are real parameters, with 0 ≤ m ≤ 1.
The solution in this case has the form

S(x, t) =
1

2
ei(φ(z)−ωt)

√

√

√

√

V
[

mb+ 2αa dn
(

a(z − z0),m
)]

mα2
, (27a)

L(x, t) =
m(β − αV )− 2αa dn

(

a(z − z0),m
)

2mα2
, z = x− V t (27b)

where φ satisfies the quadrature

7



φ′(z) =
1

4mα



2Vmα+mb+ 2αa dn
(

a(z − z0),m
)

±
√

(mb− 2aα) (mb + 2aα) [m2b2 − 4a2(1−m2)α2]

2αa dn
(

a(z − z0),m
)

+mb



 , (27c)

where the sign in front of the square root is the same sign chosen for ω. Similarly to the Jacobi elliptic solutions
(22), observe that the solutions (27) features five real parameters, namely a, b, m, V and z0, with a sixth real,
arbitrary parameter coming from the integration of (27c).

Again, checking the square roots that appear for having real solutions, we get the following constraints on the
parameters:

2

√

1−m

m2
≤ b

αa
≤ 2

√

1−m2

m2
, α V a > 0 , 0 < m ≤ 1 . (28)

It also allows the special values b
αa = −2

√

1−m
m2 and b

αa = 2
m , for 0 < m ≤ 1. We discuss the special case m = 1 in

Section 2.4.
The dn-solution has periodicity for L and |S| with period |2K(m)/a|, where K(m) is the complete elliptic integral

of the first kind of m, while the phase of S has a period |4K(m)/a|.
The short wave |S| oscillates between the values

1

2

√

V [2αa(1−m)1/2 +mb]

mα2
and

1

2

√

V (2αa+mb)

mα2
,

that is to say, the oscillations in |S|2 have an amplitude
∣

∣V a(1−
√
1−m)/(2α)

∣

∣, while the long wave L oscillates
between the values

m(β − αV )− 2αa

2mα2
and

m(β − αV )− 2αa
√
1−m

2mα2
,

that is, with an amplitude
∣

∣a(1−
√
1−m)/α

∣

∣.

(a) Short wave |S|. (b) Long wave L.

Figure 2: Delta amplitude solution with α = 1, β = 1, V = 2, b = 9, a = 3, z0 = −2, m = 0.5.

2.4 Travelling waves: solitons

The choice m = 1 in (20) makes the period of the elliptic cosine diverge, so the solution becomes localised. The
corresponding solutions are solitons, both of dark and bright type.

The solution for m = 1, which for a generic choice of parameters corresponds to a dark soliton, has the form
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S(x, t) =
1

2
ei(φ(z)−ωt)

√

√

√

√

V
[

b+ 2αa sech
(

a(z − z0)
)]

α2
, (29a)

L(x, t) =
β − αV − 2αa sech

(

a(z − z0)
)

2α2
, z = x− V t , (29b)

ω =
1

8α2

[

2β2 − 2α2(2V 2 + a2) + 4V αb+ b2 ±
√

b4 − 4α2a2b2
]

, (29c)

with

φ(z) =
z − z0
4α

(

2αV + b± sgn(b)
√

b2 − 4α2a2
)

+ arctan
(

tanh
(a

2
(z − z0)

))

∓ sgn(b) arctan

(

(b− 2αa) tanh
(

a
2 (z − z0)

)

√
b2 − 4α2a2

)

+ φ0 , (29d)

where φ0 is an arbitrary phase, and the sign function sgn satisfies sgn(0) = 0. As a consequence of (23), and as
it can be observed from the formulae above, the general condition on the parameters for the validity of the soliton
solution, when b 6= 0, is

∣

∣

∣

∣

b

αa

∣

∣

∣

∣

≥ 2 . (30)

The special choice b = 0 (see below) is also allowed by the system, though the resulting solution has the phase:

φ(z) =
V (z − z0)

2
+ arctan

(

tanh
(a

2
(z − z0)

))

+ φ0 .

The square of the short wave, |S|2, has an amplitude
1

2

∣

∣

∣

∣

V a

α

∣

∣

∣

∣

over the background

∣

∣

∣

∣

V b

4α

∣

∣

∣

∣

, while the long wave L has

an amplitude − a

α
over the background

β − αV

2α2
. Note that both amplitudes and the background of S do not depend

on β at all, while they all depend inversely on α.
By construction, both S(x, 0) and L(x, 0) are centred at x = z0, while S(x, t0) and L(x, t0) for a given t0 are both

centred at x = z0 + V t0.
Whenever b = 0, S has zero background, and whenever V = β/α, L has zero background too. Both equalities

being true means having a bright soliton solution, both being false leads to a dark soliton solution, while the cases
where one is true and the other is not lead to mixed bright-dark solutions.

The resulting formula for the bright case is

S(x, t) =

√
2

2
ei(φ(z)−ωt)

√

√

√

√

βa sech
(

a(z − z0)
)

α2
, (31a)

L(x, t) = −
a sech

(

a(z − z0)
)

α
, z = x− β

α
t , (31b)

ω = −β
2 + α2a2

4α2
, (31c)

φ(z) =
β(z − z0)

2α
+ arctan

(

tanh
(a

2
(z − z0)

))

+ φ0 . (31d)

The same procedure can be carried out by taking m = 1 in the dnoidal solution (25). The solitons obtained in this
way have the exact same formula as the ones obtained from the cnoidal case.
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(a) Short wave |S|. (b) Long wave L.

Figure 3: Bright soliton solution, with α = 0.5, β = 2, a = 0.25, b = 0, V = 4, z0 = −20.

2.5 Travelling waves: rational solution

By letting c1 = c2 = c3 = 0 in (13) it reads

s′(z)2 = − α2

V 2
s(z)2

[

s(z)4 − V

α2
(αV − β) +

V 2

3α4
(αV − β)2

]

, (32)

where ω is given below. An integration process now yields

∫ 0

s

3
√
3α2|α|

(V (αV − β)− 3α2ζ2)3/2
dζ = ±

√

α2

V 2
z .

Computing the integral, solving with respect to s(z) and substituting into the expressions for ℓ(z) and φ(z) leads to
the solution

S(x, t) =
z√
3α

ei(φ(z)−ωt)

√

V (αV − β)3

9α2 + (αV − β)2z2
, (33a)

L(x, t) = − 2(αV − β)3z2

3α2[9α2 + (αV − β)2z2]
, z = x− V t, (33b)

ω =
α2V 2 − 8αβV + 4β2

12α2
, (33c)

φ(z) = arctan

(

3α

(αV − β)z

)

+

(

V

2
+
αV − β

3α

)

z + φ0, (33d)

where φ0 is an arbitrary phase, and the constraint V (αV − β) > 0 is assumed.
The short wave |S| is a dark rational solution with an amplitude depression of

√

V (αV − β)/(3α2) propagating

on the non-vanishing background
√

V (αV − β)/(3α2), whereas the long wave L has an amplitude 2(αV − β)/(3α2)
over the asymptotic background −2(αV − β)/(3α2).

In the case where β = 0 and we are back to the Newell system (2), the solution is simplified to

S(x, t) =
z√
3α

ei(φ(z)−ωt)

√

αV 4

9 + V 2z2
, (34a)

L(x, t) = − 2V 3z2

3α[9 + V 2z2]
, z = x− V t, (34b)

ω =
V 2

12
, (34c)

φ(z) = arctan

(

3

V z

)

+

(

V

2
+
αV

3α

)

z + φ0, (34d)
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(a) Short wave |S|. (b) Long wave L.

Figure 4: Rational solution with α = 2, β = 1, V = 1.

where α > 0. To the best of our knowledge, this is the first time such a solution is derived for (2).
Another solution can be obtained for V (αV − β) > 0 but now for ω = −c2/4, still with c1 = c2 = c3 = 0. The

quadrature (13) is now rewritten as

s′(z)2 = − α2

V 2
s(z)4

[

s(z)2 − V

α2
(αV − β)

]

,

and integration leads to the solutions

S(x, t) = ei(φ(z)−ωt)

√

V (αV − β)

α2 + (αV − β)2z2
, (35a)

L(t, x) = − 2(αV − β)

α2 + (αV − β)2z2
, z = x− V t, (35b)

ω = −c2/4, (35c)

φ(z) =
V

2
z + arctan

(

(αV − β)z

α

)

+ φ0 . (35d)

The short wave |S| and long wave L are bright rational solutions with amplitudes of
√

V (αV − β)/(α2) and −2(αV −
β)/(α2), respectively, on a zero background. To the best of our knowledge, this is also a novel solution of (2).

3 Conservation laws

The YON model (3) is integrable and therefore it allows infinitely many conservation laws. In this section, we are
interested in deriving a few explicit ones, by finding convenient multipliers. A conservation law of (3) corresponds to
an expression

ρt + fx = 0, (36)

where ρ ≡ ρ(S,L, Sx, Lx, . . . ) is the density and f ≡ f(S,L, Sx, Lx, . . . ) the corresponding flux, respectively. For
instance, a trivial conservation law of the YON system (3) is

ρ0 = L, (37a)

f0 = −2|S|2 (37b)

which coincides with the second equation in (3).
In [20, 21, 22], it was established that every conservation law corresponds to a symmetry of the equation, but

very often this symmetry is non-classical or even non-local. For cases where Noether’s theorem is applicable, this
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correspondence is explicit as Noether symmetries lead to (possibly trivial) conserved vectors; however, we ruled out
this approach as we have not been able to find a variational formulation for system (3). Instead of using Noether’s
approach, we will consider the direct method illustrated in [20, 21, 22, 28], consisting in finding a vector g = (g1, g2, g3),
called multiplier, that depends on S, L and their derivatives up to a certain fixed but arbitrary order, such that

δg1F1

δS
= 0,

δg2F2

δS∗
= 0,

δg3F3

δL
= 0, (38)

where
F1 = iSt + Sxx +

(

iαLx + α2L2 − βL− 2α|S|2
)

S , F2 = F∗

1 , F3 = Lt − 2(|S|2)x , (39)

and where δ/δu is the variational derivative with respect to the variable u. If such a vector g can be found, then it
ensures the existence of a ρ and f such that

ρt + fx = g1F1 + g2F2 + g3F3 = 0 . (40)

By making use of GeM [23, 24, 25, 26, 27], for any choices of α, β ∈ R, we can find some pairs of conserved
densities and fluxes depending on derivatives up to the second order, the simples ones of which read

ρ1 =
α

2
L2 − |S|2, (41a)

f1 = −2αL|S|2 − 2 Im(S∗Sx), (41b)

ρ2 = 2α2L|S|2 − β|S|2 + 2α Im(S∗Sx), (42a)

f2 = 2α|Sx|2 − 2αRe(S∗Sxx) + 4α2L Im(S∗Sx)− 2β Im(S∗Sx), (42b)

while the remaining ones can be found in Appendix A.

4 Conclusions

Models describing long wave-short wave resonant interactions arise in a variety of physical contexts, from fluid
dynamics to plasma physics. In this paper we consider the recently-proposed, long wave-short wave YON (Yajima-
Oikawa-Newell) model (see [11]), an integrable model featuring two arbitrary parameters, and unifying and generalising
the Yajima-Oikawa model and the Newell model.

We studied some relevant families of periodic and solitary wave solutions, displaying the generation of very long
waves. Among others, we also display the expression of solutions that we term, with some abuse of language,
“rational”. Differently from the NLS equation, where the amplitude |S| is indeed rational (cf., the Peregrine soliton),
in the present case it is rather the function |S|2 that comes to be rational. This is due to the quintic nonlinearity
appearing in the YON system for the short wave amplitude |S|, rather then the usual cubic one as in the NLS
equation. An analytical study of the stability of the solutions presented in this paper is left to future investigation.
In this respect, we limit ourselves to report here that we carried out a preliminary numerical study, solving the initial
value problem for initial conditions obtained by computing our solutions at t = 0, using the method of lines with
pseudospectral, Fourier discretisation in space and an adaptive Dormand-Prince embedded Runge-Kutta method
for the time stepping: the numerical results seem to suggest the existence of regions of stability and regions where
different forms of instability are observed, similarly to what is predicted for plane wave solutions of the YON system
[11, 29].

The families of explicit solutions presented in this paper have been obtained by choosing a suitable Ansatz. A
systematic derivation of soliton solutions of bright, gray and dark type, as well as of breathers and rogue-waves,
exploiting the integrable character of the YON system, is currently in progress.

In this paper we have also derived a few conservation laws, which are of interest in view of numerical and analytical
studies of this system. An argument based on the effect of the surface tension on the dispersion relation for short
waves, allowing for short-long wave resonance, is presented to justify the physical relevance of the YON model in
a fluid-dynamical context (and in particular for experimental set-ups of capillarity-gravity wave propagation on the
scales of the centimetres), where the value of the wave number strongly depends on the water depth. In spite of the
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expected physical relevance, a derivation, via multiscale techniques, of the full YON system – similarly to the Newell
model, which is contained within the YON system – as an (integrable) reduction from a known physical PDE has not
yet been achieved and remains an intriguing open problem. It is worth observing that a subcase of the YON model,
namely the Yajima-Oikawa model, has been indeed derived via the multiscale technique in more than one way [9],
suggesting that this should be possible also for the more general YON model.

Acknowledgments: SL and PLdS acknowledge support by the Royal Society; PLdS is supported by the Royal
Society under a Newton International Fellowship (reference number 201625) hosted by SL. The work of MS has
been carried out under the auspices of the Italian GNFM (Gruppo Nazionale Fisica Matematica), INdAM (Istituto
Nazionale di Alta Matematica).

A Appendix: Conserved vectors depending on derivatives up to the

second order

In this Appendix we list the remaining densities and fluxes (in addition to (41) and (42)) depending on derivatives
up to the second order.These have been computed using GeM [23, 24, 25, 26, 27], for α, β ∈ R.

ρ3 =2α2tL|S|2 + α2

2
xL2 − β

2
xL − βt|S|2 − αx|S|2 + 2αt Im(S∗Sx), (43a)

f3 =− 2α2xL|S|2 + βx|S|2 + 4α2tL Im(S∗Sx) + 2αt|Sx|2 − 2αx Im(S∗Sx) (43b)

− 2βt Im(S∗Sx)− 2αtRe(S∗Sxx);

ρ4 =
1

2
α5L4 − 2α4L2|S|2 − α3βL3 + 2α3|S|4 + 4α3L Im(S∗Sx)−

1

2
α3L2

x + 2β2|S|2 − 4αβ Im(S∗Sx) + 4α2|Sx|2,
(44a)

f4 =6α3βL2|S|2 + 8α4L|S|4 − 4α2β|S|4 − 4αβ|Sx|2 + 4α3L|Sx|2 − 4α5L3|S|2 + 8α3|S|2 Im(S∗Sx) (44b)

+ 4β2 Im(S∗Sx)− 4α4L2 Im(S∗Sx) + 8α3LxRe(S
∗Sx) + 4αβ Re(S∗Sxx)− 4α3LRe(S∗Sxx) + 8α2 Im(S∗

xSxx).
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